Esempio n. 1
0
def test_pade_complex():
    # Test sequence with known solutions - see page 6 of 10.1109/PESGM.2012.6344759.
    # Variable x is parameter - these tests will work with any complex number.
    x = 0.2 + 0.6j
    an = [
        1.0, x, -x * x.conjugate(),
        x.conjugate() * (x**2) + x * (x.conjugate()**2),
        -(x**3) * x.conjugate() - 3 * (x * x.conjugate())**2 - x *
        (x.conjugate()**3)
    ]

    nump, denomp = pade(an, 1, 1)
    assert_array_almost_equal(nump.c, [x + x.conjugate(), 1.0])
    assert_array_almost_equal(denomp.c, [x.conjugate(), 1.0])

    nump, denomp = pade(an, 1, 2)
    assert_array_almost_equal(nump.c, [x**2, 2 * x + x.conjugate(), 1.0])
    assert_array_almost_equal(denomp.c, [x + x.conjugate(), 1.0])

    nump, denomp = pade(an, 2, 2)
    assert_array_almost_equal(nump.c, [
        x**2 + x * x.conjugate() + x.conjugate()**2, 2 *
        (x + x.conjugate()), 1.0
    ])
    assert_array_almost_equal(denomp.c,
                              [x.conjugate()**2, x + 2 * x.conjugate(), 1.0])
Esempio n. 2
0
def test_pade_trivial():
    nump, denomp = pade([1.0], 0)
    assert_array_equal(nump.c, [1.0])
    assert_array_equal(denomp.c, [1.0])

    nump, denomp = pade([1.0], 0, 0)
    assert_array_equal(nump.c, [1.0])
    assert_array_equal(denomp.c, [1.0])
Esempio n. 3
0
def test_pade_ints():
    # Simple test sequences (one of ints, one of floats).
    an_int = [1, 2, 3, 4]
    an_flt = [1.0, 2.0, 3.0, 4.0]

    # Make sure integer arrays give the same result as float arrays with same values.
    for i in range(0, len(an_int)):
        for j in range(0, len(an_int) - i):

            # Create float and int pade approximation for given order.
            nump_int, denomp_int = pade(an_int, i, j)
            nump_flt, denomp_flt = pade(an_flt, i, j)

            # Check that they are the same.
            assert_array_equal(nump_int.c, nump_flt.c)
            assert_array_equal(denomp_int.c, denomp_flt.c)
Esempio n. 4
0
def se_pade(m, n, s, ell):
    order = m + n

    #power
    p = np.arange(order + 1)

    #intermediate variable
    c = np.power((-np.square(ell) / 2), p) / factorial(p)

    #simo's implementation of pade seems different to the scipy one
    #it seems that simo take account negativity of c in his pade_approx.m
    #I dont know which is one correct
    pade_res = pade(c, n, m)

    a = pade_res[0].coefficients
    b = pade_res[1].coefficients

    A = np.zeros(2 * a.shape[0] - 1)
    B = np.zeros(2 * b.shape[0] - 1)

    A[::2] = a
    B[::2] = b

    A = A * np.square(s) * np.sqrt(2 * np.pi) * ell
    return np.poly1d(A), np.poly1d(B)
Esempio n. 5
0
def _pade_delay(p, q, c):
    """Numerically evaluated state-space using Pade approximants.

    This may have numerical issues for large values of p or q.
    """
    i = np.arange(1, p + q + 1, dtype=np.float64)
    taylor = np.append([1.0], (-c)**i / factorial(i))
    num, den = pade(taylor, q)
    return LinearSystem((num, den), analog=True)
Esempio n. 6
0
def fit(zs,us,m=10,n=10):
    """Fit to a Pade approximant"""
    us = 1./us
    e_exp = np.polyfit(zs,us,(m+n)*2)
    p, q = pade(np.flip(e_exp), m,n)
#    e_exp = np.flip(e_exp)
    print(e_exp)
    e_poly = np.poly1d(e_exp)
    def f(z): return 1/(p(z)/q(z))
    return f
def test_pade_4term_exp():
    # First four Taylor coefficients of exp(x).
    # Unlike poly1d, the first array element is the zero-order term.
    an = [1.0, 1.0, 0.5, 1.0 / 6]

    nump, denomp = pade(an, 0)
    assert_array_almost_equal(nump.c, [1.0 / 6, 0.5, 1.0, 1.0])
    assert_array_almost_equal(denomp.c, [1.0])

    nump, denomp = pade(an, 1)
    assert_array_almost_equal(nump.c, [1.0 / 6, 2.0 / 3, 1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 3, 1.0])

    nump, denomp = pade(an, 2)
    assert_array_almost_equal(nump.c, [1.0 / 3, 1.0])
    assert_array_almost_equal(denomp.c, [1.0 / 6, -2.0 / 3, 1.0])

    nump, denomp = pade(an, 3)
    assert_array_almost_equal(nump.c, [1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 6, 0.5, -1.0, 1.0])
Esempio n. 8
0
def test_pade_4term_exp():
    # First four Taylor coefficients of exp(x).
    # Unlike poly1d, the first array element is the zero-order term.
    an = [1.0, 1.0, 0.5, 1.0/6]

    nump, denomp = pade(an, 0)
    assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0])
    assert_array_almost_equal(denomp.c, [1.0])

    nump, denomp = pade(an, 1)
    assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0])
    assert_array_almost_equal(denomp.c, [-1.0/3, 1.0])

    nump, denomp = pade(an, 2)
    assert_array_almost_equal(nump.c, [1.0/3, 1.0])
    assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0])

    nump, denomp = pade(an, 3)
    assert_array_almost_equal(nump.c, [1.0])
    assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0])
def pade_vector_rational_function(taylor_polynomial, pade_power, **kwargs):
    taylor_polynomial = VectorPolynomial(
        taylor_polynomial)  # shape = (N, taylor_order)
    pp = list()
    qq = list()
    for ii in range(taylor_polynomial.N):
        pii, qii = pade(taylor_polynomial.coeffs[ii, :], pade_power, **kwargs)
        pp.append(pii.coeffs[::-1])
        qq.append(qii.coeffs[::-1])
    numerator = VectorPolynomial(np.array(pp))
    denominator = VectorPolynomial(np.array(qq))
    return numerator / denominator
Esempio n. 10
0
def exp_coeff(Y, L, nu, n_stop):
  """
  Computes the coefficient for the exponential approximation of the convolution
  coefficients.
  """

  print "*** Starting Pade approximation"

  # defining the formal serie
  # with the real part of the coefficients
  f = [[Y[i,n].real for n in range(nu, n_stop)] for i in range(8)]

  # matrix to store q_{i,l} and b_{i,l}
  q = np.zeros((8, L), dtype=complex)
  b = np.zeros((8, L), dtype=complex)

  for i in range(8):
    P, Q = pade(f[i], L)
    assert(P.o == L-1 and Q.o == L)
    root = Q.roots
    for l in range(L):
      q[i,l] = root[l]
      #  assert(abs(q[i,l]) > 1)
      b[i,l] = -(P(q[i,l])/Q.deriv()(q[i,l]))*(q[i,l]**(nu-1))


  print " *  max(b) = {}, max(q) = {}".format(np.amax(abs(b)), np.amax(abs(q)))

  print "*** Pade approximation --> done\n"

  print "*** Checking Pade approximation"

  Y_appr = np.zeros((8, n_stop), dtype=complex)
  for i in range(8):
      for n in range(nu):
        Y_appr[i,n] = Y[i,n]
      for n in range(nu, n_stop):
        Y_appr[i,n] = np.sum([b[i,l]*(q[i,l]**(-n)) for l in range(L)])

  # testing the approximation
  test = True
  for i in range(8):
    error = np.linalg.norm(abs(Y[i,:] - Y_appr[i,:]))
    print " *  i = {} --> |Y-Y_appr| = {}".format(i, error)
    if error > 10**(-3):
      test = False
  assert(test == True)
  print "*** Pade approximation --> checked\n"

  return q, b
Esempio n. 11
0
def pade_propagator_coefs_m(*, pade_order, diff2, k0, dx, spe=False, alpha=0):
    if spe:

        def sqrt_1plus(x):
            return 1 + x / 2
    elif alpha == 0:

        def sqrt_1plus(x):
            return np.sqrt(1 + x)
    else:
        raise Exception('alpha not supported')

    def propagator_func(s):
        return np.exp(1j * k0 * dx * (sqrt_1plus(diff2(s)) - 1))

    taylor_coefs = approximate_taylor_polynomial(
        propagator_func, 0, pade_order[0] + pade_order[1] + 5, 0.01)
    p, q = pade(taylor_coefs, pade_order[0], pade_order[1])
    pade_coefs = list(
        zip_longest([-1 / complex(v) for v in np.roots(p)],
                    [-1 / complex(v) for v in np.roots(q)],
                    fillvalue=0.0j))
    return pade_coefs
Esempio n. 12
0
def se_pade(m, n, s, ell):
    order = m + n

    #power
    p = np.arange(order, -1, -1)

    #intermediate variable
    c = np.power((np.square(ell) / 2), p) / factorial(p)

    pade_res = pade(c, m, n)

    b = pade_res[0].coefficients
    a = pade_res[1].coefficients

    A = np.zeros(2 * a.shape[0] - 1)
    B = np.zeros(2 * b.shape[0] - 1)

    A[::2] = a
    B[::2] = b

    B = B * np.square(s) * np.sqrt(np.pi) * ell

    return A, B
Esempio n. 13
0
y = asymptote_nan(f(x), x, x0list=[0])
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
#ax.plot(x,y)
ax.set_ylim(-4, 4)
ax.grid('on')
# ax.plot(x,tay(x),markersize=8)
# ax.plot(x,np.sin(x),markersize=8)

x0 = 1.0  #1.0
T10poly = scipy.interpolate.approximate_taylor_polynomial(f,
                                                          x=x0,
                                                          degree=10,
                                                          scale=0.05)
P5poly, Q5poly = pade(T10poly.coeffs[::-1], 5)
T10 = lambda x: T10poly(x - x0)
R5_5 = lambda x: P5poly(x - x0) / Q5poly(x - x0)

print(T10poly)
print("P5 poly {}".format(P5poly))
print(Q5poly)
#fig = plt.figure(figsize=(8,6))
#ax = fig.add_subplot(1,1,1)
ax.plot(x, y, label='f(x)')
ax.plot(x0, f(x0), '.k', markersize=8)
yR5 = R5_5(x)
# use real roots of Q5(x-x0) for finding asymptotes
yR5 = asymptote_nan(
    yR5, x, [r + x0 for r in np.roots(Q5poly) if np.abs(np.imag(r)) < 1e-8])
ax.plot(x, T10(x), label='T10(x)')
Esempio n. 14
0
def test_pade_4term_exp():
    # First four Taylor coefficients of exp(x).
    # Unlike poly1d, the first array element is the zero-order term.
    an = [1.0, 1.0, 0.5, 1.0 / 6]

    nump, denomp = pade(an, 0)
    assert_array_almost_equal(nump.c, [1.0 / 6, 0.5, 1.0, 1.0])
    assert_array_almost_equal(denomp.c, [1.0])

    nump, denomp = pade(an, 1)
    assert_array_almost_equal(nump.c, [1.0 / 6, 2.0 / 3, 1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 3, 1.0])

    nump, denomp = pade(an, 2)
    assert_array_almost_equal(nump.c, [1.0 / 3, 1.0])
    assert_array_almost_equal(denomp.c, [1.0 / 6, -2.0 / 3, 1.0])

    nump, denomp = pade(an, 3)
    assert_array_almost_equal(nump.c, [1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 6, 0.5, -1.0, 1.0])

    # Testing inclusion of optional parameter
    nump, denomp = pade(an, 0, 3)
    assert_array_almost_equal(nump.c, [1.0 / 6, 0.5, 1.0, 1.0])
    assert_array_almost_equal(denomp.c, [1.0])

    nump, denomp = pade(an, 1, 2)
    assert_array_almost_equal(nump.c, [1.0 / 6, 2.0 / 3, 1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 3, 1.0])

    nump, denomp = pade(an, 2, 1)
    assert_array_almost_equal(nump.c, [1.0 / 3, 1.0])
    assert_array_almost_equal(denomp.c, [1.0 / 6, -2.0 / 3, 1.0])

    nump, denomp = pade(an, 3, 0)
    assert_array_almost_equal(nump.c, [1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 6, 0.5, -1.0, 1.0])

    # Testing reducing array.
    nump, denomp = pade(an, 0, 2)
    assert_array_almost_equal(nump.c, [0.5, 1.0, 1.0])
    assert_array_almost_equal(denomp.c, [1.0])

    nump, denomp = pade(an, 1, 1)
    assert_array_almost_equal(nump.c, [1.0 / 2, 1.0])
    assert_array_almost_equal(denomp.c, [-1.0 / 2, 1.0])

    nump, denomp = pade(an, 2, 0)
    assert_array_almost_equal(nump.c, [1.0])
    assert_array_almost_equal(denomp.c, [1.0 / 2, -1.0, 1.0])
Esempio n. 15
0
def test_pade_trivial():
    nump, denomp = pade([1.0], 0)
    assert_array_equal(nump.c, [1.0])
    assert_array_equal(denomp.c, [1.0])