Esempio n. 1
0
def encode_audio(signal):
    """
    Convert a 2D numpy array into a byte sequence for PyAudio
    Signal should be a numpy array with shape (chunk_size, NUM_CHANNELS)
    """
    interleaved = signal.flatten()
    out_data = interleaved.astype(np.float32).tostring()
    return out_data
def parser(signal, signal_ID, measurement_ID, label):
    parsed_data = {
        'signal': signal.flatten(order='C'),  #Makes it 50000 float32 1D vector
        'signal_ID': signal_ID,
        'measurement_ID': measurement_ID,
        'label': label
    }
    return parsed_data
Esempio n. 3
0
def encode(signal):
    """
    Convert a 2D numpy array into a byte stream for PyAudio
    Signal should be a numpy array with shape (chunk_size, channels)
    """
    interleaved = signal.flatten()

    # TODO: handle data type as parameter, convert between pyaudio/numpy types
    out_data = interleaved.astype(np.int16).tostring()
    return out_data 
Esempio n. 4
0
def encode(signal):
    """
    Convert a 2D numpy array into a byte stream for PyAudio
    Signal should be a numpy array with shape (chunk_size, channels)
    """
    interleaved = signal.flatten()

    # TODO: handle data type as parameter, convert between pyaudio/numpy types
    out_data = interleaved.astype(np.int16).tostring()
    return out_data
Esempio n. 5
0
def meda(signal, sizeFilter=30):
    """
    reference : Multipoint Optimal Minimum Entropy Deconvolutionand Convolution Fix:
    Application to vibration fault detectionGeoff L. McDonalda Qing Zhao

    MEDA algorithm used to get a signal closer from the original one

    (1 * n float) signal : waveForm data
    (int) sizeFilter : size of the filter used to get the original signal back

    returns :
    (1 * n float) filtered signal
    (1 * m float) coefficient of the filter
    """
    sig = signal.flatten()

    # Step 1 : initialize filter
    filt = np.zeros((sizeFilter))
    filt[sizeFilter // 2] = 1
    filt[sizeFilter // 2 + 1] = -1
    filtNew = np.ones(sizeFilter)

    # Step 2 : Calculate X0 and inv(X0 * X0.T) from input signal x
    nbPts = len(sig)
    X0 = np.zeros((sizeFilter, nbPts - sizeFilter + 1))

    # filling the X0 array with the appropriate values (making it a upper diagonal)
    for k in range(sizeFilter):
        X0[k, k:] = sig[np.arange(sizeFilter - 1, nbPts - k)]
        X0[k, :k] = sig[np.arange(sizeFilter - k - 1, sizeFilter - 1)]

    while np.sum(np.abs(filtNew - filt)) > 0.001:
        filt = filtNew
        k += 1
        # Step 3: Calculate y as X0.T * f
        y = np.dot(X0.T, filt)

        # Step 4 : finding the new coefficients of the filter
        coefficient = np.sum(y[:nbPts - sizeFilter + 1]**2) / np.sum(
            y[:nbPts - sizeFilter + 1]**4)
        matrix = np.linalg.solve(np.dot(X0, X0.T), X0)
        filtNew = coefficient * matrix
        filtNew = np.dot(filtNew, (y[:nbPts - sizeFilter + 1].T)**3)

        # normalizing the  filter result
        filtNew = filtNew / (np.sum(filtNew**2))**0.5

    originalSig = np.dot(X0.T, filtNew)

    return (originalSig, filtNew)
Esempio n. 6
0
def compute_fourier_coefficients(signal, window, overlap, frequencies,
                                 sampling_rate):
    """Compuses the complex fourier coefficients for the given frequencies in the given signal with the given sampling rate (windowed using "window" and "overlap").

    :param signal: Time domain signal.
    :type signal: np.ndarray
    :param window: Vector containing window function.
    :type window: np.ndarray
    :param overlap: Overlap given in samples.
    :type overlap: int
    :param frequencies: Vector of frequencies to compute of fourier coefficients for (Hz)
    :type frequencies: np.ndarray
    :param sampling_rate: Sampling rate of  the given signal (Hz)
    :type sampling_rate: int or float
    :return: x: complex fourier coefficients, t: time in sec of window positions
    :rtype: tuple[np.ndarray, np.ndarray]
    """

    signal = signal.flatten()
    frequencies = (frequencies / 60).flatten()

    win_len = window.size
    hopsize = win_len - overlap

    two_pi_t = 2 * np.pi * (np.arange(0, win_len) / sampling_rate)
    win_num = int(np.fix((signal.size - overlap) / hopsize))

    coefficients = np.zeros((win_num, frequencies.size), dtype=complex)
    t = np.arange(win_len / 2, signal.size - win_len / 2 + 1,
                  hopsize) / sampling_rate

    for f0 in range(0, frequencies.size):

        two_pi_ft = frequencies[f0] * two_pi_t
        cosine = np.cos(two_pi_ft)
        sine = np.sin(two_pi_ft)

        for w in range(0, win_num):
            start = w * hopsize
            stop = start + win_len

            sig = signal[start:stop] * window
            co = float(np.sum(sig * cosine))
            si = float(np.sum(sig * sine))

            coefficients[w, f0] = complex(real=co, imag=si)

    coefficients = coefficients.T

    return coefficients, t
Esempio n. 7
0
def plot_signals(signals, names=None, start=0, end=None):
    """
    Plot the signals specified in list <signals> with their names specified in
    list <names>. Each signal is plotted in its full length unless differently
    specified.
    """
    # Identify the signals by index if their name is not specified
    if (names is None):
        legend = []
        count = 0
    else:
        legend = names

    # Loop over the signals
    t_max = 0
    for signal in signals:

        signal = signal.flatten()
        t_max = np.amax([t_max, len(signal)])
        plt.plot(signal)

        # If no name is given use the list index to identify the signals
        if (names is None):
            legend.append('Signal [' + str(count) + ']')
            count += 1

    # Plot and format
    plt.xlabel('Index')
    plt.ylabel('Value')
    plt.grid(b=True)
    plt.legend(legend)
    if (end is None):
        plt.xlim(start, t_max)
    else:
        plt.xlim(start, end)
    plt.show()
def test_subbands(rfn, erb_filter_mode='all', verbose=0):
  print('Testing subband equality for %s' % rfn)
  # load matlab-generated reference file
  mlab = sio.loadmat(rfn)
  # print(list(mlab.keys()))

  # extract parameters used to generate these filterbanks
  signal = mlab['wavData']  # everything is in an 2D array
  # remove 2x zero padding, if necessary
  if mlab['zp'][0, 0] == 1:
    signal = signal[:signal.shape[0]/2]
  print(np.shape(signal))

  signal_length = len(signal)
  sr = mlab['Fs'][0, 0]
  N = mlab['N_human'][0, 0]
  low_lim = mlab['low_lim_human'][0, 0]
  hi_lim = mlab['high_lim_human'][0, 0]

  sample_factor_list = [1, 2, 4]
  matlab_api_fx_list = [erb.make_erb_cos_filters_1x, erb.make_erb_cos_filters_2x, erb.make_erb_cos_filters_4x]
  # use 1x, 2x, and 4x oversampling to test make_erb_cos_filters_nx
  try:
    for i in range(len(sample_factor_list)):
      sample_factor = sample_factor_list[i]

      # get keynames for looking up matlab reference values
      freqs_key = 'freqs_%s' % sample_factor
      hz_cutoffs_key = 'Hz_cutoffs_%s' % sample_factor
      filts_key = 'fft_filts_%s' % sample_factor
      fft_sample_key = 'fft_sample_%s' % sample_factor
      subbands_key = 'subbands_%s' % sample_factor

      if verbose > 1:
        print('<Input Params: signal_length: %s, sr: %s, N: %s, low_lim: %s, hi_lim: %s, sample_factor: %s>' %
              (signal_length, sr, N, low_lim, hi_lim, sample_factor))

      if mode == 'all' or mode == 'nx':
        if verbose > 1:
          print('making erb filters')
        # test make_erb_cos_filters_nx
        filts, hz_cutoffs, freqs = erb.make_erb_cos_filters_nx(signal_length, sr, N,
                                                               low_lim, hi_lim, sample_factor,
                                                               pad_factor=1, full_filter=True, strict=False)
        if verbose > 1:
          print('performing subband decomposition')
        start_time = time.time()
        subbands_dict = sb.generate_subbands(signal.flatten(), filts, 1, debug_ret_all=True)
        tot_time = time.time() - start_time
        print('TIME --> %s' % tot_time)
        # print(subbands.shape, mlab[subbands_key].shape)
        # subbands = sb.generate_subbands(signal.flatten(), filts, 1, debug_ret_all=False)
        # print(list(subbands_dict.keys()))

        if verbose > 1:
          print('running assertions')
        # check *full* filterbanks and associated data
        assert np.allclose(filts, mlab[filts_key].T), 'filts mismatch: make_erb_cos_filters_nx(...)'  # transpose because of python
        assert np.allclose(freqs, mlab[freqs_key]), 'Freqs mismatch: make_erb_cos_filters_nx(...)'
        assert np.allclose(hz_cutoffs, mlab[hz_cutoffs_key]), 'Hz_cutoff mismatch: make_erb_cos_filters_nx(...)'
        if verbose > 0:
          print('PASSED ERB Filters: make_erb_cos_filters_nx(%s)' % sample_factor)

        # check variables associated with subband decomposition
        assert np.allclose(subbands_dict['fft_sample'], mlab['fft_sample_1'].flatten()), 'fft sample mismatch: make_erb_cos_filters_nx(...)'
        assert np.allclose(subbands_dict['subbands'], mlab[subbands_key].T), 'subband mismatch: make_erb_cos_filters_nx(...)'
        if verbose > 0:
          print('PASSED Subbands: make_erb_cos_filters_nx(%s)' % sample_factor)
        # pdb.set_trace()
      if erb_filter_mode == 'matlab':
        raise NotImplementedError()
      if erb_filter_mode == 'literal':
        raise NotImplementedError()
  except AssertionError as e:
    print('FAILED')
    print('<Input Params: signal_length: %s, sr: %s, N: %s, low_lim: %s, hi_lim: %s, sample_factor: %s>' %
            (signal_length, sr, N, low_lim, hi_lim, sample_factor))
    pdb.set_trace()
    raise(e)
def test_cochleagram(rfn, erb_filter_mode='all', coch_mode='fast',verbose=0):
  print('<Testing cochleagrams with coch_mode: %s>' % coch_mode)
  # load matlab-generated reference file
  mlab = sio.loadmat(rfn)
  # print(list(mlab.keys()))

  # get the function to generate the cochleagrams with
  coch_fx = _get_coch_function(coch_mode)

  # extract parameters used to generate these filterbanks
  signal = mlab['wavData']  # everything is in an 2D array
  # remove 2x zero padding, if necessary
  if mlab['zp'][0, 0] == 1:
    signal = signal[:signal.shape[0]/2]
  print(np.shape(signal))

  signal_length = len(signal)
  sr = mlab['Fs'][0, 0]
  N = mlab['N_human'][0, 0]
  low_lim = mlab['low_lim_human'][0, 0]
  hi_lim = mlab['high_lim_human'][0, 0]

  sample_factor_list = [1, 2, 4]
  # use 1x, 2x, and 4x oversampling to test make_erb_cos_filters_nx
  try:
    for i in range(len(sample_factor_list)):
      sample_factor = sample_factor_list[i]

      # get keynames for looking up matlab reference values
      freqs_key = 'freqs_%s' % sample_factor
      hz_cutoffs_key = 'Hz_cutoffs_%s' % sample_factor
      filts_key = 'fft_filts_%s' % sample_factor
      fft_sample_key = 'fft_sample_%s' % sample_factor

      if verbose > 1:
        print('<Input Params: signal_length: %s, sr: %s, N: %s, low_lim: %s, hi_lim: %s, sample_factor: %s>' %
              (signal_length, sr, N, low_lim, hi_lim, sample_factor))

      if erb_filter_mode == 'all' or erb_filter_mode == 'nx':
        if coch_mode == 'coch':
          sub_envs_key = 'sub_envs_%s' % sample_factor
          coch = cgram.human_cochleagram(signal, sr, N, low_lim, hi_lim, sample_factor, pad_factor=1, strict=False)
          assert np.allclose(coch, mlab[sub_envs_key].T), 'subband_env mismatch: make_erb_cos_filters_nx(...)' # transpose for matlab-to-python
          if verbose > 0:
            print('\tPASSED Quick Cochleagram: make_erb_cos_filters_nx(%s)' % sample_factor)
        else:
          # test make_erb_cos_filters_nx
          filts, hz_cutoffs, freqs = erb.make_erb_cos_filters_nx(signal_length, sr, N,
                                                                 low_lim, hi_lim, sample_factor,
                                                                 pad_factor=1, full_filter=True, strict=False)
          # pdb.set_trace()
          # check *full* filterbanks and associated data
          assert np.allclose(filts, mlab[filts_key].T), 'filts mismatch: make_erb_cos_filters_nx(...)'  # transpose because of python
          assert np.allclose(freqs, mlab[freqs_key]), 'Freqs mismatch: make_erb_cos_filters_nx(...)'
          assert np.allclose(hz_cutoffs, mlab[hz_cutoffs_key]), 'Hz_cutoff mismatch: make_erb_cos_filters_nx(...)'
          if verbose > 0:
            print('\tPASSED ERB Filters: make_erb_cos_filters_nx(%s)' % sample_factor)

        # pdb.set_trace()
        if coch_mode == 'subband':
          subbands_key = 'subbands_%s' % sample_factor

          # perform subband decomposition
          start_time = time.time()
          subbands_dict = sb.generate_subbands(signal.flatten(), filts, 1, debug_ret_all=True)
          tot_time = time.time() - start_time
          print('TIME --> %s' % tot_time)

          # check variables associated with subband decomposition
          # assert np.allclose(subbands_dict['fft_sample'], mlab[fft_sample_key].flatten()), 'fft sample mismatch: make_erb_cos_filters_nx(...)'
          assert np.allclose(subbands_dict['subbands'], mlab[subbands_key].T), 'subband mismatch: make_erb_cos_filters_nx(...)'
          if verbose > 0:
            print('\tPASSED Subbands: make_erb_cos_filters_nx(%s)' % sample_factor)
        elif coch_mode != 'coch':
          sub_envs_key = 'sub_envs_%s' % sample_factor

          # generate cochleagrams
          start_time = time.time()
          subband_envs = coch_fx(signal,filts, 1)
          tot_time = time.time() - start_time
          print('TIME --> %s' % tot_time)

          # check variables associated with subband envelopes (cochleagrams)
          assert np.allclose(subband_envs, mlab[sub_envs_key].T), 'subband_env mismatch: make_erb_cos_filters_nx(...)' # transpose for matlab-to-python
          if verbose > 0:
            print('\tPASSED Cochleagram: make_erb_cos_filters_nx(%s)' % sample_factor)
      if erb_filter_mode == 'matlab':
        raise NotImplementedError('Tests are only implemented for make_erb_cos_filters_nx')
      if erb_filter_mode == 'literal':
        raise NotImplementedError('Tests are only implemented for make_erb_cos_filters_nx')
  except AssertionError as e:
    print('\tFAILED')
    print('<Input Params: signal_length: %s, sr: %s, N: %s, low_lim: %s, hi_lim: %s, sample_factor: %s>' %
            (signal_length, sr, N, low_lim, hi_lim, sample_factor))
    pdb.set_trace()
    raise(e)
Esempio n. 10
0
def median_filter(signal, size=5):

    med_signal = medfilt(signal.flatten(), size)
    return med_signal