Esempio n. 1
0
def test_20news():
    try:
        data = datasets.fetch_20newsgroups(subset='all',
                        download_if_missing=False,
                        shuffle=False)
    except IOError:
        raise SkipTest("Download 20 newsgroups to run this test")

    # Extract a reduced dataset
    data2cats = datasets.fetch_20newsgroups(subset='all',
                            categories=data.target_names[-1:-3:-1],
                            shuffle=False)
    # Check that the ordering of the target_names is the same
    # as the ordering in the full dataset
    assert_equal(data2cats.target_names,
                 data.target_names[-2:])
    # Assert that we have only 0 and 1 as labels
    assert_equal(np.unique(data2cats.target).tolist(), [0, 1])

    # Check that the first entry of the reduced dataset corresponds to
    # the first entry of the corresponding category in the full dataset
    entry1 = data2cats.data[0]
    category = data2cats.target_names[data2cats.target[0]]
    label = data.target_names.index(category)
    entry2 = data.data[np.where(data.target == label)[0][0]]
    assert_equal(entry1, entry2)

    # check that the filenames are available too
    assert_true(data.filenames[0].endswith(
        "20news_home/20news-bydate-test/talk.politics.mideast/76560"))
Esempio n. 2
0
def test_20news():
    try:
        data = datasets.fetch_20newsgroups(subset='all',
                        download_if_missing=False, 
                        shuffle=False)
    except IOError:
        # Data not there
        return

    # Extract a reduced dataset
    data2cats = datasets.fetch_20newsgroups(subset='all', 
                            categories=data.target_names[-1:-3:-1],
                            shuffle=False)
    # Check that the ordering of the target_names is the same
    # as the ordering in the full dataset
    nose.tools.assert_equal(data2cats.target_names, 
                            data.target_names[-2:])
    # Assert that we have only 0 and 1 as labels
    nose.tools.assert_equal(np.unique(data2cats.target).tolist(), [0, 1])

    # Check that the first entry of the reduced dataset corresponds to 
    # the first entry of the corresponding category in the full dataset
    entry1 = data2cats.data[0]
    category = data2cats.target_names[data2cats.target[0]]
    label = data.target_names.index(category)
    entry2 = data.data[np.where(data.target == label)[0][0]]
    nose.tools.assert_true(entry1 == entry2)
Esempio n. 3
0
    def _load_docs(self, training_set):
        if training_set == "newsgroup":
            self.info("extract the 20 newsgroup dataset")
            wide_dataset = fetch_20newsgroups()
            docs = [open(f).read() for f in wide_dataset.filenames]

        elif training_set == "docs":
            docs = [res['content'] for res in 
                    db.resources.find({'blacklisted': False, 
                                       'processed': True})]
        return docs
###############################################################################
# Load some categories from the training set
categories = [
    'alt.atheism',
    'talk.religion.misc',
    'comp.graphics',
    'sci.space',
]
# Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories if categories else "all"

data_train = fetch_20newsgroups(subset='train', categories=categories,
                               shuffle=True, random_state=42)

data_test = fetch_20newsgroups(subset='test', categories=categories,
                              shuffle=True, random_state=42)
print 'data loaded'

categories = data_train.target_names    # for case categories == None

print "%d documents (training set)" % len(data_train.data)
print "%d documents (testing set)" % len(data_test.data)
print "%d categories" % len(categories)
print

# split a training set and a test set
y_train, y_test = data_train.target, data_test.target
Esempio n. 5
0
################################################################################
# Load some categories from the training set
categories = [
    'alt.atheism',
    'talk.religion.misc',
    'comp.graphics',
    'sci.space',
]
# Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories if categories else "all"

data_train = fetch_20newsgroups(subset='train', categories=categories,
                               shuffle=True, random_state=42)

data_test = fetch_20newsgroups(subset='test', categories=categories,
                              shuffle=True, random_state=42)

print "%d documents (training set)" % len(data_train.filenames)
print "%d documents (testing set)" % len(data_test.filenames)
print "%d categories" % len(data_train.target_names)
print

# split a training set and a test set
filenames_train, filenames_test = data_train.filenames, data_test.filenames
y_train, y_test = data_train.target, data_test.target

print "Extracting features from the training dataset using a sparse vectorizer"
t0 = time()
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)s %(message)s')

################################################################################
# Load some categories from the training set
categories = [
    'alt.atheism',
    'talk.religion.misc',
]
# Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories

data = fetch_20newsgroups(subset='train', categories=categories)
print "%d documents" % len(data.filenames)
print "%d categories" % len(data.target_names)
print

################################################################################
# define a pipeline combining a text feature extractor with a simple
# classifier
pipeline = Pipeline([
    ('vect', CountVectorizer()),
    ('tfidf', TfidfTransformer()),
    ('clf', SGDClassifier()),
])

parameters = {
    # uncommenting more parameters will give better exploring power but will
                    format='%(asctime)s %(levelname)s %(message)s')


################################################################################
# Load some categories from the training set
categories = [
    'alt.atheism',
    'talk.religion.misc',
]
# Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories

data = fetch_20newsgroups(subset='train', categories=categories)
print "%d documents" % len(data.filenames)
print "%d categories" % len(data.target_names)
print

################################################################################
# define a pipeline combining a text feature extractor with a simple
# classifier
pipeline = Pipeline([
    ('vect', CountVectorizer()),
    ('tfidf', TfidfTransformer()),
    ('clf', SGDClassifier()),
])

parameters = {
# uncommenting more parameters will give better exploring power but will