Esempio n. 1
0
def bisector(rv, ccf,  low_high_cut = 0.1, figure_title = '', doplot = False, ccf_plot_file = '', showplot=False):
    # use the props from the CCF determination code
    # Could be per-order or with the mean
    #rv = props['RV_CCF']
    #ccf = props['MEAN_CCF']

    # get minima
    imin = int(np.argmin(ccf))
    #print(imin,type(imin))

    # get point where the derivative changes sign at the edge of the line
    # the bisector is ambiguous passed this poind
    width_blue =  imin - np.max(np.where(np.gradient(ccf[:imin])>0))
    #print(width_blue)
    width_red = np.min(np.where(np.gradient(ccf[imin:])<0))
    #print(width_red)

    # get the width from the side of the center that reaches
    # that point first
    width = int(np.min([width_blue, width_red]))

    # set depth to zero
    ccf -= np.min(ccf)

    # set continuum to one
    ccf /= np.min( ccf[ [imin - width,imin + width] ])

    # interpolate each side of the ccf slope at a range of depths
    depth = np.arange(low_high_cut,1-low_high_cut,0.001)

    # blue and red side of line
    g1 = (ccf[imin:imin - width:-1]>low_high_cut) & (ccf[imin:imin - width:-1]<(1-low_high_cut))
    spline1 = ius(ccf[imin:imin - width:-1][g1],rv[imin:imin - width:-1 ][g1], k=2)

    g2 = (ccf[imin : imin + width]>low_high_cut) & (ccf[imin : imin + width]<(1-low_high_cut))
    spline2 = ius(ccf[imin : imin + width][g2],rv[imin : imin + width][g2], k=2)

    # get midpoint
    bisector_position = (spline2(depth)+spline1(depth))/2

    # get bisector widht
    width_ccf = (spline2(depth)-spline1(depth))

    if doplot:
        # some nice plots
        plt.plot(rv[imin - width : imin+ width],ccf[imin - width : imin+ width],label = 'ccf')
        plt.plot(bisector_position,depth,label = 'bisector')
        plt.plot((bisector_position-np.mean(bisector_position))*100+np.mean(bisector_position),depth, label = 'bisector * 100',
                 )
        plt.legend()
        plt.title(figure_title)
        plt.xlabel('Velocity (km/s)')
        plt.ylabel('Depth')
        if ccf_plot_file !='':
            plt.savefig(ccf_plot_file)
        if showplot :
            plt.show()

    # define depth in the same way as Perryman, 0 is top, 1 is bottom
    return 1-depth, bisector_position, width_ccf
Esempio n. 2
0
    def set_cosmology(self, cosmo):
        self.cosmo_now = cosmo
        params = cosmo.get_cosmology()
        self.sM.set_cosmology(cosmo)
        self.sigs0 = self.sM.get_sigma_in_default_binning()

        Om = 1 - params[0, 2]
        dlnsdlnm = np.gradient(np.log(self.sigs0)) / \
            np.gradient(np.log(self.Mlist))
        self.f_to_num = -(Om * hmf_gp.rho_cr) * dlnsdlnm / self.Mlist**2

        flag, params_out = cosmo_util.test_cosm_range(params,
                                                      return_edges=True)
        if flag:
            self.coeff_table = (np.dot(
                self.gps.predict(np.atleast_2d(params_out)), self.eigdata) +
                                self.ymean).reshape(21, 2)
        else:
            self.coeff_table = (
                np.dot(self.gps.predict(np.atleast_2d(params)), self.eigdata) +
                self.ymean).reshape(21, 2)

        self.coeff_table[:, 0] /= 10
        self.coeff_Anorm_spl = ius(-self.redshift_list, self.coeff_table[:, 0])
        self.coeff_a_spl = ius(-self.redshift_list, self.coeff_table[:, 1])
Esempio n. 3
0
def Mass_nu(emu, nu, z):

    # TODO: This does both interpolation and evaluation, could split up?

    # Import
    from scipy.interpolate import InterpolatedUnivariateSpline as ius

    # Options
    log_interp = log_interp_sigma  # Should sigma(M) be interpolated logarithmically?

    # Get internal M vs sigma arrays
    Ms_internal = emu.massfunc.Mlist
    sig0s_internal = emu.massfunc.sigs0
    sigs_internal = sig0s_internal * emu.Dgrowth_from_z(z)
    nus_internal = dc / sigs_internal

    # Make an interpolator for sigma(M)
    if log_interp:
        mass_interpolator = ius(nus_internal, np.log(Ms_internal))
    else:
        mass_interpolator = ius(nus_internal, Ms_internal)

    # Get sigma(M) from the interpolator at the desired masses
    if log_interp:
        Mass = np.exp(mass_interpolator(nu))
    else:
        Mass = mass_interpolator(nu)

    return Mass
Esempio n. 4
0
def get_p_gg(self, k, redshift):
    """get_p_gg

    Compute galaxy power spectrum :math:`\\P_\mathrm{gg}(k)`.

    Args:
        k (numpy array): 3 dimensional separation in :math:`h^{-1}\mathrm{Mpc}`
        redshift (float): redshift at which the galaxies are located

    Returns:
        numpy array: galaxy power spectrum
    """
    from scipy.interpolate import InterpolatedUnivariateSpline as ius

    self._check_update_redshift(redshift)

    self._compute_p_1hcs(redshift)
    self._compute_p_1hss(redshift)
    self._compute_p_2hcc(redshift)
    self._compute_p_2hcs(redshift)
    self._compute_p_2hss(redshift)

    p_tot_1h = 2. * self.p_1hcs + self.p_1hss
    p_tot_2h = self.p_2hcc + 2. * self.p_2hcs + self.p_2hss
    p_gg = ius(self.fftlog_1h.k, p_tot_1h)(k) + ius(self.fftlog_2h.k,
                                                    p_tot_2h)(k)
    return p_gg
Esempio n. 5
0
def get_ilpk(zz, mode='real'):
    '''return log-interpolated pk at redshift z(aa) for Hankel transform'''
    aa = 1 / (zz + 1)
    al, b1, b2 = alphad['%0.1f' % zz], b1lstd['%0.1f' % zz], b2lstd['%0.1f' %
                                                                    zz],

    pkd = np.loadtxt(dpath + "HI_bias_{:06.4f}.txt".format(aa))[1:, :]
    bb = pkd[1:6, 2].mean()
    print(1 + b1, bb, (1 + b1) / bb)
    if mode == 'real':
        kk, pk = pkd[:, 0], pkd[:, 2]**2 * pkd[:, 3]
    elif mode == 'red':
        pks = np.loadtxt(dpath + "HI_pks_1d_{:06.4f}.txt".format(aa))[1:, :]
        kk, pk = pks[:, 0], pks[:, 1]
        bbs = (pk / ius(pkd[:, 0], pkd[:, 3])(kk))**0.5
        bb = bbs[1:6].mean()
        #pk *= bb**2/bbs**2

    #on large scales, extend with b^2*P_lin
    klin, plin = np.loadtxt('../../data/pklin_{:06.4f}.txt'.format(aa),
                            unpack=True)
    plin *= bb**2
    ipklin = ius(klin, plin)
    kt = np.concatenate((klin[(klin < kk[0])], kk))
    pt = np.concatenate((plin[(klin < kk[0])] * pk[0] / ipklin(kk[0]), pk))

    #On small scales, truncate at k=1
    pt = pt[kt < 1]
    kt = kt[kt < 1]

    ilpk = loginterp(kt, pt)
    return ilpk
Esempio n. 6
0
 def convolve(self, k, x, y):
     #FIXME most naive implementation, could do better with just about anything else for the integral
     #Do the N^2 operation, assume (probably bad) that not zero padding is fine
     #It would be better (for all N>100) to do the fft convolution
     A, B = ius(k, x, ext=1), ius(k, y, ext=1)
     N = len(k)
     res = np.zeros(N)
     for i in range(N):
         res[i] = np.trapz(k**2 * A(abs(k - k[i])) * B(k),
                           x=k) / (2 * np.pi**2)
     return res
Esempio n. 7
0
    def __init__(self, parameters):
        NSProblem.__init__(self, parameters=parameters)
        self.prm['viscosity'] = 1. / self.prm['Re']
        self.L = 30.
        f = open('../data/Re395/statistics_streamwise.txt')
        a = loadtxt(f, comments='%')
        sz = a.shape
        a2 = zeros((sz[0] + 2, 2))
        a2[1:-1, :] = a[:, :2]
        a2[1:-1, 0] += 10.  # Bump starts at x = 10
        a2[-1, 0] = self.L
        self.bump = ius(a2[:, 0], a2[:, 1])  # Create bump-spline

        # Use Expressions for 'complicated' profiles
        self.inlet_velocity = {
            'u': U0(self.bump),
            'p': ('0'),
            'up': UP0(self.bump)
        }

        # Otherwise just initialize to zero
        self.zero_velocity = Initdict(u=("0.0", "0.0"), p="0.0")

        self.mesh, self.boundaries = self.create_mesh_and_boundaries()

        self.prm['dt'] = self.timestep()

        transient = self.prm['time_integration'] == 'Transient'
        self.q0 = self.zero_velocity if transient else self.inlet_velocity
Esempio n. 8
0
def get_p_gm(self, k, redshift):
    """get_p_gm

    Compute galaxy matter power spectrum P_gm.

    Args:
        k (numpy array): 2 dimensional projected separation in :math:`h^{-1}\mathrm{Mpc}`
        redshift (float): redshift at which the lens galaxies are located

    Returns:
        numpy array: excess surface density in :math:`h M_\odot \mathrm{pc}^{-2}`
    """
    from scipy.interpolate import InterpolatedUnivariateSpline as ius

    self._check_update_redshift(redshift)

    self._compute_p_cen(redshift)
    self._compute_p_cen_off(redshift)
    self._compute_p_sat(redshift)

    p_tot = self.p_cen + self.p_cen_off + self.p_sat

    p_gm = ius(self.fftlog_1h.k, p_tot)(k)
    return p_gm


### ###
Esempio n. 9
0
def ilogcdfnfw(c=7):
    '''Inverse cdf of nfw in log-scale
    '''
    rr = np.logspace(-4, 0, 1000)
    cdf = cumnfw(rr, c=c)
    lrr, lcdf = np.log(rr), np.log(cdf)
    return ius(lcdf, lrr)
Esempio n. 10
0
def derivativesFromSpline(df, objName='obj', xName='rs_au', tName='time'):
    """Calculate first and second derivatives of a colum in a DataFrame
    via splines.
    
    Parameters:
    -----------
    df       ... input dataframe
    objName  ... name of individual object/trajectory in dataframe
    xName    ... column name for dependent variable in spline interpolation
    tname    ... column name for independent variable (such as time).
    
    Returns:
    -------- 
    x,xdot,xddot ... numpy array, returns x,dx/dt,d^2x/dt^2 for all values of t in df
    """

    i = 0
    objlist = df[objName].unique()
    xdot = []
    xddot = []
    x = []
    for o in objlist:
        dat = df[df[objName] == o]
        s = ius(dat[tName].values, dat[xName].values)
        for index, row in dat.iterrows():
            x.append(s.derivatives(row[tName])[0])
            xdot.append(s.derivatives(row[tName])[1])
            xddot.append(s.derivatives(row[tName])[2])
    return np.array(x), np.array(xdot), np.array(xddot)
 def get(self, rs, redshift, logdens):
     xic = np.array([
         rbs(-self.logdens_list, -self.redshift_list,
             self.pred_table[:, :, i])(-logdens, -redshift)
         for i in range(66)
     ])
     return np.exp(ius(self.logrscale, xic, ext=3)(np.log(rs)))
Esempio n. 12
0
def tospline(problem):
    """Store the results in a dictionary of splines and save to file.
    The channel solution is very often used to initialize other problems
    that have a VelocityInlet."""
    NS_solver = problem.pdesystems['Navier-Stokes']
    Turb_solver = problem.pdesystems['Turbulence model']
    f = open(
        '../data/channel_' + problem.prm['turbulence_model'] + '_' +
        str(problem.prm['Re_tau']) + '.ius', 'w')
    N = 1000
    xy = zeros(N)
    xy = zeros((N, 2))
    xy[:, 1] = linspace(0., 1., 1000)  # y-direction
    spl = {}
    for s in (NS_solver, Turb_solver):
        for name in s.names:
            vals = zeros((N, s.V[name].num_sub_spaces() or 1))
            for i in range(N):
                getattr(s, name + '_').eval(vals[i, :], xy[i, :])
            spl[name] = []
            # Create spline for all components
            # Scalar has zero subspaces, hence the or
            for i in range(s.V[name].num_sub_spaces() or 1):
                spl[name].append(ius(xy[:, 1], vals[:, i]))

    cPickle.dump(spl, f)
    f.close()
    return spl
Esempio n. 13
0
 def set_cosmology(self, cosmo):
     cparams = cosmo.get_cosmology()
     self.ns = cparams[0, 4]
     As = np.exp(cparams[0, 3]) / 1e10
     k0 = 0.05
     h = np.sqrt(
         (cparams[0, 0] + cparams[0, 1] + 0.00064) / (1 - cparams[0, 2]))
     gp_rec = np.array([
         self.gps[i].predict(self.ydata[:800, i],
                             np.atleast_2d(cparams[0, :3]),
                             return_cov=False)[0] for i in range(20)
     ])
     tk_rec = np.exp(
         np.dot(gp_rec * self.ystd + self.yavg, self.eigdata) + self.ymean)
     if not np.isclose(cparams[0, 5], -1):
         growth_wcdm = _linearGrowth(
             cparams[0, 2], cparams[0, 5], 0.) / _linearGrowth(
                 cparams[0, 2], cparams[0, 5], 1000.)
         growth_lcdm = _linearGrowth(cparams[0, 2], -1.,
                                     0.) / _linearGrowth(
                                         cparams[0, 2], -1., 1000.)
         tk_rec *= growth_wcdm / growth_lcdm
     pzeta = (2.*np.pi**2)/self.klist**3 * As * \
         (self.klist/(k0/h))**(self.ns-1.)
     self.pred_table = np.log(pzeta * tk_rec**2)
     self.pklin_spl = ius(self.logklist, self.pred_table, ext=3)
Esempio n. 14
0
    def create_boundaries(self):
        # Define the spline for the heart beat
        self.inflow_t_spline = ius(MCAtime, MCAval)

        # Preassemble normal vector on inlet
        n = self.n = FacetNormal(self.mesh)
        self.normal = [
            assemble(-n[i] * ds(4), mesh=self.mesh) for i in range(3)
        ]

        # Area of inlet
        self.A0 = assemble(Constant(1.) * ds(4), mesh=self.mesh)

        # Create dictionary used for Dirichlet inlet conditions. Values are assigned in prepare
        self.inflow = {
            'u': Constant((0, 0, 0)),
            'u0': Constant(0),
            'u1': Constant(0),
            'u2': Constant(0)
        }

        # Pressures on outlets are specified by DirichletBCs
        self.p_out1 = Constant(0)

        # Specify the boundary subdomains and hook up dictionaries for DirichletBCs
        walls = MeshSubDomain(3, 'Wall')
        inlet = MeshSubDomain(4, 'VelocityInlet', self.inflow)
        pressure1 = MeshSubDomain(5, 'ConstantPressure', {'p': self.p_out1})

        return [walls, inlet, pressure1]
Esempio n. 15
0
def mass_avg(emu, Mmin, Mmax, z, pow=1):
    '''
    Calculate the average halo mass between two limits, weighted by the halo mass function [Msun/h]
    '''
    from scipy.interpolate import InterpolatedUnivariateSpline as ius
    from scipy.integrate import quad

    # Parameters
    epsabs = 1e-5  # Integration accuracy

    # Construct an interpolator for n(M) (or dn/dM) from the emulator internals
    Ms = emu.massfunc.Mlist
    dndM = emu.massfunc.get_dndM(z)
    log_dndM_interp = ius(np.log(Ms), np.log(dndM), ext='extrapolate')

    # Number density of haloes in the mass range
    n = ndenshalo(emu, Mmin, Mmax, z)

    # Integrate to get the average mass
    Mav, _ = quad(lambda M: (M**pow) * np.exp(log_dndM_interp(np.log(M))),
                  Mmin,
                  Mmax,
                  epsabs=epsabs)

    return Mav / n
Esempio n. 16
0
    def wp(self,
           rp,
           pi=np.linspace(0, 100, 100 + 1),
           rMin=0.1,
           wantGrad=False):
        "FIXME: Lazy copy from AutoCorrelator - should make this function accessible by both. - general correlator class..."
        """Projected correlation function.
        Parameters:
        -----------
        rp: array (float)
            2D abscissa values for wp
        pi_bins: array (float)
            Array must be of size that divides evenly into r - projection window, tophat for now
        wantGrad : boolean,optional
            Whether to return the function value, or the tuple (val,grad).
        Returns:
        ----------
        (array (float), array (float), [array (float)])
            projected radius rp, projected correlation function wp, gradient if wanted
        """

        if (wantGrad):
            wp_grad = np.zeros((len(rp), len(self.params)))
            xir, grad_xir = self.Xi(wantGrad=wantGrad)
        else:
            xir = self.Xi(wantGrad=wantGrad)

        dpi = pi[1] - pi[0]  #bin width
        wp = np.zeros(len(rp))
        for i in range(len(wp)):
            rev = np.sqrt(rp[i]**2 + pi**2)
            wp[i] = 2 * ius(rev,
                            xir(rev) / np.sqrt(1 -
                                               (rp[i] /
                                                (rev + rMin))**2)).integral(
                                                    rev.min(), rev.max())
            if (wantGrad):
                wp_grad[i] = 2 * ius(
                    rev,
                    grad_xir(rev) / np.sqrt(1 - (rp[i] /
                                                 (rev + rMin))**2)).integral(
                                                     rev.min(), rev.max())

        if (wantGrad):
            return wp, wp_grad
        else:
            return wp
Esempio n. 17
0
 def get_nhalo_tinker(self, Mmin, Mmax, vol, redshift):
     if Mmax > 1e16:
         Mmax = 1e16
     dndM = self.get_dndM_tinker(redshift)
     dndM_interp = ius(np.log(self.Mlist), np.log(dndM))
     return vol * integrate.quad(
         lambda t: np.exp(dndM_interp(np.log(t))), Mmin, Mmax,
         epsabs=1e-5)[0]
Esempio n. 18
0
 def _make_psfs(self):
     """ Produces PSF arrays"""
     self.psf2D = self.models[self.psffunct](self.rr, *self.psf) * \
                  self.dr * self.dr
     self.psf2D /= np.sum(self.psf2D)
     self.psf1D = ius(self.rr.diagonal()[self.rsize:],
                      self.psf2D.diagonal()[self.rsize:])
     self.fft_psf2D = np.fft.fft2(self.psf2D)
     return
 def set_cosmology(self, cosmo):
     self.cosmo_now = cosmo
     cpara = cosmo.get_cosmology()
     self.coeff_rec = np.dot(self.gps.predict(np.atleast_2d(cpara)),
                             self.eigdata).reshape(21, 13, 3)
     self.coeff_rec_dm = np.dot(self.gps_dm.predict(np.atleast_2d(cpara)),
                                self.eigdata_dm).reshape(21, 2)
     self.sd0 = self.sd.get(cosmo)
     # self.D0s = np.array([cosmo.Dgrowth_from_z(z) for z in self.redshift_list])
     self.coeff1_spline = rbs(-self.redshift_list, -self.logdens_list,
                              self.coeff_rec[:, :, 0])
     self.coeff2_spline = rbs(-self.redshift_list, -self.logdens_list,
                              self.coeff_rec[:, :, 1])
     self.coeff3_spline = rbs(-self.redshift_list, -self.logdens_list,
                              self.coeff_rec[:, :, 2])
     self.coeff2_spline_dm = ius(-self.redshift_list, self.coeff_rec_dm[:,
                                                                        0])
     self.coeff3_spline_dm = ius(-self.redshift_list, self.coeff_rec_dm[:,
                                                                        1])
Esempio n. 20
0
 def dens_to_mass(self, dens, redshift, nint=20, integration="quad"):
     mlist = np.linspace(12., 15.95, nint)
     dlist = np.log(
         np.array([
             self.mass_to_dens(10**mlist[i],
                               redshift,
                               integration=integration) for i in range(nint)
         ]))
     d_to_m_interp = ius(-dlist, mlist)
     return 10**d_to_m_interp(-np.log(dens))
Esempio n. 21
0
def make_omHI_plot(fname, fsize=12):
    """Does the work of making the distribution figure."""
    zlist = [2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0]
    clist = ['b', 'c', 'g', 'm', 'r']
    # Now make the figure.

    fig, axis = plt.subplots(figsize=(6, 5))

    # Read in the data and convert to "normal" OmegaHI convention.
    dd = np.loadtxt("../../data/omega_HI_obs.txt")
    #Ez = np.sqrt( 0.3*(1+dd[:,0])**3+0.7 )
    #axis.errorbar(dd[:,0],1e-3*dd[:,1]/Ez**2,yerr=1e-3*dd[:,2]/Ez**2,\
    #            fmt='s',mfc='None')
    axis.errorbar(dd[:, 0],
                  1e-3 * dd[:, 1],
                  yerr=1e-3 * dd[:, 2],
                  fmt='s',
                  mfc='None',
                  color='m')
    # Plot the fit line.
    zz = np.linspace(0, 7, 100)
    Ez = np.sqrt(0.3 * (1 + zz)**3 + 0.7)
    axis.plot(zz, 4e-4 * (1 + zz)**0.6, 'k-')

    #for im, model in enumerate(['ModelA', 'ModelB', 'ModelC']):
    for im, model in enumerate(models):
        dpath = '../../data/outputs/%s/%s/' % (suff, model)
        omz = []
        for iz, zz in enumerate(zlist):
            # Read the data from file.
            aa = 1.0 / (1.0 + zz)
            omHI = np.loadtxt(dpath + "HI_dist_{:06.4f}.txt".format(aa)).T
            omHI = (omHI[1] * omHI[2]).sum() / bs**3 / 27.754e10
            omHI *= (1 + zz)**3
            if iz == 0: axis.plot(zz, omHI, 'C%do' % im, label=model)
            else: axis.plot(zz, omHI, 'C%do' % im)
            omz.append(omHI)

        ss = ius(zlist, omz)
        axis.plot(np.linspace(2, 6, 100), ss(np.linspace(2, 6, 100)),
                  'C%d' % im)

    axis.set_yscale('log')
    axis.legend(fontsize=fsize)
    for tick in axis.xaxis.get_major_ticks():
        tick.label.set_fontsize(fsize)
    for tick in axis.yaxis.get_major_ticks():
        tick.label.set_fontsize(fsize)

    # Put on some more labels.
    axis.set_xlabel(r'$z$')
    axis.set_ylabel(r'$\Omega_{HI}$')
    # and finish up.
    plt.tight_layout()
    plt.savefig(fname)
Esempio n. 22
0
def loginterp(x, y, yint = None, side = "both", lorder = 15, rorder = 15, lp = 1, rp = -1, \
                  ldx = 1e-6, rdx = 1e-6, k=5):

    if yint is None:
        yint = ius(x, y, k=k)

    if side == "both":
        side = "lr"
        l = lp
        r = rp
    lneff, rneff = 0, 0
    niter = 0
    while (lneff <= 0) or (lneff > 1):
        lneff = derivative(yint, x[l], dx=x[l] * ldx,
                           order=lorder) * x[l] / y[l]
        l += 1
        if niter > 100: continue
    print('Left slope = %0.3f at point ' % lneff, l)
    niter = 0
    while (rneff < -3) or (rneff > -2):
        rneff = derivative(yint, x[r], dx=x[r] * rdx,
                           order=rorder) * x[r] / y[r]
        r -= 1
        if niter > 100: continue
    print('Rigth slope = %0.3f at point ' % rneff, r)

    xl = np.logspace(-18, np.log10(x[l]), 10**6.)
    xr = np.logspace(np.log10(x[r]), 10., 10**6.)
    yl = y[l] * (xl / x[l])**lneff
    yr = y[r] * (xr / x[r])**rneff

    xint = x[l + 1:r].copy()
    yint = y[l + 1:r].copy()
    if side.find("l") > -1:
        xint = np.concatenate((xl, xint))
        yint = np.concatenate((yl, yint))
    if side.find("r") > -1:
        xint = np.concatenate((xint, xr))
        yint = np.concatenate((yint, yr))
    yint2 = ius(xint, yint, k=k)

    return yint2
Esempio n. 23
0
def wave2wave(e2ds_data_input, wave1, wave2):
    # transform e2ds data from one wavelength grid to another.

    e2ds_data = np.array(e2ds_data_input)

    for iord in range(49):
        keep = np.isfinite(e2ds_data[iord])
        spl = ius(wave1[iord][keep],e2ds_data[iord][keep],k=3, ext=1)
        e2ds_data[iord][keep] = spl(wave2[iord][keep])

    return e2ds_data
Esempio n. 24
0
def fast_med(vect,w):
    #
    # inputs : vect -> vector to be median-filtered
    #             w -> width of the filtering. Needs to be much shorter than 
    #                  the length of vect
    # 
    # performs a fast median filter for a box width that is too long to
    # be used with the normal numpy median filter. 
    # The code performs a 'true' median with numpy, but does not
    # shift by 1 pixel as would be done with a true boxcar.
    # It moves by 1/2 of the width and splines in between.
    #
    
    # index of points along vector
    index = np.arange(len(vect),dtype=float)
    # index only on non-nans, all others are set to nans.
    # this ensures that the splining is properly centered if there is a 
    # big bunch of NaNs on a width close to w
    index[np.isfinite(vect)==False]=np.nan
    
    # reshaping the vector in a form so that we can use the axis
    # keyword to do the job of a running boxcar. For a 1000-long vect and w=10
    # this would be equivalent to reformating into a 100x10 array and then taking
    # the median with axis=1.
    # This is the same a taking a running median with a size of 10, and getting
    # the value every 10 pixels
    y1 = np.nanmedian(np.reshape( vect[0:w*(len(vect)//w)],[len(vect)//w,w]),axis=1)
    # same but with an offset of 0.5*w
    y2 = np.nanmedian(np.reshape( (np.roll(vect,w//2))[0:w*(len(vect)//w)],[len(vect)//w,w]),axis=1)
    
    # same median as for the vect value, but for the position along vect
    x1 = np.nanmedian(np.reshape( index[0:w*(len(vect)//w)],[len(vect)//w,w]),axis=1)
    x2 = np.nanmedian(np.reshape( (np.roll(index,w//2))[0:w*(len(vect)//w)],[len(vect)//w,w]),axis=1)
    
    # append the median-binned at each w*integer with w*(integer+0.5)
    x=np.append(x1,x2)
    y=np.append(y1,y2)
    ind = np.argsort(x)
    # get the binned vectors in order of index
    x=x[ind]
    y=y[ind]
    # remove NaNs. There may be stretches of vect larger than w that are full
    # of NaNs. We also use np.roll to remove points of identical x
    keep = np.isfinite(x) & (x != np.roll(x,1)) & np.isfinite(y)
    x=x[keep]
    y=y[keep]
    
    # spline the whole thing onto the vect grid
    spline = ius(x,y,k=2,ext=1)
    med_filt_vect = spline( np.arange(len(vect),dtype=float))
    med_filt_vect[np.isfinite(vect) == False]=np.nan
    
    #output median-filtered vector
    return med_filt_vect
Esempio n. 25
0
 def _set_cosmology_param(self, cparams):
     gp_rec = np.array([self.gps[i].predict(self.ydata[:800, i], np.atleast_2d(
         cparams[[0, 1, 2, 4]]), return_cov=False)[0] for i in range(4)])
     self.pred_table = np.sqrt(np.exp(cparams[3]) / self.As_fid * np.exp(
         np.dot(gp_rec*self.ystd+self.yavg, self.eigdata) + self.ymean))
     if not np.isclose(cparams[5], -1):
         growth_wcdm = _linearGrowth(
             cparams[2], cparams[5], 0.)/_linearGrowth(cparams[2], cparams[5], 1000.)
         growth_lcdm = _linearGrowth(
             cparams[2], -1., 0.)/_linearGrowth(cparams[2], -1., 1000.)
         self.pred_table *= growth_wcdm/growth_lcdm
     self.sigma_M = ius(self.Mlist, self.pred_table)
Esempio n. 26
0
def extrapolate(xvals: np.ndarray,
                yvals: np.ndarray,
                x: float,
                grouping: int = 5,
                order: int = 3):
    """Given equal-length arrays xvals and yvals, with the
    xvals in ascending order, produce an interpolated or extrapolated
    estimate for y at corresponding x. If there are enough points to
    use grouping to smooth out noise in the yvals, average over
    consecutive points up to groups of size grouping.
    """

    assert len(xvals) == len(yvals)
    n = len(xvals)

    if n == 1:
        return yvals[0]

    if n == 0:
        raise IndexError

    # Do we have enough points to form (order+1) groups of size
    # grouping?
    while True:
        points = grouping * (order + 1)
        if points <= n:
            break
        if order > 1:
            order -= 1
        elif grouping > 1:
            grouping -= 1
        else:
            break

    if grouping > 1:
        pts = grouping * (order + 1)
        for array in (xvals, yvals):
            if x <= xvals[0]:
                tmp = array[:pts]
            else:
                tmp = array[-pts:]
            tmp = np.mean(np.reshape(tmp, (grouping, -1)), axis=1)
            if array == xvals:
                xvals = tmp
            else:
                yvals = tmp

    try:
        spline = ius(xvals, yvals, k=order)
        return float(spline(x))
    except Exception as eeps:
        print(eeps)
    return yvals[0]  # ???
Esempio n. 27
0
def sigma_M(emu):
    '''
    Create an interpolator for sigma(M)
    TODO: Attach this to emu class?
    '''
    from scipy.interpolate import InterpolatedUnivariateSpline as ius
    log_interp = log_interp_sigma  # Should sigma(M) be interpolated logarithmically?

    # Get internal M vs sigma arrays
    Ms_internal = emu.massfunc.Mlist
    sigs_internal = emu.massfunc.sigs0
    g = emu.Dgrowth_from_z  # This is a function

    # Make an interpolator for sigma(M)
    if log_interp:
        sigma_interpolator = ius(np.log(Ms_internal),
                                 np.log(sigs_internal),
                                 ext='extrapolate')
    else:
        sigma_interpolator = ius(Ms_internal, sigs_internal, ext='extrapolate')
    return lambda M, z: g(z) * sigma_interpolator(M)
Esempio n. 28
0
def running_rms(sp1):
    sp1b = np.zeros(4096)+np.nan
    sp1b[4:-4] = sp1
    with warnings.catch_warnings(record=True) as _:
        b1 = np.nanpercentile(np.reshape(sp1b, [16, 256]),[16,84], axis=1)
    rms =  (b1[1]-b1[0])/2
    index = np.arange(16)*256+128
    keep = np.isfinite(rms)
    index = index[keep]
    rms = rms[keep]

    return ius(index,rms,k=2,ext=3)(np.arange(len(sp1)))
Esempio n. 29
0
 def psfconvolve(self, model1D_unc, model2D_unc):
     """ Returns a PSF convolved profile. """
     model2D = np.fft.ifft2(np.fft.fft2(model2D_unc) * self.fft_psf2D).real
     model2D = np.fft.fftshift(model2D)
     model1D = np.column_stack((self.rr.diagonal(), model2D.diagonal()))
     index = np.where(model1D[:,0] == np.min(model1D[:,0]))[0][0]
     x, y = model1D[index:].T
     s = ius(x, y)
     rbox = x[-1] / np.sqrt(2)
     profile = model1D_unc
     profile[np.where(self.sma<rbox)] = s(self.sma[np.where(self.sma<rbox)])
     return profile
Esempio n. 30
0
def ISI_from_poisson(times, log=False, bw_PSTH=BW_PSTH, window=WINDOW, step=STEP, total_times=(0, 2.5), res=500, res_2=40, **kwargs):
    start, end = total_times
    time_bins = generate_time_bins(start, end, window=window, step=step)

    PSTH_func = PSTH(times, bw_PSTH=bw_PSTH, mirror=True, trial_time=total_times,  res=res)

    delta_1 = (end - start) / (res - 1.)
    PSTH_list = [PSTH_func(y) for y in numpy.linspace(start, end, res)]
    int_firing_list = cumtrapz(PSTH_list, dx=delta_1)

    def prob(ISI, a, b):
        start_bin = int(a / delta_1)
        end_bin = int(b / delta_1)
        step = int(ISI / delta_1)
        Y = [PSTH_list[i] * PSTH_list[i + step] * numpy.exp(-int_firing_list[i + step] + int_firing_list[i]) for i in range(start_bin, end_bin - step)]
        value = trapz(Y, dx=delta_1) * ISI
        return value

    #num_trials = len(times)
    times = flatten(times)

    if log:
        ISI_short = -3.
        ISI_long = numpy.log10(window)
    else:
        ISI_short = .001
        ISI_long = window
    X = numpy.linspace(ISI_short, ISI_long, res_2)
    delta_2 = (ISI_long - ISI_short) / (res_2 - 1.)

    prob_dict = {}
    for i, time_bin in enumerate(time_bins):
        if log:
            Y = numpy.array([prob(10**log_ISI, time_bin[0], time_bin[1]) * 10**log_ISI for log_ISI in X])
        else:
            Y = numpy.array([prob(ISI, time_bin[0], time_bin[1]) for ISI in X])
        norm = trapz(Y, dx=delta_2)
        Y = Y / norm
        prob_dict[tuple(time_bin)] = ius(X, Y)

    def prob_time_wrapper(ISI, time):
        try:
            value = prob_dict[current_bin(time, time_bins)](ISI)
            if value > 0:
                return(value)
            else:
                return(numpy.nan)
        except:
            return(numpy.nan)

    return prob_time_wrapper
Esempio n. 31
0
def get_xiauto_mass_avg(emu, rs, M1min, M1max, M2min, M2max, z):
    '''
    Averages the halo-halo correlation function over mass ranges to return the weighted-by-mass-function mean version
    '''
    from scipy.interpolate import InterpolatedUnivariateSpline as ius
    from scipy.interpolate import RectBivariateSpline as rbs
    from scipy.integrate import dblquad

    # Parameters
    epsabs = 1e-3  # Integration accuracy
    nM = 6  # Number of halo-mass bins in each of M1 and M2 directions

    # Calculations
    nr = len(rs)

    # Number densities of haloes in each sample
    n1 = ndenshalo(emu, M1min, M1max, z)
    n2 = ndenshalo(emu, M2min, M2max, z)

    # Arrays for halo masses
    M1s = mead.logspace(M1min, M1max, nM)
    M2s = mead.logspace(M2min, M2max, nM)

    # Get mass function interpolation
    Ms = emu.massfunc.Mlist
    dndM = emu.massfunc.get_dndM(z)
    log_dndM_interp = ius(np.log(Ms), np.log(dndM))

    # Loop over radii
    xiauto_avg = np.zeros((nr))
    for ir, r in enumerate(rs):

        # Get correlation function interpolation
        # Note that this is not necessarily symmetric because M1, M2 run over different ranges
        xiauto_mass = np.zeros((nM, nM))
        for iM1, M1 in enumerate(M1s):
            for iM2, M2 in enumerate(M2s):
                xiauto_mass[iM1, iM2] = emu.get_xiauto_mass(r, M1, M2, z)
        xiauto_interp = rbs(np.log(M1s), np.log(M2s), xiauto_mass)

        # Integrate interpolated functions
        xiauto_avg[ir], _ = dblquad(
            lambda M1, M2: xiauto_interp(np.log(M1), np.log(M2)) * np.exp(
                log_dndM_interp(np.log(M1)) + log_dndM_interp(np.log(M2))),
            M1min,
            M1max,
            lambda M1: M2min,
            lambda M1: M2max,
            epsabs=epsabs)

    return xiauto_avg / (n1 * n2)
Esempio n. 32
0
def get_dndM_mass(emu, Ms, z):
    '''
    Return an array of n(M) (dn/dM in Dark Quest notation) at user-specified halo masses
    Extrapolates if necessary, which is perhaps dangerous
    '''
    from scipy.interpolate import InterpolatedUnivariateSpline as ius

    # Construct an interpolator for n(M) (or dn/dM) from the emulator internals
    Ms = emu.massfunc.Mlist
    dndM = emu.massfunc.get_dndM(z)
    dndM_interp = ius(np.log(Ms), np.log(dndM), ext='extrapolate')

    # Evaluate the interpolator at the desired mass points
    return np.exp(dndM_interp(np.log(Ms)))
def fit_spline(coords,wvln,flux):
    sx,sy=np.array([]),np.array([])
    for i in range(len(coords)):
        if coords[i][0] < 1.1: #hacky bug fix; make boolean?
            sx=np.append(sx,np.nan)
            sy=np.append(sy,np.nan)
        else:
            sx=np.append(sx,find_nearest(wvln, coords[i][0]))
            ind = np.where(wvln == sx[i])
            sy=np.append(sy,flux[ind])
    gv = np.isfinite(sy)
    sx,sy=sx[gv],sy[gv]
    sx=np.hstack((sx,wf))
    sy=np.hstack((sy,nf))
    indz = np.argsort(sx)
    sx,sy = sx[indz],sy[indz]
#    splfit=interpolate.splrep(sx,sy,s=0.7) #default deg=3
#    cont = interpolate.splev(wvln,splfit)
    splfit = ius(sx, sy, k=3)
    cont = splfit(wvln)
    return cont, sx, sy
def match_x(ref_x, x_array, y_array):
    temp = ius(x_array, y_array)
    new_y = temp(ref_x)
    return new_y