Esempio n. 1
0
def order_poly_fit(path, filename, yorder=725):
    """
    Parameters:
    -----------
    path : str
        path of the given fits file
    filename : str
        name of the fits file
    yorder : int
        position of required order in
        terms of row number
        default is 725, equivalent to
        104th order.
    -----------
    returns
    -----------
    numpy.ndarray
        position of order in terms of y axis
    """
    hdul = fits.open(filename)
    h11 = hdul[2].data
    h22 = np.transpose(h11)
    data_order = h22[yorder:yorder + 50]
    points = np.arange(50, 4000, 30)
    maximum = np.array([])
    for i in range(len(points)):
        d11 = data_order[:, points[i]]
        maxi = np.max(d11)
        bb = np.where(d11 == maxi)
        maximum = np.hstack((maximum, bb[0]))
    popt, pcov = cft(utl.cubic, points, maximum)
    xx1 = np.arange(len(data_order[0]))
    yy1 = utl.cubic(xx1, *popt)
    ydata = yy1 + yorder
    return ydata
 def spatial(data1, data1_err, lam, xlim=25):
     ydata = data1[lam]
     xmid = inv_line(lam, popt_m[0], popt_m[1])
     xlow = xmid - xlim
     xup = xmid + xlim
     p2 = ydata[int(xlow):int(xup)]
     p1 = p2 / np.sum(np.abs(p2))
     xdata = np.arange(1, len(p1) + 1, 1)
     poptg, pcovg = cft(gaus, xdata=xdata, ydata=p1, p0=[25, 1])
     fwhm = np.sqrt(poptg[1] * poptg[1] * np.log(256))
     mu1 = poptg[0] + inv_line(lam, *popt_m) - xlim
     return mu1, poptg[1], fwhm
Esempio n. 3
0
print('-----------------------------------------')
print('                                         ')
print('             Scipy Fitting               ')
print('                                         ')
print('-----------------------------------------')


def sersic(r_arc, A, B):
    ir = A * np.exp(-1 * B * r_arc)
    return ir


popt, pcov = cft(sersic,
                 asc,
                 sb,
                 sigma=sbe,
                 absolute_sigma=True,
                 p0=[0, 0],
                 bounds=(-np.inf, np.inf))
print(popt)
perr = np.sqrt(np.diag(pcov))

residuals1 = sb - sersic(asc, *popt)

bb = popt[1]
bbe = perr[1]

rd_inv = np.random.normal(bb, bbe, 10000)
rd = rd_inv**-1

print('Effective radius: ' + str(np.median(rd)) + '+/-' + str(np.std(rd)))
def flux_extraction(file_name, path, out_path, images=True):
    """
	Parameters
	----------
	----------
	file_name : str
			Name of the image/telluric file
			from which flux has to be extracted
	path : str
			Path of the desired image file
	out_path : str
			Path of the output data and/or image file
	images : bool
			True if one wants to save visualization of flux data
			False if not.
			Default is True
	----------
	returns
	----------
	flux : data file
			.dat file containing the flux at
			various pixel values
			Path of this file would be similar to
			that of image file.
	----------
	"""
    pt = Path(path)
    f1 = ccdp.ImageFileCollection(pt)
    ccd = CCDData.read(path + file_name)  # + '.fits')

    # Trimming the Image
    trimmed = ccdp.trim_image(ccd, fits_section='[1:256, 100:1000]')
    trimmed.meta['TRIM'] = True
    trimmed.header = ccd.header
    #trimmed.write(file_name + '_trim.fits')

    # Reading the data from Trimmed image
    data = trimmed.data

    # Creating a function to detect the edges of slit
    # For lower edge
    def xlow(raw_data):
        """
		Parameters
		----------
		----------
		raw_data : numpy.ndarray
				Array containing flux at some particular wavelength
		----------
		returns
		----------
		number : float
				A pixel number showing the lower edge of slit
		----------
		"""
        j = 0
        for i in range(int(len(raw_data) / 5)):
            st = np.std(raw_data[j:j + 5])
            xlw = 0
            if st < 2:
                xlw = j
            if xlw != 0:
                break
            j = j + 5
        return xlw

    # For upper edge
    def xup(raw_data):
        """
		Parameters
		----------
		----------
		raw_data : numpy.ndarray
				Array containing flux at some particular wavelength
		----------
		returns
		----------
		number : float
				A pixel number showing the upper edge of slit
		----------
		"""
        j = 255
        for i in range(int(len(raw_data) / 5)):
            st = np.std(raw_data[j - 5:j])
            xup = 0
            if st < 2:
                xup = j
            if xup != 0:
                break
            j = j - 5
        return xup

    # Defining line and inverse line
    def line(x, m, c):
        return m * x + c

    def inv_line(x, m, c):
        bc = (x - c) / m
        return bc

    # Detecting the edges of the spectrum
    ys = np.array([150, 300, 450, 600, 750])
    xs_left = np.array([])
    xs_right = np.array([])
    xs_mid = np.array([])
    for i in range(len(ys)):
        dd1 = data[ys[i]]
        xll = xlow(dd1)
        xs_left = np.hstack((xs_left, xll))
        xuu = xup(dd1)
        xs_right = np.hstack((xs_right, xuu))

    popt_l, pcov_l = cft(line, xs_left, ys)
    popt_r, pcov_r = cft(line, xs_right, ys)

    # Detecting a line where spectrum could reside
    for i in range(len(ys)):
        ran_l = inv_line(ys[i], popt_l[0], popt_l[1])
        ran_r = inv_line(ys[i], popt_r[0], popt_r[1])
        xd1 = data[ys[i]]
        xd = xd1[int(ran_l):int(ran_r)]
        ma = np.max(xd)
        ab = np.where(xd == ma)
        xs_mid = np.hstack((xs_mid, ab[0][0] + ran_l))

    popt_m, pcov_m = cft(line, xs_mid, ys)

    # Finding total flux
    def total_flux(lam, xlim=20):
        ydata = data[lam]
        xmid = inv_line(lam, popt_m[0], popt_m[1])
        xlow = xmid - xlim
        xup = xmid + xlim
        total_flux1 = 0
        xdata = np.arange(int(xlow), int(xup + 1), 1)
        for i in range(len(xdata)):
            total_flux1 = total_flux1 + ydata[xdata[i]]
        return total_flux1

    # Flux as a function of pixel
    flux = np.array([])
    y11 = np.arange(0, 900, 1)
    for i in range(len(y11)):
        f11 = total_flux(y11[i])
        flux = np.hstack((flux, f11))

    # Saving the image file for flux
    if images == True:
        fig1 = plt.figure(figsize=(20, 10))
        plt.plot(flux)
        plt.xlabel('Pixel Number')
        plt.ylabel('Total Flux')
        plt.title('Total flux for ' + file_name + ' observation')
        plt.grid()
        plt.savefig(out_path + '/' + file_name + '_flux.png')
        plt.close(fig1)

    # Saving Data file of the flux
    f1 = open(out_path + '/' + file_name + '_flux.dat', 'w')
    f1.write('#Pixel\t\tFlux\n')
    for i in range(len(y11)):
        f1.write(str(y11[i]) + '\t\t' + str(flux[i]) + '\n')
    f1.close()
def flux_extraction(file_name,
                    file_err_name,
                    path,
                    path_err,
                    out_path,
                    images=True):
    """
	Parameters
	----------
	----------
	file_name : str
			Name of the image/telluric file
			from which flux has to be extracted
	file_err_name: str
			Name of the image/telluric variance file
	path : str
			Path of the desired image file
	path_err : str
			Path of the variance of desired image file
	out_path : str
			Path of the output data and/or image file
	images : bool
			True if one wants to save visualization of flux data
			False if not.
			Default is True
	----------
	returns
	----------
	flux : data file
			.dat file containing the flux at
			various pixel values
			Path of this file would be similar to
			that of image file.
	----------
	"""
    # Reading Data File
    ccd = CCDData.read(path + file_name)  # + '.fits')

    # Trimming the Image
    trimmed = ccdp.trim_image(ccd, fits_section='[1:256, 100:1000]')
    trimmed.meta['TRIM'] = True
    trimmed.header = ccd.header
    #trimmed.write(file_name + '_trim.fits')

    # Reading the data from Trimmed image
    data = trimmed.data

    # Reading Variance File
    ccd_err = CCDData.read(path_err + file_err_name)  # + '.fits')

    # Trimming the Image
    trimmed_err = ccdp.trim_image(ccd_err, fits_section='[1:256, 100:1000]')
    trimmed_err.meta['TRIM'] = True
    trimmed_err.header = ccd.header
    #trimmed.write(file_name + '_trim.fits')

    # Reading the data from Trimmed image
    data_err = trimmed_err.data
    data_err[data_err == 0] = 1

    # Creating a function to detect the edges of slit
    # For lower edge
    def xlow(raw_data):
        """
		Parameters
		----------
		----------
		raw_data : numpy.ndarray
				Array containing flux at some particular wavelength
		----------
		returns
		----------
		number : float
				A pixel number showing the lower edge of slit
		----------
		"""
        j = 0
        for i in range(int(len(raw_data) / 5)):
            st = np.std(raw_data[j:j + 5])
            xlw = 0
            if st < 2:
                xlw = j
            if xlw != 0:
                break
            j = j + 5
        return xlw

    # For upper edge
    def xup(raw_data):
        """
		Parameters
		----------
		----------
		raw_data : numpy.ndarray
				Array containing flux at some particular wavelength
		----------
		returns
		----------
		number : float
				A pixel number showing the upper edge of slit
		----------
		"""
        j = 255
        for i in range(int(len(raw_data) / 5)):
            st = np.std(raw_data[j - 5:j])
            xup = 0
            if st < 2:
                xup = j
            if xup != 0:
                break
            j = j - 5
        return xup

    # Creating xdata and ydata in range of ccd
    xall = np.arange(0, 256, 1)
    yall = np.arange(0, 901, 1)

    # Defining line and inverse line
    def line(x, m, c):
        return m * x + c

    def inv_line(x, m, c):
        bc = (x - c) / m
        return bc

    # Detecting the edges of the spectrum
    ys = np.array([150, 300, 450, 600, 750])
    xs_left = np.array([])
    xs_right = np.array([])
    xs_mid = np.array([])
    for i in range(len(ys)):
        dd1 = data[ys[i]]
        xll = xlow(dd1)
        xs_left = np.hstack((xs_left, xll))
        xuu = xup(dd1)
        xs_right = np.hstack((xs_right, xuu))

    popt_l, pcov_l = cft(line, xs_left, ys)
    popt_r, pcov_r = cft(line, xs_right, ys)

    # Detecting a line where spectrum should reside
    for i in range(len(ys)):
        ran_l = inv_line(ys[i], popt_l[0], popt_l[1])
        ran_r = inv_line(ys[i], popt_r[0], popt_r[1])
        xd1 = data[ys[i]]
        xd = xd1[int(ran_l):int(ran_r)]
        ma = utl.special_maximum(xd)
        ab = np.where(xd == ma)
        xs_mid = np.hstack((xs_mid, ab[0][0] + ran_l))

    popt_m, pcov_m = cft(line, xs_mid, ys)

    # Defining a Gaussian to create Spatial Image
    def gaus(x, mu, sigma):
        a1 = np.sqrt(2 * np.pi * sigma * sigma)**-1
        a2 = np.exp(-0.5 * ((x - mu) / sigma)**2)
        return a1 * a2

    # Finding spatial profile
    def spatial(data1, data1_err, lam, xlim=25):
        ydata = data1[lam]
        xmid = inv_line(lam, popt_m[0], popt_m[1])
        xlow = xmid - xlim
        xup = xmid + xlim
        p2 = ydata[int(xlow):int(xup)]
        p1 = p2 / np.sum(np.abs(p2))
        xdata = np.arange(1, len(p1) + 1, 1)
        poptg, pcovg = cft(gaus, xdata=xdata, ydata=p1, p0=[25, 1])
        fwhm = np.sqrt(poptg[1] * poptg[1] * np.log(256))
        mu1 = poptg[0] + inv_line(lam, *popt_m) - xlim
        return mu1, poptg[1], fwhm

    # Finding total flux
    def total_flux(data1, data1_err, lam):
        ydata = data1[lam]
        ydata_err = data1_err[lam]
        mu1, sig1, fm1 = spatial(data1, data1_err, lam)
        p_x = gaus(xall, mu1, sig1)
        a1 = 0
        a2 = 0
        for i in range(len(xall)):
            a11 = p_x[i] * ydata[i] / ydata_err[i]
            a1 = a1 + a11
            a22 = p_x[i] * p_x[i] / ydata_err[i]
            a2 = a2 + a22
        fopt = a1 / a2
        var = 1 / a2
        return fopt, var

    # Cosmic Rays Removal
    def cosmic_ray(data1, data1_err, lam, threshold=16):
        fopt, var = total_flux(data1, data1_err, lam)
        d_s = data1[lam]
        d_s_err = data1_err[lam]
        mu2, sig2, fm2 = spatial(data1, data1_err, lam)
        p_x = gaus(xall, mu2, sig2)
        data_wo_cr = np.array([])
        data_wo_cr_err = np.array([])
        for i in range(len(xall)):
            xx = (d_s[i] - fopt * p_x[i])**2
            yy = xx / d_s_err[i]
            if yy > threshold:
                if i == len(xall) - 1:
                    xxx = data1[lam][i - 1]
                else:
                    xxx = (data1[lam][i - 1] + data1[lam][i + 1]) / 2
                data_wo_cr = np.hstack((data_wo_cr, xxx))
                data_wo_cr_err = np.hstack((data_wo_cr_err, 1))
            else:
                data_wo_cr = np.hstack((data_wo_cr, data1[lam][i]))
                data_wo_cr_err = np.hstack((data_wo_cr_err, data1_err[lam][i]))
        return data_wo_cr, data_wo_cr_err

    # Data Without Cosmic Rays
    final_data = np.array([])
    final_data_err = np.array([])
    final_data, final_data_err = cosmic_ray(data,
                                            data_err,
                                            yall[0],
                                            threshold=10)

    for i in range(len(yall) - 1):
        fda, fdae = cosmic_ray(data, data_err, yall[i + 1])
        final_data = np.vstack((final_data, fda))
        final_data_err = np.vstack((final_data_err, fdae))

    # Flux as a function of pixel
    flux = np.array([])
    flux_err = np.array([])
    for i in range(len(yall)):
        f11, v11 = total_flux(final_data, final_data_err, yall[i])
        flux = np.hstack((flux, f11))
        flux_err = np.hstack((flux_err, v11))

    # Saving the image file for flux
    if images == True:
        fig1 = plt.figure(figsize=(20, 10))
        plt.errorbar(yall, flux, yerr=flux_err)
        plt.xlabel('Pixel Number')
        plt.ylabel('Total Flux')
        plt.title('Total flux for ' + file_name + ' observation')
        plt.grid()
        plt.savefig(out_path + '/' + file_name + '_flux.png')
        plt.close(fig1)

    # Saving Data file of the flux
    f1 = open(out_path + '/' + file_name + '_flux.dat', 'w')
    f1.write('#Pixel\t\tFlux\n')
    for i in range(len(yall)):
        f1.write(
            str(yall[i]) + '\t\t' + str(flux[i]) + '\t' + str(flux_err[i]) +
            '\n')
    f1.close()