Esempio n. 1
0
    def check(j):
        func = FILTER1D_FUNCTIONS[j]

        im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
        filter_size = 3

        res = ndimage.generic_filter1d(im, func(filter_size),
                                       filter_size)
        std = ndimage.generic_filter1d(im, filter1d, filter_size,
                                       extra_arguments=(filter_size,))
        assert_allclose(res, std, err_msg="#{} failed".format(j))
Esempio n. 2
0
    def step(self, states):
        """ Apply the specified rule to the states.

        Parameters
        ----------
        states : array
            An array holding the current states of the automata.

        Returns
        -------
        states : array
            The new states of the automata after the rule has been applied.
        """
        states = super(NDimRule, self).step(states)

        wrap_args = {'mode': self.boundary}
        if self.boundary == 'empty':
            wrap_args['mode'] = 'constant'
            wrap_args['cval'] = 0
        elif self.boundary == 'filled':
            wrap_args['mode'] = 'constant'
            wrap_args['cval'] = 1

        filled = (states == self.filled_state)
        filled = ndimage.generic_filter1d(
            filled, self._rule_filter, filter_size=3, **wrap_args)

        states = np.full(filled.shape, self.empty_state, dtype='uint8')
        states[filled] = self.filled_state
        return states
Esempio n. 3
0
def test_generic_filter1d():
    def filter1d(input_line, output_line, filter_size):
        for i in range(output_line.size):
            output_line[i] = 0
            for j in range(filter_size):
                output_line[i] += input_line[i+j]
        output_line /= filter_size

    im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
    filter_size = 3
    for mod in MODULES:
        res = ndimage.generic_filter1d(im, mod.filter1d(filter_size),
                                       filter_size)
        std = ndimage.generic_filter1d(im, filter1d, filter_size,
                                       extra_arguments=(filter_size,))
        assert_allclose(res, std, err_msg="{} failed".format(mod.__name__))
Esempio n. 4
0
def test_generic_filter1d(arr_dim, fsize):
    arr = np.random.random(arr_dim)
    axis = np.random.randint(0, arr.ndim - 1)
    fsize = arr_dim[axis] // fsize
    # just make sure it runs
    filtered = generic_filter1d(arr,
                                jit_filter1d_function(fnc_zero_inplace),
                                fsize,
                                axis=axis)
    assert np.allclose(filtered, 0.0)
Esempio n. 5
0
def max_except_center_filter1d(a, size, axis=-1):
    '''Applies the following digital filter to a {-1,0,1}-valued array a: If a is not 1, return
    0; otherwise return the maximum over the window [-(size-1)/2, (size-1)/2] with the central
    element excluded.'''
    return ndimage.generic_filter1d(a,
                                    __max_except_center_1d,
                                    size,
                                    extra_arguments=(size, ),
                                    axis=axis,
                                    mode='constant',
                                    cval=0)
Esempio n. 6
0
def max_except_center_filter1d(a, size, axis= -1):
    '''Applies the following digital filter to a {-1,0,1}-valued array a: If a is not 1, return
    0; otherwise return the maximum over the window [-(size-1)/2, (size-1)/2] with the central
    element excluded.'''
    return ndimage.generic_filter1d(a, __max_except_center_1d, size, extra_arguments=(size,),
                                    axis=axis, mode='constant', cval=0)