def __init__(self): # Test Precisions self.decimal_bic = DECIMAL_1 self.decimal_aic_R = DECIMAL_1 self.decimal_aic_Stata = DECIMAL_3 self.decimal_loglike = DECIMAL_1 self.decimal_resids = DECIMAL_3 nobs = 100 x = np.arange(nobs) np.random.seed(54321) y = 1.0 + 2.0 * x + x**2 + 0.1 * np.random.randn(nobs) self.X = np.c_[np.ones((nobs,1)),x,x**2] self.y_inv = (1. + .02*x + .001*x**2)**-1 + .001 * np.random.randn(nobs) InverseLink_Model = GLM(self.y_inv, self.X, family=sm.families.Gaussian(sm.families.links.inverse)) InverseLink_Res = InverseLink_Model.fit() self.res1 = InverseLink_Res from results.results_glm import GaussianInverse self.res2 = GaussianInverse()
def __init__(self): # Test Precision self.decimal_aic_R = DECIMAL_0 self.decimal_aic_Stata = DECIMAL_2 self.decimal_loglike = DECIMAL_0 self.decimal_null_deviance = DECIMAL_1 nobs = 100 x = np.arange(nobs) np.random.seed(54321) # y = 1.0 - .02*x - .001*x**2 + 0.001 * np.random.randn(nobs) self.X = np.c_[np.ones((nobs,1)),x,x**2] self.lny = np.exp(-(-1.0 + 0.02*x + 0.0001*x**2)) +\ 0.001 * np.random.randn(nobs) GaussLog_Model = GLM(self.lny, self.X, \ family=sm.families.Gaussian(sm.families.links.log)) self.res1 = GaussLog_Model.fit() from results.results_glm import GaussianLog self.res2 = GaussianLog()
def __init__(self, endog, exog, smoothers=None, family=family.Gaussian()): GLM.__init__(self, endog, exog, family=family) AdditiveModel.__init__(self, exog, smoothers=smoothers)