Esempio n. 1
0
def phrag_map(bgrn, wid=10):
    """ Impose a model for phragmites on a scaled (R,G,B,N -> r,g,b,N/Nmax)
    map """

    # -- smooth the images
    print("median filtering... ")
    t0 = time.time()
    imgsm = mf(bgrn, (1, wid, wid))
    print("  {0}s".format(np.round(time.time() - t0, 2)))
    imgusm = uf(bgrn, (0, wid, wid))
    img2usm = uf(bgrn**2, (0, wid, wid))

    # -- get the variance image
    var = img2usm - imgusm**2

    # -- get the pseudo NDVI
    pndvi = bgrn[3] - bgrn[2]

    # -- apply cuts
    return (imgsm[0] - imgsm[1] > 0.09) & (var[3] < 0.005) & (pndvi > 0.0)
Esempio n. 2
0
    def show_spectrum(event):
        if hold_spec[0]:
            return

        if event.inaxes==ax[0]:
            cind = int(round(event.xdata))
            rind = int(round(event.ydata))

            mn = cube.data[:,rind,cind].mean()
            sd = cube.data[:,rind,cind].std()
            if not median_filter:
                lin[0].set_data(waves,cube.data[:,rind,cind])
            else:
                lin[0].set_data(waves,mf(cube.data[:,rind,cind],
                                                        median_filter))
            ax[1].set_ylim([min(-10,cube.data[:,rind,cind].min()),
                            max(20,1.2*cube.data[:,rind,cind].max())])
            pos_text.set_y(ax[1].get_ylim()[1])
            pos_text.set_text('(row,col) = ({0:4},{1:4})'.format(rind,cind))
            fig.canvas.draw()

        return
Esempio n. 3
0
    def show_spectrum(event):
        if hold_spec[0]:
            return

        if event.inaxes == ax[0]:
            cind = int(round(event.xdata))
            rind = int(round(event.ydata))

            mn = cube.data[:, rind, cind].mean()
            sd = cube.data[:, rind, cind].std()
            if not median_filter:
                lin[0].set_data(waves, cube.data[:, rind, cind])
            else:
                lin[0].set_data(waves,
                                mf(cube.data[:, rind, cind], median_filter))
            ax[1].set_ylim([
                min(-10, cube.data[:, rind, cind].min()),
                max(20, 1.2 * cube.data[:, rind, cind].max())
            ])
            pos_text.set_y(ax[1].get_ylim()[1])
            pos_text.set_text('(row,col) = ({0:4},{1:4})'.format(rind, cind))
            fig.canvas.draw()

        return
#      Applied Data Science/ fall 2014       #
#      Video Project (Final)                 #
#      Dimas Rinarso Putro | [email protected]  #
#      image_manipulation.py                 #
##############################################

import os
import sys
import time
import pylab
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf

#1-7
img_ml = mf(
    1.0 * (255 - nd.imread(os.path.join('images', 'ml.jpg'))[::2, ::2, ::-1]),
    [8, 2, 1]).clip(0, 255).astype(np.uint8)

#plot it
ysize = 10.
xsize = ysize * float(img_ml.shape[1]) / float(img_ml.shape[0])
fig0, ax0 = plt.subplots(num=0, figsize=[xsize, ysize])
fig0.canvas.set_window_title('modified Mona Lisa')
fig0.subplots_adjust(0, 0, 1, 1, 0, 0)
ax0.axis('off')
im0 = ax0.imshow(img_ml)
fig0.canvas.draw()
plt.show()
Esempio n. 5
0
def plot_cube(cube,cmap='bone',clim=None,median_filter=False,figsize=10):
    """
    An interactive visualization of the data cube.

    Parameters
    ----------
    cube : HyperCube
        An instance of the HyperCube class to be shown.

    cmap : matplotlib color map, optional
        The matplotlib color map to use.

    clim : 2-element list, optional
        The limits of the color stretch.

    median_filter : float, optional
        Set the width of the median filter on the spectra.

    figsize : float, optional
        The horizontal width of the figure in inches.
    """

    # -- set the flag to freeze the spectrum
    def toggle_hold(event):
        if event.button==1 and event.inaxes==ax[0]:
            hold_spec[0] = not hold_spec[0]
        return

    # -- mouseover event updates the spectrum
    def show_spectrum(event):
        if hold_spec[0]:
            return

        if event.inaxes==ax[0]:
            cind = int(round(event.xdata))
            rind = int(round(event.ydata))

            mn = cube.data[:,rind,cind].mean()
            sd = cube.data[:,rind,cind].std()
            if not median_filter:
                lin[0].set_data(waves,cube.data[:,rind,cind])
            else:
                lin[0].set_data(waves,mf(cube.data[:,rind,cind],
                                                        median_filter))
            ax[1].set_ylim([min(-10,cube.data[:,rind,cind].min()),
                            max(20,1.2*cube.data[:,rind,cind].max())])
            pos_text.set_y(ax[1].get_ylim()[1])
            pos_text.set_text('(row,col) = ({0:4},{1:4})'.format(rind,cind))
            fig.canvas.draw()

        return

    # -- utilities
    waves = cube.wavelength*1e-3 if not cube.indexing else np.arange(cube.nwav)
    xlab  = 'wavelength [micron]' if not cube.indexing else 'index'
    arat  = float(cube.nrow)/float(cube.ncol)
    rat   = arat*3./5.
    med   = np.median(cube.img_L)
    sig   = cube.img_L.std()
    scl   = 0.2

    if clim==None:
        clim = [scl*max(med - 2*sig,cube.img_L.min()),
                scl*min(med + 10*sig,cube.img_L.max())]

    # -- initialize the figure
    fig = plt.figure(figsize=[figsize,figsize*rat])
    fig.subplots_adjust(0,0,1,1,0,0)
    ax = []
    ax.append(fig.add_axes([0.1,0.35,0.85,0.6]))
    ax.append(fig.add_axes([0.1,0.1,0.85,0.2]))
    fig.set_facecolor('ivory')
    ax[0].axis('off')
    ax[1].set_ylim([-10,20])
    ax[1].grid(1,color='white',ls='-',lw=1.5)
    ax[1].set_axis_bgcolor('lightgray')
    ax[1].set_xlabel(xlab)
    ax[1].set_xlim([waves.min(),waves.max()])
    ax[1].set_ylabel('intensity\n[arb units]')
    ax[1].set_axisbelow(True)

    # -- show the grayscale iamge
    ax[0].imshow(cube.img_L,clim=clim,cmap=cmap,aspect=0.6/0.85*rat/arat)

    # -- plot the spectrum
    if not median_filter:
        lin = ax[1].plot(waves,cube.data[:,0,0],color='#E24A33',lw=1.5)
    else:
        lin = ax[1].plot(waves,mf(cube.data[:,0,0],median_filter),
                         color='#E24A33',lw=1.5)

    # -- show the position of the spectrum
    pos_text = ax[1].text(ax[1].get_xlim()[1],ax[1].get_ylim()[1],
                          '(row,col) = ({0:4},{1:4})'.format(0,0),
                          ha='right',va='bottom')

    # -- initialize hold flag and connect events
    hold_spec = [False]
    fig.canvas.mpl_connect('button_press_event',toggle_hold)
    fig.canvas.mpl_connect('motion_notify_event',show_spectrum)

    return
Esempio n. 6
0
def Fg_Extract(frame,type = 1,trun = 100): #extract foreground    
    
    global BG_old
    global F_case
    global M_case
    global B_case

    if type ==1:    # training BG
        mu[:]       = alpha*frame + (1.0-alpha)*mu_old
        mu_old[:]   = mu
        sig2[:]     = alpha*(1.0*frame-mu)**2 + (1.0-alpha)*sig2_old
        sig2_old[:] = sig2        
        sig = sig2**0.5
        lmcs = lmc*sig
        bmcs = bmc*sig       
        sig_factor = 1
       
        fg= (np.abs(1.0*frame-mu)[:,:,0]-sig_factor*sig[:,:,0]>0.0) +\
            (np.abs(1.0*frame-mu)[:,:,1]-sig_factor*sig[:,:,1]>0.0) +\
            (np.abs(1.0*frame-mu)[:,:,2]-sig_factor*sig[:,:,2]>0.0)

    elif type == 2: # avg total seq (need saved file)
            print('bg')
            BG = pickle.load(open("./BG/20141031.pkl","rb"))
            BG = cv2.resize(BG,(0,0),fx = scale,fy=scale)
            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>50.)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>50.)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>50.)

    elif type == 2.5 : #avg total seq (need saved file) normalized image

        BG = pickle.load(open("./BG/car accident.pkl","rb"))
        BG = cv2.resize(BG,(0,0),fx = scale,fy=scale)
        
        fcal = np.zeros(BG.shape)     

        BG_r_avg = BG[:,:,0][Rmask].mean()
        BG_g_avg = BG[:,:,1][Rmask].mean()
        BG_b_avg = BG[:,:,2][Rmask].mean()

        BG_r_std = BG[:,:,0][Rmask].std()
        BG_g_std = BG[:,:,1][Rmask].std()
        BG_b_std = BG[:,:,2][Rmask].std()

        f_r_avg = frame[:,:,0][Rmask].mean()
        f_g_avg = frame[:,:,1][Rmask].mean()
        f_b_avg = frame[:,:,2][Rmask].mean()

        f_r_std = frame[:,:,0][Rmask].std()
        f_g_std = frame[:,:,1][Rmask].std()
        f_b_std = frame[:,:,2][Rmask].std()
       
        fcal[:,:,0] = (frame[:,:,0]-f_r_avg)/f_r_std*BG_r_std+BG_r_avg
        fcal[:,:,1] = (frame[:,:,1]-f_g_avg)/f_g_std*BG_g_std+BG_g_avg
        fcal[:,:,2] = (frame[:,:,2]-f_b_avg)/f_b_std*BG_b_std+BG_b_avg

        dif = abs(fcal-BG)
        fg  = ((dif[:,:,1]>20.)|(dif[:,:,2]>30.)) 

    elif type == 3 : #truncation mean 1. 
        if len(vid)>trun:
            if (vid_idx-round(trun/2))<0:
                if F_case == 1: 
                    BG = BG_old
                else:
                    LB = 0
                    UB = trun-1
                    BG = array(vid[LB:UB+1]).mean(0)    
                    F_case = 1

            elif len(vid)-vid_idx<=(trun-1):
                if B_case == 1:
                    BG = BG_old
                else: 
                    LB = len(vid)-(trun-1)
                    UB = len(vid)
                    BG = array(vid[LB:UB+1]).mean(0)
                    B_case = 1                    
            else:
                if M_case == 1:
                    BG = BG_old + array(vid[vid_idx+int(trun/2)])/trun\
                                - array(vid[vid_idx-int(trun/2)+1])/trun   
                else:
                    LB = vid_idx-int(trun/2)+1
                    UB = vid_idx+int(trun/2)
                    #pdb.set_trace()
                    BG = array(vid[LB:UB+1]).mean(0)
                    M_case = 1

            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>25.0)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>25.0)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>25.0)
        else:
            print('select truncation is larger then the sequence....')
            BG = array(vid).mean(0)
            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>30.0)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>30.0)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>30.0)

    elif type==4:  #truncation mean 2.
        if len(vid)>trun:

            if len(vid)-vid_idx<=(trun-1):
                if B_case == 1:
                    BG = BG_old
                else:
                    LB = len(vid)-(trun-1)
                    UB = len(vid)
                    BG = array(vid[LB:UB+1]).mean(0)
                    B_case = 1
            else:             
                if F_case == 1:
                    BG = BG_old + array(vid[vid_idx+trun-1])/trun\
                                - array(vid[vid_idx-1])/trun
                else:
                    LB = 0
                    UB = trun-1
                    BG = array(vid[LB:UB+1]).mean(0)
                    F_case = 1

            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>30.0)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>30.0)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>30.0)

        else:
            print('select truncation is larger then the sequence....')
            BG = array(vid).mean(0)
            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>30.0)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>30.0)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>30.0)

    elif type == 5:
            if (vid_idx-round(trun/2))<0:
                if F_case == 1:
                    BG = BG_old
                else:
                    LB = 0
                    UB = trun-1
                    BG = array(vid[LB:UB+1]).mean(0)
                    F_case = 1

            elif len(vid)-vid_idx<=(trun-1):
                if B_case == 1:
                    BG = BG_old
                else:
                    LB = len(vid)-(trun-1)
                    UB = len(vid)
                    BG = array(vid[LB:UB+1]).mean(0)
                    B_case = 1
            else:
                if M_case == 1:
                    BG = BG_old + array(vid[vid_idx+int(trun/2)])/trun\
                                - array(vid[vid_idx-int(trun/2)+1])/trun
                else:
                    LB = vid_idx-int(trun/2)+1
                    UB = vid_idx+int(trun/2)
                    BG = array(vid[LB:UB+1]).mean(0)
                    M_case = 1

            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>25.0)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>25.0)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>25.0)  

            #fg = fg * ShadowRm(fg,frame,BG,5,frame.shape[0],frame.shape[1],20)

    elif type == 6:
        global buf,Tf 
        N = 25
        trun = N*2+1
        ind =range(trun)
        ind.pop(trun/2)
        buf[-1] = vid[vid_idx+N+1]  
        
        if len(vid)>trun:
            BG = np.abs(buf[ind]-buf[trun/2]).mean(3).mean(0)
            fg = (BG>40.)*Tf                     
            buf=np.roll(buf,-1,0)
        else:
            print('select truncation is larger then the sequence....')
    if maskon:
       fg = fg*mask*mask2

    fgd = ndm.binary_dilation(fg,np.ones([2,2]))
    fgf = ndm.binary_fill_holes(fgd)
    right.set_data(mf(fgf,5))
    plt.draw()
    if (type!=1)&(type!=5):
        BG_old = BG       
    return fgf
Esempio n. 7
0
def Fg_Extract(frame,type = 1,trun = 100): #extract foreground    
    
    global BG_old
    global F_case
    global M_case
    global B_case

    if type ==1:    # training BG
        mu[:]       = alpha*frame + (1.0-alpha)*mu_old
        mu_old[:]   = mu
        sig2[:]     = alpha*(1.0*frame-mu)**2 + (1.0-alpha)*sig2_old
        sig2_old[:] = sig2        
        sig = sig2**0.5
        lmcs = lmc*sig
        bmcs = bmc*sig       
        sig_factor = 1
        #pdb.set_trace() 
       
        fg= (np.abs(1.0*frame-mu)[:,:,0]-sig_factor*sig[:,:,0]>0.0) +\
            (np.abs(1.0*frame-mu)[:,:,1]-sig_factor*sig[:,:,1]>0.0) +\
            (np.abs(1.0*frame-mu)[:,:,2]-sig_factor*sig[:,:,2]>0.0)

    elif type == 2: # avg total seq (need saved file)
            print('bg')
            BG = pickle.load(open("./BG/TLC0005(15000-16000).pkl","rb"))
            BG = cv2.resize(BG,(0,0),fx = scale,fy=scale)
            fg = (np.abs(1.0*frame[:,:,0]-BG[:,:,0])>50.)+\
                 (np.abs(1.0*frame[:,:,1]-BG[:,:,1])>50.)+\
                 (np.abs(1.0*frame[:,:,2]-BG[:,:,2])>50.)
    elif type == 2.5 : #avg total seq (need saved file) normalized image

        BG = pickle.load(open("./BG/TLC0005(15000-16000).pkl","rb"))
        BG = cv2.resize(BG,(0,0),fx = scale,fy=scale)
        
        fcal = np.zeros(BG.shape)     
         
        #pdb.set_trace()      

        BG_r_avg = BG[:,:,0][Rmask].mean()
        BG_g_avg = BG[:,:,1][Rmask].mean()
        BG_b_avg = BG[:,:,2][Rmask].mean()

        BG_r_std = BG[:,:,0][Rmask].std()
        BG_g_std = BG[:,:,1][Rmask].std()
        BG_b_std = BG[:,:,2][Rmask].std()

        f_r_avg = frame[:,:,0][Rmask].mean()
        f_g_avg = frame[:,:,1][Rmask].mean()
        f_b_avg = frame[:,:,2][Rmask].mean()

        f_r_std = frame[:,:,0][Rmask].std()
        f_g_std = frame[:,:,1][Rmask].std()
        f_b_std = frame[:,:,2][Rmask].std()
       
        fcal[:,:,0] = (frame[:,:,0]-f_r_avg)/f_r_std*BG_r_std+BG_r_avg
        fcal[:,:,1] = (frame[:,:,1]-f_g_avg)/f_g_std*BG_g_std+BG_g_avg
        fcal[:,:,2] = (frame[:,:,2]-f_b_avg)/f_b_std*BG_b_std+BG_b_avg

        dif = abs(fcal-BG)
        fg  = ((dif[:,:,1]>50.)|(dif[:,:,2]>50.)) 

        Tf = (frame[:,:,1]>100) & (frame[:,:,0]<100)
        Tf = ndm.binary_closing(Tf,structure=np.ones((4,4)))
        Tf = ~ndm.binary_fill_holes(Tf)


    df = (abs(1.0*vid[vid_idx-1][:,:,0]-1.0*vid[vid_idx][:,:,0])>50.)+\
         (abs(1.0*vid[vid_idx-1][:,:,1]-1.0*vid[vid_idx][:,:,1])>50.)+\
         (abs(1.0*vid[vid_idx-1][:,:,2]-1.0*vid[vid_idx][:,:,2])>50.)




    if maskon:
       fg = fg*mask*Tf*df#*mask2

    #fgo = ndm.binary_opening(fg,np.ones([5,5]))
    fgo = ndm.binary_dilation(fg,np.ones([2,2]))
    fgf = ndm.binary_fill_holes(fgo)
    right.set_data(mf(fgf,5))
    plt.draw()
    if (type!=1)&(type!=5):
        BG_old = BG       
    return fgf
Esempio n. 8
0
start = 15225
end = 15240
buf = double(vid[start-trun/2:start+trun/2+1])
ind = range(trun+1)
ind.pop(trun/2)
th =40

#build tree filter
Tf = (vid[0:100,:,:,1].mean(0)>100) & (vid[0:100,:,:,0].mean(0)<100)
Tf = ndm.binary_closing(Tf,structure=np.ones((4,4)))
Tf = ~ndm.binary_fill_holes(Tf)


for ii in range(start,end):
    print(ii)
    left.set_data(vid[ii][:,:,::-1])
    #pdb.set_trace()
     
    BG[:] = np.abs(buf[ind]-buf[trun/2]).mean(3).mean(0)>40. 
    #fg = np.abs(buf[ind].mean(3)-buf[trun/2].mean(2)).mean(0)>40.
    
    fgo = ndm.binary_opening(BG*Tf)
    fgf = ndm.binary_fill_holes(fgo)

    right.set_data(mf(fgf,5))
    plt.draw()
     
    buf = np.roll(buf,-1,0)
    buf[-1] = vid[ii+trun/2+1]

# In[1]:

import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf


####### Problem 1

# In[2]:

img = mf((255 - nd.imread('images/ml.jpg')[::1,::2,::-1]).astype(float), (8, 2, 1)).clip(0,255).astype(np.uint8)
### Explanation:
### 1. nd.imread reaturns a 3D array
### 2. Then subsetting [::2, ::1, ::-1] inverses colors and skips every other column
### 3. 255 - ... converts to negative
### 4. .astype(float)
### 5. mf() applies median filter
### 6. .clip() clips
### 7. .astype(np.uint8) converts to uint

nrow, ncol = img.shape[:2]

ysize = 10.
xsize = ysize * float(ncol)/float(nrow)

fig1, ax1 = plt.subplots(num = 1, figsize = [xsize, ysize])
Esempio n. 10
0
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf


img = mf(1.0*(255 - np.array([[e[2], e[1], e[0]] for e in nd.imread('images/ml.jpg').reshape(610560,3)[::2]]).\
            reshape(954,320,3)),[8,2,1]).clip(0,255).astype(np.uint8)


ysize = 10.
xsize = ysize*float(img.shape[1])/float(img.shape[0])

fig5, ax5 = plt.subplots(num=5,figsize=[xsize,ysize])
fig5.subplots_adjust(0,0,1,1)
fig5.canvas.set_window_title("modified mona lisa")
ax5.axis('off')
im5 = ax5.imshow(img)
fig5.canvas.draw()

plt.show()
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf

img_ml=mf(1.0*(255-nd.imread('images/ml.jpg')[::2,::2,::-1]),[8,2,1]).clip(0,255)
fig1, ax1 = plt.subplots(num=1,figsize=(6,1.0*img_ml.shape[0]/img_ml.shape[1]*6))
fig1.subplots_adjust(0,0,1,1);ax1.grid('off')
ax1.axis('off')
fig1.canvas.set_window_title('modified Mona Lisa')
im1 = ax1.imshow(img_ml.astype(np.uint8))
def med_filter(im, size = 10):
    from scipy.ndimage.filters import median_filter as mf
    import numpy as np
    return mf(im, size = size)
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf

# 1: read in and manipulate image
img = mf(
    (255 -
     (nd.imread(os.path.join('images', 'city_image.jpg'))[::2][:, :, ::-1])),
    [8, 2, 1]).clip(0, 255).astype(np.uint8)

# 2: display it
ysize = 3.
xsize = ysize * float(img.shape[1]) / float(img.shape[0])

fig, ax = plt.subplots(1, figsize=[xsize, ysize])
fig.subplots_adjust(0, 0, 1, 1)
ax.axis("off")
im = ax.imshow(img)
fig.canvas.set_window_title('modified city image')
fig.canvas.draw()
plt.show()
Esempio n. 14
0
def med_filter(im, size=10):
    from scipy.ndimage.filters import median_filter as mf
    import numpy as np
    return mf(im, size=size)
Esempio n. 15
0
def res_lc_plot():

    # -- read in the residential data
    lcs = []

    for night in range(22):
        fopen = open(os.path.join(os.environ['DST_WRITE'],'res_lc_night_' + 
                                  str(night).zfill(2) + '_2.pkl'),'rb')
        lcs.append(pkl.load(fopen))
        fopen.close()


    # -- utilities
    tcks, htimes = time_ticks()


    # -- define fri/sat and all other days
#    we = [0,6,7,13,14,20,21]
#    wd = [1,2,3,4,5,8,9,10,11,12,15,16,17,18,19]
    we = [0,6,7,13,14,20,21]
    wd = [1,2,3,4,5,8,9,10,11,12,15,16,17,18,19]


    # -- get mean averaged lc
    tmax = min([len(i.mean(0)) for i in lcs if len(i.mean(0))>3000])
    mnwd = np.zeros(tmax)
    mnwe = np.zeros(tmax)

    cnt = 0.0
    for idy in wd:
        if idy==8: continue
        if len(lcs[idy].mean(0))>3000:
            mnwd += lcs[idy].mean(0)[:tmax]
            cnt += 1.0
    mnwd /= cnt

    cnt = 0.0
    for idy in we:
        if idy==21: continue
        if len(lcs[idy].mean(0))>3000:
            mnwe += lcs[idy].mean(0)[:tmax]
            cnt += 1.0
    mnwe /= cnt

    plt.figure(1,figsize=[5,5])
    plt.xticks(tcks,htimes,rotation=30)
    plt.ylabel('intensity [arb units]',size=15)
    plt.xlim([0,3600])
    plt.grid(b=1)
    plt.plot(mnwd,'k')
    plt.plot(mnwe,'r')
    plt.savefig('../output/res_lc_mean.png',clobber=True)
    plt.close()


    # -- open the figure
    plt.figure(0,figsize=[15,5])
    plt.subplots_adjust(0.05,0.1,0.95,0.95)

    plt.subplot(131)
    for idy in wd: 
#        plt.plot(mf(lcs[idy][0]/lcs[idy][0,0],6))
#        plt.plot(mf(lcs[idy].mean(0)/lcs[idy].mean(0)[0],6))
#        cdf = np.cumsum(lcs[idy].mean(0))
#        plt.plot(cdf/cdf[360]/(np.arange(cdf.size)/360.))
        lc_sm = gf(lcs[idy].mean(0)/lcs[idy].mean(0)[0],6)
        norm = (lc_sm-lc_sm[-1])
#        plt.plot(lc_sm/lc_sm[0])
        plt.plot(norm/norm[0])
#        plt.plot(gf((lc_sm-np.roll(lc_sm,1))[1:-1],360))
#    plt.ylim([0.8,1.2])
#    plt.ylim([0.6,1.4])
    plt.ylim([-0.1,1.4])
    plt.grid(b=1)
    plt.xticks(tcks,htimes,rotation=30)
    plt.xlim([0,3600])
    plt.ylabel('intensity [arb units]',size=15)

    plt.subplot(132)
    for idy in we: 
#        plt.plot(mf(lcs[idy][0]/lcs[idy][0,0],6))
#        plt.plot(mf(lcs[idy].mean(0)/lcs[idy].mean(0)[0],6))
#        cdf = np.cumsum(lcs[idy].mean(0))
#        plt.plot(cdf/cdf[360]/(np.arange(cdf.size)/360.))
        lc_sm = gf(lcs[idy].mean(0)/lcs[idy].mean(0)[0],6)
        norm = (lc_sm-lc_sm[-1])
#        plt.plot(lc_sm/lc_sm[0])
        plt.plot(norm/norm[0])
#        plt.plot(gf((lc_sm-np.roll(lc_sm,1))[1:-1],360))
#    plt.ylim([0.6,1.4])
#    plt.ylim([0.8,1.2])
    plt.ylim([-0.1,1.4])
    plt.grid(b=1)
    plt.xticks(tcks,htimes,rotation=30)
    plt.xlim([0,3600])
    plt.ylabel('intensity [arb units]',size=15)

    plt.subplot(133)
    for idy in wd: 
#        plt.plot(mf(lcs[idy][0]/lcs[idy][0,0],6),'k')
        plt.plot(mf(lcs[idy].mean(0)/lcs[idy].mean(0)[0],6),'k')
    for idy in we: 
#        plt.plot(mf(lcs[idy][0]/lcs[idy][0,0],6),'r')
        plt.plot(mf(lcs[idy].mean(0)/lcs[idy].mean(0)[0],6),'r')
    plt.ylim([0.6,1.4])
    plt.grid(b=1)
    plt.xticks(tcks,htimes,rotation=30)
    plt.xlim([0,3600])
    plt.ylabel('intensity [arb units]',size=15)

    plt.savefig('../output/res_lc_all.png',clobber=True)
    plt.close()

    return
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf

if __name__ == '__main__':
	dpath = 'images'
	fname = 'ml.jpg'
	infile = os.path.join(dpath,fname)

	#fancy image read line
	img_ml = np.uint8( mf( np.float64(255-nd.imread(infile)[::2,::2,::-1]), (8,2,1)) )

	#display the image
	ysize = 9.
	xsize = ysize*float(img_ml.shape[1])/float(img_ml.shape[0])

	plt.ion()
	fig, ax = plt.subplots(figsize=(xsize,ysize))
	fig.subplots_adjust(0,0,1,1)
	fig.canvas.set_window_title('modified Mona Lisa')
	ax.axis('off')
	im = ax.imshow(img_ml)
	fig.canvas.draw()
	plt.show(block=True)
Esempio n. 17
0
def plot_cube(cube, cmap='bone', clim=None, median_filter=False, figsize=10):
    """
    An interactive visualization of the data cube.

    Parameters
    ----------
    cube : HyperCube
        An instance of the HyperCube class to be shown.

    cmap : matplotlib color map, optional
        The matplotlib color map to use.

    clim : 2-element list, optional
        The limits of the color stretch.

    median_filter : float, optional
        Set the width of the median filter on the spectra.

    figsize : float, optional
        The horizontal width of the figure in inches.
    """

    # -- set the flag to freeze the spectrum
    def toggle_hold(event):
        if event.button == 1 and event.inaxes == ax[0]:
            hold_spec[0] = not hold_spec[0]
        return

    # -- mouseover event updates the spectrum
    def show_spectrum(event):
        if hold_spec[0]:
            return

        if event.inaxes == ax[0]:
            cind = int(round(event.xdata))
            rind = int(round(event.ydata))

            mn = cube.data[:, rind, cind].mean()
            sd = cube.data[:, rind, cind].std()
            if not median_filter:
                lin[0].set_data(waves, cube.data[:, rind, cind])
            else:
                lin[0].set_data(waves,
                                mf(cube.data[:, rind, cind], median_filter))
            ax[1].set_ylim([
                min(-10, cube.data[:, rind, cind].min()),
                max(20, 1.2 * cube.data[:, rind, cind].max())
            ])
            pos_text.set_y(ax[1].get_ylim()[1])
            pos_text.set_text('(row,col) = ({0:4},{1:4})'.format(rind, cind))
            fig.canvas.draw()

        return

    # -- utilities
    waves = cube.wavelength * 1e-3 if not cube.indexing else np.arange(
        cube.nwav)
    xlab = 'wavelength [micron]' if not cube.indexing else 'index'
    arat = float(cube.nrow) / float(cube.ncol)
    rat = arat * 3. / 5.
    med = np.median(cube.img_L)
    sig = cube.img_L.std()
    scl = 0.2

    if clim == None:
        clim = [
            scl * max(med - 2 * sig, cube.img_L.min()),
            scl * min(med + 10 * sig, cube.img_L.max())
        ]

    # -- initialize the figure
    fig = plt.figure(figsize=[figsize, figsize * rat])
    fig.subplots_adjust(0, 0, 1, 1, 0, 0)
    ax = []
    ax.append(fig.add_axes([0.1, 0.35, 0.85, 0.6]))
    ax.append(fig.add_axes([0.1, 0.1, 0.85, 0.2]))
    fig.set_facecolor('ivory')
    ax[0].axis('off')
    ax[1].set_ylim([-10, 20])
    ax[1].grid(1, color='white', ls='-', lw=1.5)
    ax[1].set_axis_bgcolor('lightgray')
    ax[1].set_xlabel(xlab)
    ax[1].set_xlim([waves.min(), waves.max()])
    ax[1].set_ylabel('intensity\n[arb units]')
    ax[1].set_axisbelow(True)

    # -- show the grayscale iamge
    ax[0].imshow(cube.img_L,
                 clim=clim,
                 cmap=cmap,
                 aspect=0.6 / 0.85 * rat / arat)

    # -- plot the spectrum
    if not median_filter:
        lin = ax[1].plot(waves, cube.data[:, 0, 0], color='#E24A33', lw=1.5)
    else:
        lin = ax[1].plot(waves,
                         mf(cube.data[:, 0, 0], median_filter),
                         color='#E24A33',
                         lw=1.5)

    # -- show the position of the spectrum
    pos_text = ax[1].text(ax[1].get_xlim()[1],
                          ax[1].get_ylim()[1],
                          '(row,col) = ({0:4},{1:4})'.format(0, 0),
                          ha='right',
                          va='bottom')

    # -- initialize hold flag and connect events
    hold_spec = [False]
    fig.canvas.mpl_connect('button_press_event', toggle_hold)
    fig.canvas.mpl_connect('motion_notify_event', show_spectrum)

    return