Esempio n. 1
0
def estimate(rg, filt, para, impulse, fs):
    aa = zeros(len(rg))
    Q = zeros(len(rg))
    maxh = zeros(len(rg))
    for i, freq in enumerate(rg):
        filt[para] = freq
        filt.compute(zeros(10000, dtype=float32))
        w, h = freqz(filt.compute(impulse), worN=15000)
        k1 = int(round(len(h) * 100.0 / fs))
        k2 = int(round(len(h) * 10000.0 / fs))
        B, A = invfreqz(w[k1 : k2 + 1], h[k1 : k2 + 1])

        R = sqrt(A[2])
        theta = math.acos(A[1] / (-2 * R))
        aa[i] = fs * theta
        frn = theta / (2 * pi)
        Q[i] = (pi * frn) / (1 - R)

        print "Pole frequency = %f Hz" % (aa[i] / (2 * pi))
        # print 'Q = %f' % Q[i]
        # print "R =", R
        # print "frn =", frn, "theta =", theta

        A = array((1, -2 * R * cos(theta), R * R))
        w1, h1 = freqz(Bconst, A, worN=15000)
        maxh[i] = max(abs(h))
        # print "gain =", gain[i]
    return aa, Q, maxh
Esempio n. 2
0
    def plot_response(self, ax):
        # Plot the designed filter response
        if self.n_section == 1:
            fw, fh = signal.freqz(self.b, self.a, worN=self.Nfft)
            ax.plot(fw, 20*log10(np.abs(fh)), linewidth=2, alpha=.75)
            fxw, fxh = signal.freqz(self.fxb, self.fxa, worN=self.Nfft)
            ax.plot(fxw, 20*log10(np.abs(fxh)), linestyle='--', linewidth=3,
                    alpha=.75)

        # plot the simulated response, if simulated data exists
        if self.xfavg is None or self.yfavg is None or self.pfavg is None:
            pass
        else:
            #  -- Fixed Point Sim --
            xa = 2*pi * np.arange(self.Nfft)/self.Nfft
            h = self.yfavg / self.xfavg
            ax.plot(xa, 20*log10(h), linewidth=4, alpha=.5)
            #  -- Floating Point Sim --
            hp = self.pfavg / self.xfavg
            ax.plot(xa, 20*log10(hp), color='k', linestyle=':',
                    linewidth=2, alpha=.75)

        ax.set_ylim(-80, 10)
        ax.set_xlim(0, np.pi)

        ax.set_ylabel('Magnitude dB');
        ax.set_xlabel('Frequency Normalized Radians')
        ax.legend(('Ideal', 'Quant. Coeff.',
                      'Fixed-P. Sim', 'Floating-P. Sim'))
Esempio n. 3
0
def diffplot(freq, B, A, B2, A2):
	w, h = sps.freqz(B, A)
	w2, h2 = sps.freqz(B2, A2)

#	h = h - h2
	dabs = abs(h2) / abs(h)
	dphase = np.unwrap(np.angle(h2)) - np.unwrap(np.angle(h))  

	fig = plt.figure()
	plt.title('Difference between digital filter frequency responses')

	ax1 = fig.add_subplot(111)

	plt.plot(w * (freq/np.pi) / 2.0, 20 * np.log10(dabs), 'b')
	plt.ylabel('Amplitude [dB]', color='b')
	plt.xlabel('Frequency [rad/sample]')

	ax2 = ax1.twinx()
	angles = np.unwrap(np.angle(h))
	angles = dphase
	plt.plot(w * (freq/np.pi) / 2.0, angles, 'g')
	plt.ylabel('Angle (radians)', color='g')
	plt.grid()
	plt.axis('tight')
	plt.show()
Esempio n. 4
0
def freqz(b, a=1, fs=1, xlim=None, N=1000, xlog=False):
    """Calculate the frequency response of a discrete time system over the
    range xlim, over a log or linear interval.

    Parameters
    ----------

    b : array-like
        Numerator coefficients of discrete time system
    a : array-like, optional
        Denominator coefficients of discrete time system
    fs : float, optional
        Sampling frequency; use to scale the output frequency array
    xlim : tuple of (x_min, x_max), optional
        Calculate the response from x_min to x_max. If omitted, the entire
        digital frequency axis is used
    N : int, optional
        The number of points to calculate the system response at
    xlog : bool, optional
        Calculate the frequency response at a log (True) or linearly spaced
        set of points"""
    # Squeeze arrays to deal with cont2discrete array issues
    b = np.squeeze(b)
    a = np.squeeze(a)
    if xlim is None:
        w, resp = signal.freqz(b, a)
        w = lin_or_logspace(w[w > 0][0], w[-1], N, True)
        _, resp = signal.freqz(b, a, w)
    else:
        w = 2 * np.pi * lin_or_logspace(xlim[0], xlim[1], N, xlog) / fs
        _, resp = signal.freqz(b, a, worN=w)

    freq = w * fs / (2 * np.pi)
    return freq, resp
def plot_filter(h, title, freq, gain, show=True):
    if h.ndim == 2:  # second-order sections
        sos = h
        n = mne.filter.estimate_ringing_samples(sos)
        h = np.zeros(n)
        h[0] = 1
        h = signal.sosfilt(sos, h)
        H = np.ones(512, np.complex128)
        for section in sos:
            f, this_H = signal.freqz(section[:3], section[3:])
            H *= this_H
    else:
        f, H = signal.freqz(h)
    fig, axs = plt.subplots(2)
    t = np.arange(len(h)) / sfreq
    axs[0].plot(t, h, color=blue)
    axs[0].set(xlim=t[[0, -1]], xlabel='Time (sec)',
               ylabel='Amplitude h(n)', title=title)
    box_off(axs[0])
    f *= sfreq / (2 * np.pi)
    axs[1].semilogx(f, 10 * np.log10((H * H.conj()).real), color=blue,
                    linewidth=2, zorder=4)
    plot_ideal(freq, gain, axs[1])
    mne.viz.tight_layout()
    if show:
        plt.show()
Esempio n. 6
0
        def _find_min_max(self, f_start, f_stop, unit = 'dB'):
            """
            Find minimum and maximum magnitude and the corresponding frequencies
            for the filter defined in the filter dict in a given frequency band
            [f_start, f_stop].
            """
            w = np.linspace(f_start, f_stop, params['N_FFT'])*2*np.pi
            [w, H] = sig.freqz(bb, aa, worN = w)

            # add antiCausals if we have them
            if (antiC):
               #
               # Evaluate transfer function of anticausal half on the same freq grid.
               #
               wa, ha = sig.freqz(bbA, aaA, worN = w)
               ha = ha.conjugate()
               #
               # Total transfer function is the product
               #
               H = H*ha

            f = w / (2.0 * pi) # frequency normalized to f_S
            H_abs = abs(H)
            H_max = max(H_abs)
            H_min = min(H_abs)
            F_max = f[np.argmax(H_abs)] # find the frequency where H_abs 
            F_min = f[np.argmin(H_abs)] # becomes max resp. min
            if unit == 'dB':
                H_max = 20*log10(H_max)
                H_min = 20*log10(H_min)
            return F_min, H_min, F_max, H_max
Esempio n. 7
0
 def compute_frequencies(self, N=None):
     if hasattr(self, 'sample_rate'):
         try:
             self.W, self.H = signal.freqz(self.B, self.A)
         except:
             self.W, self.H = signal.freqz(self.B)
     else:
         self.W, self.H = signal.freqs(self.B, self.A, N)
Esempio n. 8
0
    def test_plot(self):

        def plot(w, h):
            assert_array_almost_equal(w, np.pi * np.arange(8.0) / 8)
            assert_array_almost_equal(h, np.ones(8))

        assert_raises(ZeroDivisionError,
                      freqz, [1.0], worN=8, plot=lambda w, h: 1 / 0)
        freqz([1.0], worN=8, plot=plot)
Esempio n. 9
0
def doplot2(B, A, B2, A2, freq = (315.0/88.0) * 8.0):
	w, h = sps.freqz(B, A)
	w2, h2 = sps.freqz(B2, A2)

#	h.real /= C
#	h2.real /= C2

	begin = 0
	end = len(w)
#	end = int(len(w) * (12 / freq))

#	chop = len(w) / 20
	chop = 0
	w = w[begin:end]
	w2 = w2[begin:end]
	h = h[begin:end]
	h2 = h2[begin:end]

	v = np.empty(len(w))
	
#	print len(w)

	hm = np.absolute(h)
	hm2 = np.absolute(h2)

	v0 = hm[0] / hm2[0]
	for i in range(0, len(w)):
#		print i, freq / 2 * (w[i] / pi), hm[i], hm2[i], hm[i] / hm2[i], (hm[i] / hm2[i]) / v0
		v[i] = (hm[i] / hm2[i]) / v0

	fig = plt.figure()
	plt.title('Digital filter frequency response')

	ax1 = fig.add_subplot(111)

	v  = 20 * np.log10(v )

#	plt.plot(w * (freq/pi) / 2.0, v)
#	plt.show()
#	exit()

	plt.plot(w * (freq/pi) / 2.0, 20 * np.log10(abs(h)), 'r')
	plt.plot(w * (freq/pi) / 2.0, 20 * np.log10(abs(h2)), 'b')
	plt.ylabel('Amplitude [dB]', color='b')
	plt.xlabel('Frequency [rad/sample]')
	
	ax2 = ax1.twinx()
	angles = np.unwrap(np.angle(h))
	angles2 = np.unwrap(np.angle(h2))
	plt.plot(w * (freq/pi) / 2.0, angles, 'g')
	plt.plot(w * (freq/pi) / 2.0, angles2, 'y')
	plt.ylabel('Angle (radians)', color='g')

	plt.grid()
	plt.axis('tight')
	plt.show()
Esempio n. 10
0
def lab5_ex4():

    # define coefficient arrays
    b = firwin(20, 0.3)  # given 10th degree polynomial
    a = array([1.0])  # no feedback

    # define quantized versions of 10th order array at Q3, Q6, Q8, Q16 (second array will always be 1.0)
    q3 = fix(b * 2 ** 3) * 2 ** (
        -3
    )  # (convert decimal into integer at N precision, then convert back into float decimal at same precision)
    q6 = fix(b * 2 ** 6) * 2 ** (-6)
    q8 = fix(b * 2 ** 8) * 2 ** (-8)
    q16 = fix(b * 2 ** 16) * 2 ** (-16)

    # define and plot full precision and quantized frequency responses on linear and dB scales
    w, h = freqz(b, a)
    subplot(211)
    plot(w / pi, abs(h), "k-")
    subplot(212)
    plot(w / pi, 20 * log10(abs(h)), "k-")

    w, h = freqz(q3, a)
    subplot(211)
    plot(w / pi, abs(h), "b-")
    subplot(212)
    plot(w / pi, 20 * log10(abs(h)), "b-")

    w, h = freqz(q6, a)
    subplot(211)
    plot(w / pi, abs(h), "g-")
    subplot(212)
    plot(w / pi, 20 * log10(abs(h)), "g-")

    w, h = freqz(q8, a)
    subplot(211)
    plot(w / pi, abs(h), "c-")
    subplot(212)
    plot(w / pi, 20 * log10(abs(h)), "c-")

    w, h = freqz(q16, a)
    subplot(211)
    plot(w / pi, abs(h), "r-")
    legend(("full precision", "Q3", "Q6", "Q8", "Q16"))
    title("freq responses of 10th order filter by quantization and scale")
    ylabel("linear scale")
    subplot(212)
    plot(w / pi, 20 * log10(abs(h)), "r-")
    legend(("full precision", "Q3", "Q6", "Q8", "Q16"), loc=3)
    ylabel("dB scale")
    xlabel("normalized frequency")
    show()

    print (
        "\nFilter's responses are quite different depending on the number of bits used for quantization. When using 3 bits especially, the filter's response is markedly different from it's response to the full precision signal. We can clearly see this effect on the dB scale, where it looks as if the number of bits available for quantization corresponds to the number of zeros/poles in the transfer function."
    )
Esempio n. 11
0
def butterfilt(data, sr, passband=(1.0, 50.0), stopband=(59., 61.),
               order=(5, 5), plotfreqz=False, plotlim=100):
    """Wrapper for Butterworth filter of sample*channel*trial EEG data

    Inputs:
    data - sample*channel*trial EEG data
    sr - sample rate (samps/sec)

    Optional Inputs:
    passband - low and high cutoffs for Butterworth passband
    stopband - low and high cuttoffs for Butterworth stopband
             Note that this should be used as a Notch filter
             For countries w/ 60 Hz power lines (Americas etc.) use (59., 61.)
             For countries w/ 50 Hz power lines (everywhere else) use (49., 51.)
    order - Order of both Butterworth filters: (passband, stopband)
    plotfreqz - Flag for plotting frequency responses of both filters
    plotlim - Upper limit of frequencies to plot

    Outputs:
    filtdata - Filtered sample*channel*trial EEG data
    """

    nyquist = .5 * float(sr)
    b, a = butter(order[0], [float(passband[0]) / nyquist,
                             float(passband[1]) / nyquist], btype='bandpass')
    filtdata = filtfilt(b, a, data, axis=0)

    if plotfreqz:
        w, h = freqz(b, a)
        plt.plot((nyquist / np.pi) * w, abs(h))
        plt.setp(plt.gca(),XLim=[0,plotlim],YLim=[0,1.1])
        plt.plot([0, nyquist], [np.sqrt(0.5), np.sqrt(0.5)], '--')
        plt.title(
            'Butterworth Passband Frequency Response, Order = %d' % order[1])

    if not not stopband:
        B, A = butter(order[1], [float(stopband[0]) / nyquist,
                      float(stopband[1]) / nyquist],
                      btype='bandstop')
        filtdata = filtfilt(B, A, data, axis=0)
        if plotfreqz:
            W, H = freqz(B, A)
            plt.figure()
            plt.plot((nyquist / np.pi) * W, abs(H))
            plt.setp(plt.gca(),XLim=[0,plotlim],YLim=[0,1.1])
            plt.plot([0, nyquist], [np.sqrt(0.5), np.sqrt(0.5)], '--')
            plt.title(
                'Butterworth Stopband Frequency Response, Order = %d'
                % order[1])

    return filtdata
Esempio n. 12
0
def output_freqz_libcrybaby():
    from pluginloader import Plugin
    filt = Plugin("../build/default/src/plugins/libcrybaby.so")
    filt['crybaby2.refvolt'] = 0.1
    para = 'crybaby2.hotpotz'
    name = filt.get_var_attr(para)[0]
    fs = 44100
    filt.init(fs)
    impulse = zeros(10000,dtype=float32)
    impulse[0] = 1
    rg = log10(linspace(*np.power(10,filt.get_range(para)), num=20))
    if False:
        aa, Q, maxh, p1, Bconst, freq_const = estimate(rg, filt, para, impulse, fs)
        pickle.dump((aa,Q,maxh,p1,Bconst,freq_const), file("p.out","w"))
    else:
        aa, Q, maxh, p1, Bconst, freq_const = pickle.load(file("p.out"))
    z1, z2A, z3A, gcA = estimate_SR(filt, para, freq_const, impulse)
    off, a1A, qA = fit_param(rg, aa, Q, fs)
    gain, g_off, gA = make_gain(rg, off, a1A, qA, maxh, p1, Bconst, fs)
    #show_param(rg, off, g_off, aa, a1A, Q, qA, gain, gA)
    rg = log10(linspace(*np.power(10,filt.get_range(para)), num=10))
    filt.init(fs)
    for i, freq in enumerate(rg):
        filt[para] = freq
        filt.compute(zeros(10000,dtype=float32))
        w, h = freqz(filt.compute(impulse), worN=15000)

        q  = polyval(qA, freq)
        a1 = (off - 1 / polyval(a1A, freq)) / fs
        g = g_off - 1 / polyval(gA, freq)
        gc = polyval(gcA, fs)

        r = 1 - a1/(2*q)
        A = array((1, -2*r*cos(a1), r*r))
        A = poly(list(roots(A))+[p1])
        B = poly([polyval(z2A,fs),polyval(z3A,fs),z1])
        w1, h1 = freqz(B*g*gc, A, worN=15000)

        semilogx((w*fs/(2*pi))[1:],  20*log10(abs(h[1:])), "b")
        semilogx((w1*fs/(2*pi))[1:], 20*log10(abs(h1[1:])), "r")

    print "theta2pi = (%g - 1000 / (%s)) / SR;" % (off, string_polyval(a1A*1000, "wah"))
    print "Q = %s;" % string_polyval(qA, "wah")
    print "g = %g - 1 / (%s);" % (g_off, string_polyval(gA, "wah"))
    print "gc = %s;" % string_polyval(gcA, "SR")
    print "p1 = exp(-1000/(%g*SR));" % (-1000/(fs*log(p1)))
    print "z1 = %g;" % z1
    print "z2 = %s;" % string_polyval(z2A, "SR")
    print "z3 = %s;" % string_polyval(z3A, "SR")

    show()
    def fourier(self,List=None,fs=1):
        if type(List) is list:
            indices=self.getInds(List=List)
            if 0 not in indices:
                List.append((0,0))
            domain=[int(self.getDom(List=List)[0]),int(self.getDom(List=List)[1])]

            for i in range(domain[0],domain[1]+1,1):
                if i not in  indices:
                    List.append((i,0))

            indices=self.getInds(List=List)
            values=self.getVals(List=List)
            f_indices,f_values=freqz(values,indices,worN=2000)
            f_indices=f_indices*(fs * 0.5 / np.pi)
            f_List=[]
            f_indices=list(f_indices)
            values_copy=f_values.copy()
            values_copy=list(values_copy)
            f_values=list(f_values)
            i=0
            for value in f_values:
                f_List.append((f_indices[i],float(np.real(f_values[i]))))
                i=i+1
            return f_List
        else:
            List=self.points
            indices=self.getInds(List=List)
            if 0 not in indices:
                List.append((0,0))
            domain=[int(self.getDom(List=List)[0]),int(self.getDom(List=List)[1])]
            for i in range(domain[0],domain[1]+1,1):
                if i not in  indices:
                    List.append((i,0))

            indices=self.getInds(List=List)
            values=self.getVals(List=List)
            f_indices,f_values=freqz(values,indices,worN=2000)
            f_indices=f_indices*(fs * 0.5 / np.pi)
            f_List=[]
            f_indices=list(f_indices)
            values_copy=f_values.copy()
            values_copy=list(values_copy)
            f_values=list(f_values)
            i=0
            for value in f_values:
                f_List.append((f_indices[i],float(np.real(f_values[i]))))
                i=i+1
            return f_List
Esempio n. 14
0
def iir_bandstops(fstops, fs, order=4):
    """ellip notch filter
    fstops is a list of entries of the form [frequency (Hz), df, df2]                           
    where df is the pass width and df2 is the stop width (narrower                              
    than the pass width). Use caution if passing more than one freq at a time,                  
    because the filter response might behave in ways you don't expect.
    """
    nyq = 0.5 * fs

    # Zeros zd, poles pd, and gain kd for the digital filter
    zd = np.array([])
    pd = np.array([])
    kd = 1

    # Notches
    for fstopData in fstops:
        fstop = fstopData[0]
        df = fstopData[1]
        df2 = fstopData[2]
        low = (fstop - df) / nyq
        high = (fstop + df) / nyq
        low2 = (fstop - df2) / nyq
        high2 = (fstop + df2) / nyq
        z, p, k = iirdesign([low,high], [low2,high2], gpass=1, gstop=6,
                            ftype='ellip', output='zpk')
        zd = np.append(zd,z)
        pd = np.append(pd,p)

    # Set gain to one at 100 Hz...better not notch there                                        
    bPrelim,aPrelim = zpk2tf(zd, pd, 1)
    outFreq, outg0 = freqz(bPrelim, aPrelim, 100/nyq)

    # Return the numerator and denominator of the digital filter                                
    b,a = zpk2tf(zd,pd,k)
    return b, a
Esempio n. 15
0
 def frequency_response(self, n=10000):
     """
     Generate a filter frequency response from a set of filter taps.
     Returns plottable (x, y) with respect to an actual sampling rate
     """
     w, h = signal.freqz(self.b, self.a, worN=n)
     return (0.5 * self.fs * w / np.pi, np.abs(h))
Esempio n. 16
0
    def plot_filter_characteristics(self):
        w, h = freqz(self.freq_filter.num, self.freq_filter.denom)
        plt.figure(1)
        plt.subplot(2,1,1)
        plt.hold(True)
        powa = plt.plot((self.filter_parameters.sample_rate*0.5/pi)*w, abs(h),'b-', label = 'Char. amplitudowa')
        plt.title('Charakterystyki filtru')
        plt.xlabel('Czestotliwosc [Hz]')
        plt.ylabel('Amplituda')


        plt.twinx(ax=None)
        angles = unwrap(angle(h))
        plt.znie = plot((self.filter_parameters.sample_rate*0.5/pi)*w,angles, 'g-', label = 'Char. fazowa')
        plt.ylabel('Faza')

        plt.grid()
        tekst = powa + znie
        wybierz = [l.get_label() for l in tekst]

        plt.legend(tekst, wybierz, loc='best')
    ########################################################################################################################
        plt.subplot(2,1,2)

        w2, gd = group_delay((num, denom))

        plt.plot((sample_rate*0.5/pi)*w2, gd)
        plt.grid()
        plt.xlabel('Czestotliwosc [Hz]')
        plt.ylabel('Opoznienie grupowe [probki]')
        plt.title('Opoznienie grupowe filtru')

        plt.show()
Esempio n. 17
0
File: ddc.py Progetto: emeb/iceRadio
    def __init__(self, fir_len, fir_bits, tb_width):
        tb_ctr = 1/(2*4)
        pass_corner = tb_ctr - (tb_ctr*tb_width/2)
        stop_corner = tb_ctr + (tb_ctr*tb_width/2)
        fir_bands = [0, pass_corner, stop_corner, 0.5]
        b = signal.remez(fir_len, fir_bands, [1, 0])
        coeff_scl = 2**(fir_bits-1)
        self.fir_coeff = np.floor(b*coeff_scl + 0.5)
        
        # Dump Coefficients?
        if 1:
            write_meminit("fir4dec_coeff.v", self.fir_coeff)

        self.fir_coeff = self.fir_coeff/coeff_scl;
        
        # plot FIR response?
        if 1:
            W, H = signal.freqz(self.fir_coeff)
            plt.figure()
            plt.plot(W/(2*np.pi), 20*np.log10(np.abs(H)))
            plt.grid()
            plt.xlabel("Freq (normalized)")
            plt.ylabel("dB")
            plt.title("fir4dec response (close to continue sim)")
            plt.show()
Esempio n. 18
0
def filter_VE(data):
    f=np.linspace(0,1,50000)
    a = np.ones(50000)
    
    #Switching power supply frequency (~290 KHz)
    a[2850:2950] =0
    
    #1.49 MHz
    a[14850:14950]=0
    
    #AM 1.37 MHz
    a[13650:13750] = 0
    
    #80 m Ham band (3.97 MHz)
    a[39650:39750] = 0
    
    #80 m Ham band (4 MHz)
    a[39950:40050]= 0
    
    a[-1]=0
    
    b=sigs.firwin2(3000,f,a)
    [h, fpoints] = sigs.freqz(b, 1, 50000,10E6)
    
    #Run the FIR filter
    vec = sigs.lfilter(b,1,data)
    return vec
Esempio n. 19
0
def main():
    edges = [30, 60, 120, 240]
    corners = zip(edges[:-1], edges[1:])
    centres = [(a + b) / 2 for a, b in corners]

#c = [get_linkwitz_riley_coeffs(1, b, a, edges[-1] * 2) for b, a in corners]
    sr = 2000
    c = [get_peak_coeffs(-24, i, sr, 1) for i in centres]
    c.append([[1, 0, 0], [1, 0, 0]])

    bm = [BiquadMemory(0, 0) for _ in c]
    bc = [BiquadCoefficients(b0, b1, b2, a1, a2)
          for [b0, b1, b2], [a0, a1, a2] in c]

    c.append(series_coeffs(c))

#    c.append(impedance_filter(c[-1]))

    wh = [signal.freqz(b, a) for b, a in c]

    plt.subplot(111)
    plt.title("Frequency response - reflection filter")
    for w, h in wh:
        plt.semilogx(w, 20 * np.log10(np.abs(h)))
    plt.ylabel('Amplitude Response (dB)')
    plt.xlabel('Frequency (rad/sample)')
    plt.grid()

    plt.show()
Esempio n. 20
0
    def test_hilbert(self):
        N = 11  # number of taps in the filter
        a = 0.1  # width of the transition band

        # design an unity gain hilbert bandpass filter from w to 0.5-w
        h = remez(11, [a, 0.5-a], [1], type='hilbert')

        # make sure the filter has correct # of taps
        assert_(len(h) == N, "Number of Taps")

        # make sure it is type III (anti-symmetric tap coefficients)
        assert_array_almost_equal(h[:(N-1)//2], -h[:-(N-1)//2-1:-1])

        # Since the requested response is symmetric, all even coeffcients
        # should be zero (or in this case really small)
        assert_((abs(h[1::2]) < 1e-15).all(), "Even Coefficients Equal Zero")

        # now check the frequency response
        w, H = freqz(h, 1)
        f = w/2/np.pi
        Hmag = abs(H)

        # should have a zero at 0 and pi (in this case close to zero)
        assert_((Hmag[[0, -1]] < 0.02).all(), "Zero at zero and pi")

        # check that the pass band is close to unity
        idx = np.logical_and(f > a, f < 0.5-a)
        assert_((abs(Hmag[idx] - 1) < 0.015).all(), "Pass Band Close To Unity")
Esempio n. 21
0
    def test_firls(self):
        N = 11  # number of taps in the filter
        a = 0.1  # width of the transition band

        # design a halfband symmetric low-pass filter
        h = firls(11, [0, a, 0.5-a, 0.5], [1, 1, 0, 0], fs=1.0)

        # make sure the filter has correct # of taps
        assert_equal(len(h), N)

        # make sure it is symmetric
        midx = (N-1) // 2
        assert_array_almost_equal(h[:midx], h[:-midx-1:-1])

        # make sure the center tap is 0.5
        assert_almost_equal(h[midx], 0.5)

        # For halfband symmetric, odd coefficients (except the center)
        # should be zero (really small)
        hodd = np.hstack((h[1:midx:2], h[-midx+1::2]))
        assert_array_almost_equal(hodd, 0)

        # now check the frequency response
        w, H = freqz(h, 1)
        f = w/2/np.pi
        Hmag = np.abs(H)

        # check that the pass band is close to unity
        idx = np.logical_and(f > 0, f < a)
        assert_array_almost_equal(Hmag[idx], 1, decimal=3)

        # check that the stop band is close to zero
        idx = np.logical_and(f > 0.5-a, f < 0.5)
        assert_array_almost_equal(Hmag[idx], 0, decimal=3)
Esempio n. 22
0
def freq_response(b, a=1., n_freqs=1024, sides='onesided'):
    """
    Returns the frequency response of the IIR or FIR filter described
    by beta and alpha coefficients.

    Parameters
    ----------

    b : beta sequence (moving average component)
    a : alpha sequence (autoregressive component)
    n_freqs : size of frequency grid
    sides : {'onesided', 'twosided'}
       compute frequencies between [-PI,PI), or from [0, PI]

    Returns
    -------

    fgrid, H(e^jw)

    Notes
    -----
    For a description of the linear constant-coefficient difference equation,
    see
    http://en.wikipedia.org/wiki/Z-transform
    """
    # transitioning to scipy freqz
    real_n = n_freqs // 2 + 1 if sides == 'onesided' else n_freqs
    return sig.freqz(b, a=a, worN=real_n, whole=sides != 'onesided')
Esempio n. 23
0
def highpass(signal, Fs, fc=constants.fc_hp, plot=False):
    '''
    Filter out the really low frequencies, default is below 50Hz
    '''

    # have some predefined parameters
    rp = 5  # minimum ripple in dB in pass-band
    rs = 60   # minimum attenuation in dB in stop-band
    n = 4    # order of the filter
    type = 'butter'

    # normalized cut-off frequency
    wc = 2. * fc / Fs

    # design the filter
    from scipy.signal import iirfilter, lfilter, freqz
    b, a = iirfilter(n, Wn=wc, rp=rp, rs=rs, btype='highpass', ftype=type)

    # plot frequency response of filter if requested
    if (plot):
        import matplotlib.pyplot as plt
        w, h = freqz(b, a)

        plt.figure()
        plt.title('Digital filter frequency response')
        plt.plot(w, 20 * np.log10(np.abs(h)))
        plt.title('Digital filter frequency response')
        plt.ylabel('Amplitude Response [dB]')
        plt.xlabel('Frequency (rad/sample)')
        plt.grid()

    # apply the filter
    signal = lfilter(b, a, signal.copy())

    return signal
Esempio n. 24
0
def _filter_resp(b, a, sampling_rate=1000., nfreqs=512):
    """Compute the filter frequency response.

    Parameters
    ----------
    b : array
        Numerator coefficients.
    a : array
        Denominator coefficients.
    sampling_rate : int, float, optional
        Sampling frequency (Hz).
    nfreqs : int, optional
        Number of frequency points to compute.

    Returns
    -------
    freqs : array
        Array of frequencies (Hz) at which the response was computed.
    resp : array
        Frequency response.

    """

    w, resp = ss.freqz(b, a, nfreqs)

    # convert frequencies
    freqs = w * sampling_rate / (2. * np.pi)

    return freqs, resp
Esempio n. 25
0
 def plot_response(self, filename=None):
     """
     Plot frequency response.
     
     .. note:: The follow phase response is obtained in case :meth:`lfilter` is used. The method :meth:`filtfilt` results in a zero-phase response.
     """
     
     fs = self.sample_frequency
     fig = plt.figure()
     ax1 = fig.add_subplot(211)
     ax2 = fig.add_subplot(212)
     for f, fc in zip(self.filters, self.frequencies.center):
         w, h = freqz(f[0], f[1], int(fs/2))#np.arange(fs/2.0))
         ax1.semilogx(w / (2.0*np.pi) * fs, 20.0 * np.log10(np.abs(h)), label=str(int(fc)))
         ax2.semilogx(w / (2.0*np.pi) * fs, np.angle(h), label=str(int(fc)))
     ax1.set_xlabel(r'$f$ in Hz')
     ax1.set_ylabel(r'$|H|$ in dB re. 1')
     ax2.set_xlabel(r'$f$ in Hz')
     ax2.set_ylabel(r'$\angle H$ in rad')
     ax1.legend(loc=5)
     ax2.legend(loc=5)
     ax1.set_ylim(-60.0, +10.0)
     
     if filename:
         fig.savefig(filename)
     else:
         return fig
Esempio n. 26
0
    def lock(self, f0=None, bw_ratio=0.5, coeff_ratio=9., bw=None, coeffs=None,
             window='blackman'):
        """Standard, windowed finite impulse response filter. """

        t = self.t
        fs = self.fs
        if f0 is None:
            self.f0 = f0 = self.f0_est
        else:
            self.f0 = f0

        if bw is None:
            bw = bw_ratio * f0 / (self.fs/2)
        else:
            bw = bw / (self.fs/2)

        if coeffs is None:
            coeffs = round(coeff_ratio / bw, 0)
            if coeffs > self.x.size:
                raise ValueError(
"""No valid output when 'coeffs' > t.size (coeffs: {}, t.size: {}).
Reduce coeffs by increasing bw, bw_ratio, or decreasing coeff_ratio,
or provide more data.""".format(coeffs, t.size))

        self.fir = b = signal.firwin(coeffs, bw, window=window)

        w, rep = signal.freqz(b, worN=np.pi*np.array([0., bw/2, bw, f0/self.fs, f0/(self.fs/2.), 1.]))

        print("Response:")
        _print_magnitude_data(w, rep, fs)

        self.run(f0=f0)
Esempio n. 27
0
    def lock_butter(self, N, f3dB, t_exclude=0, f0=None, print_response=True):
        t = self.t
        fs = self.fs
        nyq = fs / 2.
        f3dB = f3dB / nyq

        self.iir = ba = signal.iirfilter(N, f3dB, btype='low')

        if f0 is None:
            self.f0 = f0 = self.f0_est


        self.z = z = signal.lfilter(self.iir[0], self.iir[1], self.z)
        # TODO: Fix accounting on final / initial point
        m = self.m
        self.m = self.m & (t >= (t[m][0] + t_exclude)) & (t < (t[m][-1] - t_exclude))

        self.A = abs(self.z)
        self.phi = np.angle(self.z)

        if print_response:
            w, rep = signal.freqz(self.iir[0], self.iir[1],
                        worN=np.pi*np.array([0., f3dB/2, f3dB,
                                             0.5*f0/nyq, f0/nyq, 1.]))
            print("Response:")
            _print_magnitude_data(w, rep, fs)
Esempio n. 28
0
def lab3_ex4():
    
    # assign pre-defined (arbitrary) variables
    To = 125.0*(10**-6) #signal period = 125 microseconds
    L = 1*(10**-6) #inductance = 1 microHenry
    C = 4*(10**-6) #capacitance = 4 microFarads
    
    # calculate oscillator frequency
    Fo = 1/To
    
    print("\nAssuming signal period is is 125 microseconds, oscillator frequency is 1/T:\n" + str(Fo) + " Hz")
    
    # calculate sampling frequency (should be at least 2x, but using 10x here since best practice) and sample period
    Fs = Fo*10
    
    Ts = 1/Fs
    
    # assign pre-defined variables and their functional relationship to a constant 'm'
    m = ((2*L*C)-(Ts**2)/(L*C))
    
    # describe system as a difference equation
    
    print("\nDescribing the system as a difference equation, we have:\n  y[n] = m*y[n-1] - y[n-2]  \nwhere m = (2*L*C-Ts^2)/(L*C)")

    print("\nor:\n  a0*y[n] = b0*x[n] - a1*y[n-1] - a2*y[n-2]\nwhere b0 = 1.0, a0 = 1.0, a1 = -m, and a2 = 1.0")

    # create input from unit impulse function
    index = arange(0,10*Ts,Ts)
    x = unit_impulse(index)
    
    # assign coefficient arrays for input
    b = array([1.0])
    a = array([1.0, -1.0*m, 1.0])
    
    y = lfilter(b, a, x)
    
    # format and plot graph of unit impulse response
    stem(index, y)
    grid()
    xlabel('n (sampling period = 12.5 microseconds)')
    ylabel('Impulse response')
    title('Impulse response of a discrete LC system')
    
    print "\nIf sampling period Ts = 12.5 microseconds, Inductance L = 1 microHenry, and capacitance C = 4 microFarads, then"
    print "m = ((2*L*C)-(Ts**2)/(L*C)) = " + str(m)
    print "\nand impulse response y[n] for 1st 10 sampling periods (beginning with y[0]) = " + str(y)
    
    show()
    
    # calculate and assign angular frequency response using system coefficients
    w,h = freqz(b,a) #w = sample frequency array, h = frequency response array
    
    # format and plot graph of frequency response by sample frequency
    plot(w/pi*(Fs/2), abs(h))
    grid()
    xlabel('Frequency (Hz)')
    ylabel('Amplitude')
    title('Frequency response of a discrete LC system')
    
    show()
Esempio n. 29
0
def doplot(B, A, freq = (315.0/88.0) * 8.0):
	w, h = sps.freqz(B, A)

	fig = plt.figure()
	plt.title('Digital filter frequency response')
	
	db = 20 * np.log10(abs(h))
	for i in range(1, len(w)):
		if (db[i] >= -10) and (db[i - 1] < -10):
			print(">-10db crossing at ", w[i] * (freq/pi) / 2.0) 
		if (db[i] >= -3) and (db[i - 1] < -3):
			print(">-3db crossing at ", w[i] * (freq/pi) / 2.0) 
		if (db[i] < -3) and (db[i - 1] >= -3):
			print("<-3db crossing at ", w[i] * (freq/pi) / 2.0) 

	ax1 = fig.add_subplot(111)
	
	plt.plot(w * (freq/pi) / 2.0, 20 * np.log10(abs(h)), 'b')
	plt.ylabel('Amplitude [dB]', color='b')
	plt.xlabel('Frequency [rad/sample]')

	ax2 = ax1.twinx()
	angles = np.unwrap(np.angle(h))
	plt.plot(w * (freq/pi) / 2.0, angles, 'g')
	plt.ylabel('Angle (radians)', color='g')
	
	plt.grid()
	plt.axis('tight')
	plt.show()
Esempio n. 30
0
def dosplot(B, A, freq = (315.0/88.0) * 8.0):
	w, h = sps.freqz(B, A)

	fig = plt.figure()
	plt.title('Digital filter frequency response')

	ax1 = fig.add_subplot(111)

	db = 20 * np.log10(abs(h))

	for i in range(1, len(w)):
		if (db[i] >= -10) and (db[i - 1] < -10):
			print(">-10db crossing at ", w[i] * (freq/pi) / 2.0) 
		if (db[i] >= -3) and (db[i - 1] < -3):
			print("-3db crossing at ", w[i] * (freq/pi) / 2.0) 
		if (db[i] < -3) and (db[i - 1] >= -3):
			print("<-3db crossing at ", w[i] * (freq/pi) / 2.0) 
		if (db[i] < -10) and (db[i - 1] >= -10):
			print("<-10db crossing at ", w[i] * (freq/pi) / 2.0) 
		if (db[i] < -20) and (db[i - 1] >= -20):
			print("<-20db crossing at ", w[i] * (freq/pi) / 2.0) 

	plt.plot(w * (freq/pi) / 2.0, 20 * np.log10(abs(h)), 'b')
	plt.ylabel('Amplitude [dB]', color='b')
	plt.xlabel('Frequency [rad/sample]')

	plt.show()
Esempio n. 31
0
x1 = -1
x2 = 1
dx = (x2 - x1) / (nw - 1)
w = zeros(nw)
for i in range(nw):
    w[i] = 2.0 * pi * pow(10, x1 + i * dx)
[win, h] = signal.freqs(b, a, w)
hr = real(h)
hi = imag(h)
for i in range(len(h)):
    print("    href1[%d] = std::complex<double> (%+.14lf,%+.14lf);" %
          (i, hr[i], hi[i]))

nw = 41
f = linspace(0, pi, nw)
bz = asarray([
    0.056340000000000, -0.000935244000000, -0.000935244000000,
    0.056340000000000
])
az = asarray([
    1.000000000000000, -2.129100000000000, 1.783386300000000,
    -0.543463100000000
])
[fin, hz] = signal.freqz(bz, az, f)
hr = real(hz)
hi = imag(hz)
for i in range(len(fin)):
    print("    href2[%d] = std::complex<double> (%+.14lf,%+.14lf);" %
          (i, hr[i], hi[i]))
def generate_third_stage(header, body, third_stage_configs, combined_response,
                         points, input_sample_rate, stop_band_atten):

    max_coefs_per_phase = 32

    for config in third_stage_configs:
        divider = config[0]
        passband = config[1]
        stopband = config[2]
        name = config[3]
        coefs_per_phase = config[4]

        #if is_custom then use the PDM rate for making the graphs
        is_custom = config[5]

        pbw = passband / divider
        sbw = stopband / divider

        a = [1, 1, 0]
        w = [1, 1, 1]

        thing1 = (00.0 / 48000.0) / divider
        thing2 = (200.0 / 48000.0) / divider

        bands = [0, 0, thing2, pbw, sbw, 0.5]

        third_stage_response, coefs = generate_stage(
            coefs_per_phase * divider,
            bands,
            a,
            w,
            stopband_attenuation=stop_band_atten)

        #ensure the there is never any overflow
        coefs /= sum(abs(coefs))

        body.write("const int g_third_stage_" + name + "_fir[" +
                   str(divider * (2 * max_coefs_per_phase - 1)) + "] = {\n")
        header.write("extern const int g_third_stage_" + name + "_fir[" +
                     str(divider * (2 * max_coefs_per_phase - 1)) + "];\n")

        total_abs_sum = 0
        for phase in reversed(range(divider)):
            body.write("//Phase " + str(phase) + "\n\t")
            for i in range(coefs_per_phase):
                index = coefs_per_phase * divider - divider - (i * divider -
                                                               phase)
                if coefs[i] > 0.5:
                    print "Single coefficient too big in third stage FIR"
                d_int = int(coefs[index] * 2147483647.0 * 2.0)
                total_abs_sum += abs(d_int)
                body.write("0x{:08x}, ".format(ctypes.c_uint(d_int).value))
                if (i % 8) == 7:
                    body.write("\n\t")
            for i in range(coefs_per_phase, max_coefs_per_phase):
                body.write("0x{:08x}, ".format(ctypes.c_uint(0).value))
                if (i % 8) == 7:
                    body.write("\n\t")

            for i in range(coefs_per_phase - 1):
                index = coefs_per_phase * divider - divider - (i * divider -
                                                               phase)
                d_int = int(coefs[index] * 2147483647.0 * 2.0)
                body.write("0x{:08x}, ".format(ctypes.c_uint(d_int).value))
                if (i % 8) == 7:
                    body.write("\n\t")
            for i in range(coefs_per_phase - 1, max_coefs_per_phase - 1):
                body.write("0x{:08x}, ".format(ctypes.c_uint(0).value))
                if (i % 8) == 7:
                    body.write("\n\t")

            body.write("\n")

        body.write("};\n")

        #print str(total_abs_sum) + "(" + str(abs(total_abs_sum - 2147483647.0*2.0)) + ")"
        if abs(total_abs_sum - 2147483647.0 * 2.0) > 32 * divider:
            print "Warning: error in third stage too large"

        body.write("const int fir3_" + name + "_debug[" +
                   str(max_coefs_per_phase * divider) + "] = {\n\t")
        header.write("extern const int fir3_" + name + "_debug[" +
                     str(max_coefs_per_phase * divider) + "];\n")

        for i in range(coefs_per_phase * divider):
            body.write("{:10d}, ".format(int(2147483647.0 * coefs[i])))
            if (i % 8) == 7:
                body.write("\n\t")

        for i in range(coefs_per_phase * divider,
                       max_coefs_per_phase * divider):
            body.write("{:10d}, ".format(int(0)))
            if (i % 8) == 7:
                body.write("\n\t")

        body.write("};\n")

        (_, H) = signal.freqz(coefs, worN=points)

        plot_response(H, 'third_stage_' + str(name))

        passband_max = float('-inf')
        passband_min = float('inf')

        magnitude_response = []
        input_freq = []

        for i in range(points):
            mag = combined_response[i] * abs(H[i])
            freq = 0.5 * i / points
            if freq < 0.5 / divider:
                magnitude_response.append(mag)
                if is_custom:
                    input_freq.append(freq * input_sample_rate)
                else:
                    input_freq.append(freq * divider)
            if freq < passband / divider:
                passband_max = max(passband_max, mag)
                passband_min = min(passband_min, mag)

        magnitude_response /= passband_max
        magnitude_response = 20 * numpy.log10(magnitude_response)
        plt.clf()
        plt.plot(input_freq, magnitude_response)
        plt.ylabel('Magnitude Response')
        if is_custom:
            plt.xlabel('Frequency (kHz)')
        else:
            plt.xlabel('Normalised Output Freq')
        plt.savefig("output_" + name + '.pdf', format='pdf', dpi=1000)

        print "Filter name: " + name
        print "Final stage divider: " + str(divider)
        print "Output sample rate: " + str(input_sample_rate / divider) + "kHz"
        print "Pass bandwidth: " + str(
            input_sample_rate * passband / divider) + "kHz of " + str(
                input_sample_rate / (divider * 2)) + "kHz total bandwidth."
        print "Pass bandwidth(normalised): " + str(
            passband * 2) + " of Nyquist."
        print "Stop band start: " + str(
            input_sample_rate * stopband / divider) + "kHz of " + str(
                input_sample_rate / (divider * 2)) + "kHz total bandwidth."
        print "Stop band start(normalised): " + str(
            stopband * 2) + " of Nyquist."
        print "Stop band attenuation: " + str(stop_band_atten) + "dB."

        # print "(3.072MHz) Passband:" + str(48000*2*passband/divider) + "Hz Stopband:"+ str(48000*2*stopband/divider) + "Hz"
        # print "(2.822MHz) Passband:" + str(44100*2*passband/divider) + "Hz Stopband:"+ str(44100*2*stopband/divider) + "Hz"

        if 1.0 / passband_max > 8.0:
            print "Error: Compensation factor is too large"

        #The compensation factor should be in Q(5.27) format
        comp_factor = ((1 << 27) - 1) / passband_max

        header.write("#define FIR_COMPENSATOR_" + name.upper() + " (" +
                     str(int(comp_factor)) + ")\n")

        header.write("\n")
        print "Passband ripple = " + str(
            abs(20.0 * numpy.log10(passband_min / passband_max))) + " dB\n"
    return
Esempio n. 33
0
def freqz_resp_list(b,
                    a=np.array([1]),
                    mode='dB',
                    fs=1.0,
                    Npts=1024,
                    fsize=(6, 4)):
    """
    A method for displaying digital filter frequency response magnitude,
    phase, and group delay. A plot is produced using matplotlib

    freq_resp(self,mode = 'dB',Npts = 1024)

    A method for displaying the filter frequency response magnitude,
    phase, and group delay. A plot is produced using matplotlib

    freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4))

        b = ndarray of numerator coefficients
        a = ndarray of denominator coefficents
     mode = display mode: 'dB' magnitude, 'phase' in radians, or 
            'groupdelay_s' in samples and 'groupdelay_t' in sec, 
            all versus frequency in Hz
     Npts = number of points to plot; default is 1024
    fsize = figure size; defult is (6,4) inches

    Mark Wickert, January 2015
    """
    if type(b) == list:
        # We have a list of filters
        N_filt = len(b)
    f = np.arange(0, Npts) / (2.0 * Npts)
    for n in range(N_filt):
        w, H = signal.freqz(b[n], a[n], 2 * np.pi * f)
        if n == 0:
            plt.figure(figsize=fsize)
        if mode.lower() == 'db':
            plt.plot(f * fs, 20 * np.log10(np.abs(H)))
            if n == N_filt - 1:
                plt.xlabel('Frequency (Hz)')
                plt.ylabel('Gain (dB)')
                plt.title('Frequency Response - Magnitude')

        elif mode.lower() == 'phase':
            plt.plot(f * fs, np.angle(H))
            if n == N_filt - 1:
                plt.xlabel('Frequency (Hz)')
                plt.ylabel('Phase (rad)')
                plt.title('Frequency Response - Phase')

        elif (mode.lower() == 'groupdelay_s') or (mode.lower()
                                                  == 'groupdelay_t'):
            """
            Notes
            -----

            Since this calculation involves finding the derivative of the
            phase response, care must be taken at phase wrapping points 
            and when the phase jumps by +/-pi, which occurs when the 
            amplitude response changes sign. Since the amplitude response
            is zero when the sign changes, the jumps do not alter the group 
            delay results.
            """
            theta = np.unwrap(np.angle(H))
            # Since theta for an FIR filter is likely to have many pi phase
            # jumps too, we unwrap a second time 2*theta and divide by 2
            theta2 = np.unwrap(2 * theta) / 2.
            theta_dif = np.diff(theta2)
            f_diff = np.diff(f)
            Tg = -np.diff(theta2) / np.diff(w)
            # For gain almost zero set groupdelay = 0
            idx = pylab.find(20 * np.log10(H[:-1]) < -400)
            Tg[idx] = np.zeros(len(idx))
            max_Tg = np.max(Tg)
            #print(max_Tg)
            if mode.lower() == 'groupdelay_t':
                max_Tg /= fs
                plt.plot(f[:-1] * fs, Tg / fs)
                plt.ylim([0, 1.2 * max_Tg])
            else:
                plt.plot(f[:-1] * fs, Tg)
                plt.ylim([0, 1.2 * max_Tg])
            if n == N_filt - 1:
                plt.xlabel('Frequency (Hz)')
                if mode.lower() == 'groupdelay_t':
                    plt.ylabel('Group Delay (s)')
                else:
                    plt.ylabel('Group Delay (samples)')
                plt.title('Frequency Response - Group Delay')
        else:
            s1 = 'Error, mode must be "dB", "phase, '
            s2 = '"groupdelay_s", or "groupdelay_t"'
            print(s1 + s2)
Esempio n. 34
0
kHz = 1000.0  # kHz
# time for creating sin wave
time = arange(0, 1, 1.0 / num_samples)

# Create frequencies to use for Signal Processing
f1 = 15000  # 15kHz
f2 = 30000  # 30kHz

# Create a Bandpass filter
numtaps = 2048
low_cutoff = 43500  # 43.5kHz
high_cutoff = 46500  # 46.5kHz
nyq_rate = sampling_rate / 2
bpf = firwin(numtaps, [low_cutoff / nyq_rate, high_cutoff / nyq_rate],
             pass_zero=False)
w, h = freqz(bpf)

# Plot bandpass filter response
# plt.subplot(221)
# plot(w / (2 * pi), 20 * log10(abs(h)))
# plt.title('FIR Bandpass Filter Response')
# plt.ylabel('Magnitude (dB)')
# plt.xlabel('Frequency Coefficient')


class Prompt(cmd.Cmd):
    def do_send(self, msg):
        print("Sending: <", msg, ">")
        sock.sendto(str.encode(msg), (host, port))

    def default(self, msg):
# wpass: la frecuencia de paso normalizada
# wstop: la frecuencia de corte normalizada
# gpass: máxima atenuación tolerable en la banda de paso (en dB)
# gstop: mínima atenuación tolerable en la banda de rechazo (en dB)
# rp: amplitud de ripple tolerable en las transiciones (en dB)
orden, wn = sg.cheb1ord(wp=wpass, ws=wstop, gpass=3, gstop=40)
[coef_numerador_b, coef_denominador_a] = sg.cheby1(N=orden,
                                                   rp=3,
                                                   Wn=wn,
                                                   btype='lowpass',
                                                   output='ba')
''' Diagrama de Bode '''

# Le pasamos la frecuencia de muestreo para que el resultado lo ponga en escala de 0 a fs/2. Si no se la pasamos,
# lo devolvería normalizado y tenemos que arreglarlo luego
f, h = sg.freqz(coef_numerador_b, coef_denominador_a, fs=fs)

fig, ax1 = plt.subplots()
ax1.set_title('Filtro Chebyshev Tipo I pasa bajos')

ax1.plot(f, 20 * np.log10(abs(h)))
ax1.set_xlabel('Frecuencia [Hz]')
ax1.set_ylabel('Amplitud [dB]')
ax1.margins(0, 0.1)
ax1.grid(which='both', axis='both')

ax2 = ax1.twinx()
ax2.plot(f, np.unwrap(np.angle(h)), 'g')
ax2.set_ylabel('Fase (rad)', color='g')

senal_filtrada_ideal = filtrar_pasa_bajos_ideal(senal_ruidosa, fs, 800)
def generate_first_stage(header, body, points, pbw, sbw, first_stage_num_taps):

    nulls = 1.0 / 8.0
    a = [1, 0, 0, 0, 0]
    w = [1, 1, 1, 1, 1]

    bands = [
        0, pbw, nulls * 1 - sbw, nulls * 1 + sbw, nulls * 2 - sbw,
        nulls * 2 + sbw, nulls * 3 - sbw, nulls * 3 + sbw, nulls * 4 - sbw, 0.5
    ]

    first_stage_response, coefs = generate_stage(first_stage_num_taps, bands,
                                                 a, w)

    #ensure the there is never any overflow
    coefs /= sum(abs(coefs))

    total_abs_sum = 0
    for t in range(0, len(coefs) / (8 * 2)):
        header.write("extern const int g_first_stage_fir_" + str(t) +
                     "[256];\n")
        body.write("const int g_first_stage_fir_" + str(t) + "[256] = {\n\t")
        max_for_block = 0
        for x in range(0, 256):
            d = 0.0
            for b in range(0, 8):
                if (((x >> (7 - b)) & 1) == 1):
                    d = d + coefs[t * 8 + b]
                else:
                    d = d - coefs[t * 8 + b]
            d_int = int(d * 2147483647.0)
            max_for_block = max(max_for_block, d_int)
            body.write("0x{:08x}, ".format(ctypes.c_uint(d_int).value))
            if (x & 7) == 7:
                body.write("\n\t")
        body.write("};\n\n")
        total_abs_sum = total_abs_sum + max_for_block * 2

    #print str(total_abs_sum) + "(" + str(abs(total_abs_sum - 2147483647.0)) + ")"
    if abs(total_abs_sum - 2147483647.0) > 6:
        print "Warning: error in first stage too large"

    body.write("const int fir1_debug[" + str(first_stage_num_taps) +
               "] = {\n\n")
    header.write("extern const int fir1_debug[" + str(first_stage_num_taps) +
                 "];\n")
    for i in range(0, len(coefs)):
        body.write("{:10d}, ".format(int(2147483647.0 * coefs[i])))
        if ((i & 7) == 7):
            body.write("\n")
    body.write("};\n")

    (_, H) = signal.freqz(coefs, worN=points)
    plot_response(H, 'first_stage')
    [stop, passband_min,
     passband_max] = measure_stopband_and_ripple(bands, a, H)
    max_passband_output = int(2147483647.0 * 10.0**(passband_max / 20.0) + 1)
    header.write("#define FIRST_STAGE_MAX_PASSBAND_OUTPUT (" +
                 str(max_passband_output) + ")\n")
    header.write("\n")

    return H
Esempio n. 37
0
    for i in range(2):
        qz.append(z[i])
        qp.append(p[i])
    qk.append(k)

pylab.subplot2grid((2, 2), (1, 0), colspan=2)
pylab.title("Frequency response")
pylab.ylabel("Gain (dB)")
pylab.xlabel("Frequency (Hz)")
pylab.minorticks_on()
pylab.grid(b=True, which='major', color='b')
pylab.grid(b=True, which='minor')

(b, a) = signal.zpk2tf(original_z, original_p, original_k)
(w, h) = signal.freqz(b, a)
pylab.plot(w * fs0 / (2 * np.pi), 20 * np.log10(h))
print("A: ")
print(a)
print("B: ")
print(b)
print("qz: ")
print(qz)
print("qp: ")
print(qp)
qb, qa = signal.zpk2tf(qz, qp, np.prod(qk))
(qw, qh) = signal.freqz(qb, qa)
pylab.plot(qw * fs0 / (2 * np.pi), 20 * np.log10(qh))

pylab.show()
Esempio n. 38
0
def preview(args):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    from scipy.io.wavfile import write as wavwrite
    from scipy.signal import freqz

    preview_dir = os.path.join(args.train_dir, 'preview')
    if not os.path.isdir(preview_dir):
        os.makedirs(preview_dir)

    # Load graph
    infer_metagraph_fp = os.path.join(args.train_dir, 'infer', 'infer.meta')
    graph = tf.get_default_graph()
    saver = tf.train.import_meta_graph(infer_metagraph_fp)

    # Generate or restore z_i and z_o
    z_fp = os.path.join(preview_dir, 'z.pkl')
    if os.path.exists(z_fp):
        with open(z_fp, 'rb') as f:
            _zs = pickle.load(f)
    else:
        # Sample z
        samp_feeds = {}
        samp_feeds[graph.get_tensor_by_name('samp_z_n:0')] = args.preview_n
        samp_fetches = {}
        samp_fetches['zs'] = graph.get_tensor_by_name('samp_z:0')
        with tf.Session() as sess:
            _samp_fetches = sess.run(samp_fetches, samp_feeds)
        _zs = _samp_fetches['zs']

        # Save z
        with open(z_fp, 'wb') as f:
            pickle.dump(_zs, f)

    # Create labels
    sample_n = 20
    _zs = _zs[:sample_n]
    _ys = np.zeros([sample_n])
    for i in range(10):
        # one-hot vector
        # _ys[2 * i + 1][i] = 1
        # _ys[2 * i][i] = 1

        # integer labels
        _ys[2 * i] = 10 + i
        _ys[2 * i + 1] = 10 + i
    _ys = np.expand_dims(_ys, axis=1)

    # Set up graph for generating preview images
    feeds = {}
    feeds[graph.get_tensor_by_name('z:0')] = _zs
    feeds[graph.get_tensor_by_name('y:0')] = _ys
    feeds[graph.get_tensor_by_name('flat_pad:0')] = _WINDOW_LEN // 2
    fetches = {}
    fetches['step'] = tf.train.get_or_create_global_step()
    fetches['G_z'] = graph.get_tensor_by_name('G_z:0')
    fetches['G_z_flat_int16'] = graph.get_tensor_by_name('G_z_flat_int16:0')
    if args.wavegan_genr_pp:
        fetches['pp_filter'] = graph.get_tensor_by_name(
            'G/pp_filt/conv1d/kernel:0')[:, 0, 0]

    # Summarize
    G_z = graph.get_tensor_by_name('G_z_flat:0')
    summaries = [
        tf.summary.audio('preview',
                         tf.expand_dims(G_z, axis=0),
                         _FS,
                         max_outputs=1)
    ]
    fetches['summaries'] = tf.summary.merge(summaries)
    summary_writer = tf.summary.FileWriter(preview_dir)

    # PP Summarize
    if args.wavegan_genr_pp:
        pp_fp = tf.placeholder(tf.string, [])
        pp_bin = tf.read_file(pp_fp)
        pp_png = tf.image.decode_png(pp_bin)
        pp_summary = tf.summary.image('pp_filt', tf.expand_dims(pp_png,
                                                                axis=0))

    # Loop, waiting for checkpoints
    ckpt_fp = None
    while True:
        latest_ckpt_fp = tf.train.latest_checkpoint(args.train_dir)
        if latest_ckpt_fp != ckpt_fp:
            print('Preview: {}'.format(latest_ckpt_fp))

            with tf.Session() as sess:
                saver.restore(sess, latest_ckpt_fp)

                _fetches = sess.run(fetches, feeds)

                _step = _fetches['step']

            gen_speech = _fetches['G_z_flat_int16']
            gen_len = int(len(gen_speech) / sample_n)

            for i in range(sample_n):
                label = int(i / 2)
                start = i * gen_len
                end = start + gen_len
                preview_fp = os.path.join(
                    preview_dir, '{}_{}_{}.wav'.format(str(label), str(_step),
                                                       str(i)))
                wavwrite(preview_fp, _FS, gen_speech[start:end])

            summary_writer.add_summary(_fetches['summaries'], _step)

            if args.wavegan_genr_pp:
                w, h = freqz(_fetches['pp_filter'])

                fig = plt.figure()
                plt.title('Digital filter frequncy response')
                ax1 = fig.add_subplot(111)

                plt.plot(w, 20 * np.log10(abs(h)), 'b')
                plt.ylabel('Amplitude [dB]', color='b')
                plt.xlabel('Frequency [rad/sample]')

                ax2 = ax1.twinx()
                angles = np.unwrap(np.angle(h))
                plt.plot(w, angles, 'g')
                plt.ylabel('Angle (radians)', color='g')
                plt.grid()
                plt.axis('tight')

                _pp_fp = os.path.join(
                    preview_dir, '{}_ppfilt.png'.format(str(_step).zfill(8)))
                plt.savefig(_pp_fp)

                with tf.Session() as sess:
                    _summary = sess.run(pp_summary, {pp_fp: _pp_fp})
                    summary_writer.add_summary(_summary, _step)

            print('Done')

            ckpt_fp = latest_ckpt_fp

        time.sleep(1)
def main():
    t = np.arange(0, 0.01, 1 / fs)
    # %% noisy sinusoid
    xc = np.exp(
        1j * 2 * np.pi * F *
        t) + 0.01 * (np.random.randn(t.size) + 1j * np.random.randn(t.size))
    xr = np.cos(2 * np.pi * F * t) + 0.01 * np.random.randn(t.size)
    # %% estimate sinusoid frequency

    festc, sigmac = subspace.subspace.esprit_c(xc, Ntone // 2, M, fs)

    print('complex')
    print(festc)
    print(sigmac)
    # %% real
    # design filter coeff (offline, one-time)

    b = remez(L, [0, 0.1, 0.15, 0.35, 0.4, 0.5], [0, 1, 0])

    tic = time()
    yrpy = lfilter(b, 1, xr)
    tscipy = time() - tic

    tic = time()
    yrfort = subspace.filters.fircircfilter(xr.astype(np.float32), b)[0]
    tfort = time() - tic
    np.testing.assert_allclose(yrfort, yrpy,
                               rtol=1e-4)  # single prec vs double prec

    tic = time()
    yr = fircirc(b, xr)
    print('{:.6f} sec. using circular buffer FIR filter'.format(time() - tic))
    np.testing.assert_allclose(yr, yrpy)
    # %% estimations
    festr, sigmar = subspace.subspace.esprit_r(yr, Ntone, M, fs)
    print('real')
    print(festr)
    print(sigmar)

    fg, axs = subplots(2, 4, sharey=False)

    plotperiodogram(t, xr, fs, axs[:, 0], 'noisy input signal X')
    axs[0, 0].set_ylabel('amplitude [dB]')
    axs[1, 0].set_ylabel('amplitude')

    plotperiodogram(t, yrpy, fs, axs[:, 1],
                    'Scipy lfilter() signal, {:.3f} ms'.format(tscipy * 1000))

    plotperiodogram(t, yrfort, fs, axs[:, 2],
                    'Fortran filtered signal,  {:.3f} ms'.format(tfort * 1000))

    for a in axs[0, :]:
        a.set_xlabel('frequency [Hz]')
        a.autoscale(True, axis='x', tight=True)
        a.set_ylim(-100, -20)

    freq, response = freqz(b)
    axs[0, -1].plot(freq * fs / (2 * np.pi), 10 * np.log10(abs(response)))
    axs[0, -1].set_title(f'filter response  L={L}')
    axs[0, -1].set_ylim(-40, 2)

    impulse = np.repeat(0., L)
    impulse[0] = 1.
    response = lfilter(b, 1, impulse)
    axs[1, -1].plot(response)
    axs[1, -1].set_xlabel('sample number')

    show()
Esempio n. 40
0
from scipy import signal
import csv
import matplotlib.pyplot as plt
import numpy as np

with open('/home/pruthvirg/Downloads/h.csv', 'r') as f:
    reader = csv.reader(f)
    your_list = list(reader)

w, h = signal.freqz(your_list)

fig, ax1 = plt.subplots()
ax1.set_title('Digital filter frequency response')
ax1.plot(w, abs(h), 'b')
ax1.set_ylabel('Amplitude [dB]', color='b')
ax1.set_xlabel('Frequency [rad/sample]')
ax2 = ax1.twinx()
angles = np.unwrap(np.angle(h))
ax2.plot(w, angles, 'g')
ax2.set_ylabel('Angle (radians)', color='g')
ax2.grid()
ax2.axis('tight')
plt.show()

x = np.linspace(1, 2**10, 2**10)
y = np.cos(0.2 * (np.pi) * x) + np.cos(0.85 * (np.pi) * x)
plt.plot(abs(y))
plt.title('Plot of input signal')
plt.xlabel('n')
plt.ylabel('x[n]')
plt.grid(True)
"""
FIR filter design example; requires SciPy 0.9 or later.
"""

import numpy as np
from scipy.signal import firwin2, freqz, kaiserord
from matplotlib.pylab import plot, show, grid, xlabel, ylabel, legend, title

# Bandpass with a notch.
desired_freq = [0.0, 0.1, 0.2, 0.56, 0.6,  0.64, 0.8, 0.9, 1.0]
desired_gain = [0.0, 0.0, 1.0, 1.0,  0.75, 1.0,  1.0, 0.0, 0.0]

# Use firwin2 with a Kaiser window to design the filter.
ntaps, beta = kaiserord(ripple=65, width=0.08)
taps = firwin2(ntaps, desired_freq, desired_gain, window=('kaiser', beta))

# Compute the filter's response.
w, h = freqz(taps, [1.0], worN=8000)

# Plot the desired and actual responses.
plot(desired_freq, desired_gain, 'g-', label='Desired')
plot(w/np.pi, np.abs(h), 'b', label='Computed')
xlabel('Frequency (rel. to Nyquist)')
ylabel('Gain')
title('FIR Filter Frequency Response (%d taps)' % ntaps)
legend()
grid(True)
show()
Esempio n. 42
0
f0 = 100  # fundamental pitch of excitation impulse
nharm = 30  # number of harmonics in impulse
nsamps = 8000  # number of samples to collect
output_samples = 513  # number of samples per table (attack AND decay)
table_size = 257  # length of each wavetable
nsamps = output_samples * 11  # number of samples to process. offset = 10 cycles, + output
fs = output_samples * f0  # sample rate

nsecs = F.size
R = np.exp(-np.pi * BW / fs)
theta = 2 * np.pi * F / fs
poles = np.multiply(R, np.exp(1j * theta))  # complex poles
B = 1
polesMatrix = np.matrix([poles, np.conj(poles)])
A = np.real(np.poly(polesMatrix.A1))
w, h = signal.freqz(B, A)
"""

# plot formant filter frequency response

freqPlot = plt.figure();
plt.title('Formant Filter Frequency Response')
ax1 = freqPlot.add_subplot(111)
plt.plot(w, 20 * np.log10(abs(h)), 'b')
plt.ylabel('amplitude[dB]', color = 'b')
plt.xlabel('frequency [rad/sample]')
ax2 = ax1.twinx()
angles = np.unwrap(np.angle(h))
plt.plot(w, angles, 'g')
plt.ylabel('Angle (radians)', color='g')
plt.grid()
Esempio n. 43
0
import sys

sys.path.append('../funcs')

from animations import *
from filters import *
from playwav import *

rate, audio = wav.read('sndfile.wav')
audio = audio[:, 1]
t = np.arange(len(audio)) / float(rate)

print 'Sampling rate: ', rate
print 'Audio shape: ', audio.shape

w, H = signal.freqz(audio)

#filter and downsample the signal no 8khz
# newSamplingRate = 8000
# downSamplingFactor = rate/newSamplingRate
samplingFactor = 4

rows = 500
cols = 512
frame = 0.0 * np.ones((rows, cols, 3))
frametxt = frame.copy()

cv2.putText(frame, "f: change filter", (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
            (255, 128, 128))
cv2.putText(frame, "p: play audio file, s: stop", (20, 100),
            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 128, 128))
Esempio n. 44
0
    if voiced[i]:
        # choose alpha and gamma to get something like voiced speech
        alpha1 = 0.05 * np.pi + 0.25 * np.pi * r1[0]
        gamma1 = 0.9 + 0.09 * r1[1]
        alpha2 = alpha1 + 0.4 * np.pi * r2[0]
        gamma2 = 0.9 + 0.05 * r2[1]
        gain = 10
    else:
        alpha1 = 0.5 * np.pi + 0.4 * np.pi * r1[0]
        gamma1 = 0.8 + 0.1 * r1[1]
        alpha2 = 0.5 * np.pi + 0.4 * np.pi * r2[0]
        gamma2 = 0.8 + 0.1 * r2[1]
        gain = 1

    w1, h1 = signal.freqz(gain,
                          [1, -2 * gamma1 * np.cos(alpha1), gamma1 * gamma1],
                          range(1, L[i] + 1) * Wo[i])
    w2, h2 = signal.freqz(gain,
                          [1, -2 * gamma2 * np.cos(alpha2), gamma2 * gamma2],
                          range(1, L[i] + 1) * Wo[i])

    for m in range(1, L[i] + 1):
        A[i, m] = np.abs(h1[m - 1] * h2[m - 1])
        if voiced[i]:
            phase[i, m] = np.angle(h1[m - 1] * h2[m - 1])
        else:
            r = np.random.rand(1)
            phase[i, m] = -np.pi + r[0] * 2 * np.pi

# write to a Codec 2 model file
Esempio n. 45
0
adc = fx.Fixed(q_adc)  # adc quantizer instance
fil_ma_q = fx.FIX_filt_MA(q_mul, q_acc)  # fxpoint filter instance
dac = fx.Fixed(q_dac)  # dac quantizer instance
coeffq = fx.Fixed(q_coeff)

### quantize coefficients
aq = coeffq.fix(a)
bq = coeffq.fix(b)
gq = coeffq.fix(g)

if coeffq.N_over > 0:
    print("Coefficient overflows:", coeffq.N_over)

### Berechnung der Übertragungsfunktion mit idealen und quantisierten Koeff.
# idealer Betragsgang
[w, Hf] = sig.freqz(b, a, worN=int(N_FFT / 2))
Hf = abs(
    Hf
) * g * a_sig  # Idealer Betragsgang zwischen f = 0 ... f_S/2 an N_FFT/2 Punkten
f = w / (2 * pi) * f_S  # translate w to absolute frequencies

# Betragsgang mit quantisierten Koeffizienten
[w, Hfq] = sig.freqz(bq, aq, int(N_FFT / 2))
Hfq = abs(Hfq) * gq * a_sig

wtest = array(
    [fsig, f_S / 2]
) * 2 * pi / f_S  # Testfrequenzen f_sig und f_S/2 (dummy-Punkt, ftest muss Vektor sein)
w, H_sig_tst = sig.freqz(b, a,
                         wtest)  # Betrag der Übertragungsfunkt. bei ftest
H_sig = abs(H_sig_tst[0]) * g * a_sig  # Ideale Übertragungsfunktion bei fsig
Esempio n. 46
0
def butter_bandpass_filter_signal_1d(signal,
                                     lowcut,
                                     highcut,
                                     sample_rate,
                                     order,
                                     verbose=False):
    r"""
    Digital filter bandpass zero-phase implementation (filtfilt)
    Apply a digital filter forward and backward to a signal

    Args:
        signal : ndarray, shape (time,)
            Single input signal in time domain
        lowcut : int
            Lower bound filter
        highcut : int
            Upper bound filter
        sample_rate : int
            Sampling frequency
        order : int, default: 4
            Order of the filter
        verbose : boolean, default: False
            Print and plot details
    Returns:
        y : ndarray
            Filter signal
    Dependencies:
        filtfilt : scipy.signal.filtfilt
        butter_bandpass : function
        plt : `matplotlib.pyplot` package
        freqz : scipy.signal.freqz
        fast_fourier_transform : function
    """
    b, a = butter_bandpass(lowcut, highcut, sample_rate, order)
    y = filtfilt(b, a, signal)

    if verbose:
        w, h = freqz(b, a)
        plt.plot((sample_rate * 0.5 / np.pi) * w,
                 abs(h),
                 label="order = %d" % order)
        plt.plot([0, 0.5 * sample_rate],
                 [np.sqrt(0.5), np.sqrt(0.5)],
                 '--',
                 label='sqrt(0.5)')
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Gain')
        plt.grid(True)
        plt.legend(loc='best')
        low = max(0, lowcut - (sample_rate / 100))
        high = highcut + (sample_rate / 100)
        plt.xlim([low, high])
        plt.ylim([0, 1.2])
        plt.title('Frequency response of filter - lowcut:' + str(lowcut) +
                  ', highcut:' + str(highcut))
        plt.show()

        # TIME
        plt.plot(signal, label='Signal')
        plt.title('Signal')
        plt.show()

        plt.plot(y, label='Filtered')
        plt.title('Bandpass filtered')
        plt.show()

        # FREQ
        lower_xlim = lowcut - 10 if (lowcut - 10) > 0 else 0
        fast_fourier_transform(signal,
                               sample_rate,
                               plot=True,
                               plot_xlim=[lower_xlim, highcut + 20],
                               plot_label='Signal')
        fast_fourier_transform(y,
                               sample_rate,
                               plot=True,
                               plot_xlim=[lower_xlim, highcut + 20],
                               plot_label='Filtered')

        plt.xlim([lower_xlim, highcut + 20])
        plt.ylim([0, 2])
        plt.legend()
        plt.xlabel('Frequency (Hz)')
        plt.show()

        print('Input: Signal shape', signal.shape)
        print('Output: Signal shape', y.shape)
    return y
Esempio n. 47
0
def filtfft(filt, blocklen):
    return sps.freqz(filt[0], filt[1], blocklen, whole=1)[1]
Esempio n. 48
0
    plt.savefig('../images/Q1_b_espectro_nfilt.png')

# Questão 2
# (a)
if PB_filt:
    lp_fpass = 32.
    lp_fstop = 50.3
    fny = fs/2.
    #wpass = fpass*2*np.pi
    #wstop = fstop*2*np.pi
    #wny = fny*2*np.pi
    
    lp_ord, lp_wn = buttord(lp_fpass/fny,lp_fstop/fny,3,40)
    lp_b, lp_a = butter(lp_ord, lp_wn, 'lowpass')
    #lp_b, lp_a = butter(8, lp_fpass/fny, 'lowpass')
    lp_w, lp_h = freqz(lp_b, lp_a, worN=len(fhz_nf),fs=fs*2*np.pi)
    
    sig_lp = lfilter(lp_b,lp_a,mysignal)
    
    sig_fft_lp = np.fft.rfft(sig_lp)
    f_dimensionless_lp = np.fft.rfftfreq(len(sig_lp))
    T = dt*N
    df = 1./T
    fhz_lp = f_dimensionless_lp*df*N
    
    if plotQ2a:
        fig3 = plt.figure(figsize=(14,4.5))
        plt.title('Q2 (a)')
        plt.xlabel('tempo [s]')
        plt.ylabel('sinal ECG filtrado PB [V]')
        plt.plot(t,sig_lp)
Esempio n. 49
0
f = np.linspace(0, 80e3, 30)               # frequencies for fitting the system
Hvals = FreqResp(S0, delta, f0, f)      # frequency response of the 2nd order system

#%% fitting the IIR filter

Fs = 500e3          # sampling frequency
Na = 4; Nb = 4     # IIR filter order (Na - denominator, Nb - numerator)

b, a, tau = fit_filter.LSIIR(Hvals, Na, Nb, f, Fs)

#%% plot the result

fplot = np.linspace(0, 80e3, 1000)             # frequency range for the plot
Hc = FreqResp(S0, delta, f0, fplot)         # frequency response of the 2nd order system
Hf = freqz(b, a, 2 * np.pi * fplot / Fs)[1]    # frequency response of the fitted IIR filter
Hf = Hf*np.exp(2j*np.pi*fplot/Fs*tau)             # take into account the filter time delay tau

fig1 = figure(1); cla()
ax1 = fig1.add_subplot(111)
ax1.plot(fplot, db(Hc), "+",fplot, db(Hf))
ax1.legend(('System', 'LSIIR fit'))
ax1.set_xlabel("frequency / Hz",fontsize=18)
ax1.set_ylabel("freq. response amplitude / a.u.",fontsize=18)

fig2 = figure(2); cla()
ax2 = fig2.add_subplot(111)
ax2.plot(fplot, np.angle(Hc), "+",fplot, np.angle(Hf))
ax2.legend(('System', 'LSIIR fit'))
ax2.set_xlabel("frequency / Hz",fontsize=18)
ax2.set_ylabel("freq. response angle / rad",fontsize=18)
Esempio n. 50
0
plt.plot(tim, v)

fs = 1.0 / tim[1]
n = len(t)

freqspec = np.fft.fft(v)
Hz = np.linspace(0, fs, n)
plt.figure()
plt.plot(Hz, np.abs(freqspec))

betaorder = 5  #order of the filter
bbeta, abeta = butter_bandpass(16, 31, fs, betaorder)
thetaorder = 2
btheta, atheta = butter_bandpass(4, 7, fs, thetaorder)

wbeta, hbeta = freqz(bbeta, abeta)
wtheta, htheta = freqz(btheta, atheta)

plt.figure()
plt.title('Band Pass Filter Responses')
plt.plot(fs * wbeta / (2 * np.pi), np.abs(hbeta), 'b')
plt.plot(fs * wtheta / (2 * np.pi), np.abs(htheta), 'r')
plt.xlim(0, 100)

beta = lfilter(bbeta, abeta, v)
theta = lfilter(btheta, atheta, v)
fig = plt.figure()
plt.title('Theta Signal after 3-7 Hz band pass filter')
ax = fig.add_subplot(111)
ax.plot(tim, (theta))
Esempio n. 51
0
def glottal_pole(f, pcm, pitch, hnr, visual=False):
    """
    Algorithm to extract glottal poles using complex cepstrum.
    """
    fig = None
    if visual:
        fig = core.Figure(6)
    frame = core.parameter('Frame', 0)

    # Window the framed signal
    frameSize = f.shape[-1]
    w = core.Window(f, core.nuttall(frameSize))
    if visual:
        p = core.Periodogram(w)
        ax1 = fig.subplot()
        fig.specplot(ax1, p, pcm)

    # Excitation - use the windowed frames
    ac = core.Autocorrelation(w)
    ar, gg = AR.ARLevinson(ac, pcm.speech_ar_order())
    ex = AR.ARExcitation(w, ar, gg)

    # Glottal closure.  This should be near the middle as it's
    # windowed.
    # wsize is enough to capture two pitch periods.
    # cwsize is a bigger window, zero-padded version of
    # wsize to allow phase unwrapping.
    mean = np.mean(pitch)
    wsize = pcm.seconds_to_period(1 / mean) * 2
    cwsize = 512
    gci = ex.argmax(axis=-1)
    g = np.zeros((len(f), cwsize))
    gw = core.nuttall(wsize)
    for i in range(len(f)):
        beg = gci[i] - wsize / 2
        end = gci[i] + wsize / 2
        if (beg < 0):
            end += -beg
            beg = 0
        elif (end > frameSize):
            beg -= end - frameSize
            end = frameSize
        # Make sure to window the unwindowed frame
        g[i][cwsize / 2 - wsize / 2:cwsize / 2 +
             wsize / 2] = gw * f[i, beg:end]

    # Sample frame
    if fig:
        sample = w[frame]
        fr = fig.subplot()
        fr.plot(sample / np.max(np.abs(sample)))
        fr.plot(ex[frame] / np.max(np.abs(ex[frame])))
        fr.set_xlim(0, frameSize)

    # Define a new PCM representing the downsampled signal for complex
    # cepstrum
    cepFreq = core.parameter('CepFreq', 1000.0)
    cepPCM = core.PulseCodeModulation(cepFreq * 2)
    clbin = pcm.hertz_to_dftbin(cepFreq, cwsize)
    if not int(clbin) & 1:
        clbin += 1
    clsize = (clbin - 1) * 2
    cl = ComplexCepstrum(g, clsize)

    # Maximum phase spectra
    negs = ComplexSpectrum(cl, 'max')

    # Convert negative spectrum to LP
    order = core.parameter('Order', 2)
    negp = np.abs(negs)**2
    ac = core.Autocorrelation(negp, input='psd')
    a, g = AR.ARLevinson(ac, order=order)
    ars = AR.ARSpectrum(a, g, clsize / 2 + 1)
    roots = AR.ARRoots(a)

    if fig:
        neg = fig.subplot()
        fig.specplot(neg, np.abs(negs), cepPCM)
        spec = fig.subplot()
        spec.plot(10 * np.log10(np.abs(negs[frame])**2 / clsize))
        spec.plot(10 * np.log10(np.abs(ars[frame])))

        zpos = roots[frame, 0].real
        numer = np.array([1.0, -zpos]) * np.sqrt(g[frame])
        denom = np.insert(-a[frame], 0, 1)
        tmp, zspec = sp.freqz(numer, denom, clsize / 2 + 1)
        spec.plot(10 * np.log10(np.abs(zspec)**2))

    # Default pitch range is 40-500 Hz.
    #theta = [root_angle(r) for r in roots]
    theta, magtd = MinPolar(roots)
    loTheta = 1e-8
    hiTheta = cepPCM.hertz_to_radians(500)
    thRange = hiTheta - loTheta
    thVar = (1.0 / hnr * thRange)**2
    for i in range(len(thVar)):
        if theta[i] < loTheta or theta[i] > hiTheta:
            thVar[i] = 1e8
    thMean = cepPCM.hertz_to_radians(mean)
    #                         obs,   obsVar, seqVar,       initMean, initVar
    kTheta, kTVar = core.kalman(theta, thVar, (thMean / 4)**2, thMean,
                                thRange**2)

    # Smooth the magnitude
    mVar = (1.0 / hnr)**2
    #                        obs,   obsVar, seqVar, initMean, initVar
    kMag, kMVar = core.kalman(magtd, mVar, 0.01, 0.5, 1.0)

    if fig:
        ang = fig.subplot()
        ang.plot(pitch)
        iCom = []
        vCom = []
        iPos = []
        vPos = []
        for i in range(len(roots)):
            if root_complex(roots[i]):
                iCom.append(i)
                vCom.append(cepPCM.radians_to_hertz(root_angle(roots[i])))
            elif not root_negative(roots[i]):
                iPos.append(i)
                vPos.append(0)
        ang.plot(iCom, vCom, '1')
        ang.plot(iPos, vPos, '2')

        kt = [cepPCM.radians_to_hertz(x) for x in kTheta]
        kv = [cepPCM.radians_to_hertz(x) for x in kTheta + np.sqrt(kTVar)]
        ang.plot(kt)
        ang.plot(kv)

        ang.set_xlim(0, len(roots))
        ang.set_ylim(0, core.parameter('MaxHz', cepFreq))

        magp = fig.subplot()
        magp.plot(magtd)
        magp.plot(kMag)
        magp.plot(kMag + np.sqrt(kMVar))
        magp.plot(kMag - np.sqrt(kMVar))
        #magp.plot(-np.log(magtd+1e-8))
        magp.set_xlim(0, len(magtd))

    if fig:
        pfig = plt.figure()
        pax = pfig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
        pos = roots.flatten()
        mag = 1 / (np.abs(pos) + 1e-8)
        arg = np.angle(pos)
        pax.plot(arg, mag, '3')
        pax.set_rmax(5)

    if fig:
        plt.show()

    return kTheta, kMag, cepPCM
Esempio n. 52
0
File: dsp.py Progetto: markseel/xio
    width = abs(passband_freq - stopband_freq) / 0.5
    (tap_count, beta) = kaiserord(ripple=stopband_atten, width=width)

    #if len(sys.argv) > 6: tap_count = int( sys.argv[6] )

    taps = firwin( numtaps = tap_count, \
                   cutoff  = ((passband_freq+stopband_freq)/2)/0.5, \
                   window  = ('kaiser', beta) )

    #nn = 25
    #taps = []
    #for ii in range(0,nn): taps.append(1.0/nn)

    import matplotlib.pyplot as plt
    w, h = freqz(taps, worN=8000)
    fig = plt.figure()
    plt.title('Digital filter frequency response')
    ax1 = fig.add_subplot(111)
    plt.plot(w / (2 * np.pi) * 1.001, 20 * np.log10(abs(h)), 'b')
    plt.ylabel('Amplitude [dB]', color='b')
    plt.xlabel('Frequency [Normalized to Fs]')
    #ax2 = ax1.twinx()
    #angles = np.unwrap(np.angle(h)) / (2*np.pi) * 360.0
    #plt.plot(w/(2*np.pi)*1.001, angles, 'g')
    #plt.ylabel('Angle (degrees)', color='g')
    plt.grid()
    plt.axis('tight')
    plt.show()

    L = 0
Esempio n. 53
0
        axis([0, 2*pi*cycles, -1.1, 1.1])
            
        savefig('../images/figure8-11', dpi=150)

    
if sx==6:

    N = 256     # number of points for freqz
    Wc = 0.2    # 3dB point
    Order = 3   # filter order

    # design a Butterworth filter
    [b, a] = signal.butter(Order, Wc)

    # calculate the frequency repsonse
    [w, h] = signal.freqz(b, a, N)

    # plot the results
    figure()

    p = subplot(2, 1, 1)
    nudge_subplot(p, 0.04)
    plot(arange(N)/float(N), 20*log10(abs(h)), lw=2)
    title('Frequency response')
    xlabel('Frequency (normalized)')
    ylabel('dB')
    ylim(ylim()[0], ylim()[1]+5)
    grid()

    p = subplot(2, 1, 2)
    nudge_subplot(p, -0.02)
Esempio n. 54
0
#=== Differentiator: needs to have zero at f = 0 
# -> antisymmetric, even numtaps -> type IV
#Frequency Sampling =============
#b = sig.firwin2(L, [0, 1], [0, 1], antisymmetric = True)
#=== REMEZ / Parks-McClellan / Equiripple
#b = sig.remez(L, [0, 0.5], [1], type = 'differentiator')

#=======================================================1
# Hilbert-Transformer: zero at f = 0  and f = fS/2
# -> antisymmetric, odd numtaps
b = sig.firwin2(L, [0,0.01, 0.5, 0.99, 1], [0,1, 1, 1,0], antisymmetric = True)
#b = sig.remez(L, [0, 0.1, 0.11, 0.4, 0.41, 0.5], [0,1,0], [0.1,10,0.1],type = 'hilbert')

b = b / sum(abs(b))
print (b)
[w, H] = sig.freqz(b, a, 1024) 
# Translate w to physical frequencies:                   
f = w / (2 * pi) * f_S          
############## Plot the Results #########
## Pol/Nullstellenplan
figure(1)
[z, p, k] = dsp.zplane(b, a)
## ----- Impulsantwort -----
figure(2)
[h, td] = dsp.impz(b, a, f_S)  #Impulsantwort / Koeffizienten
[ml, sl, bl] = stem(td, h) 
plt.setp(ml, 'markerfacecolor', 'r', 'markersize', 8)
title(r'Impulsantwort h[n]')
## ----- Linear frequency plot -----
figure(3)
plot(f, abs(H))
Esempio n. 55
0
if __name__ == "__main__":
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.signal import freqz

    # Sample rate and desired cutoff frequencies (in Hz).
    fs = 5000.0
    lowcut = 500.0
    highcut = 1250.0

    # Plot the frequency response for a few different orders.
    plt.figure(1)
    plt.clf()
    for order in [3, 6, 9]:
        b, a = butter_bandpass(lowcut, highcut, fs, order=order)
        w, h = freqz(b, a, worN=2000)
        plt.plot((fs * 0.5 / np.pi) * w, abs(h), label="order = %d" % order)

    plt.plot([0, 0.5 * fs], [np.sqrt(0.5), np.sqrt(0.5)],
             '--',
             label='sqrt(0.5)')
    plt.xlabel('Frequenz (Hz)')
    plt.ylabel('Verstärkung')
    plt.grid(True)
    plt.legend(loc='best')

    # Filter a noisy signal.
    T = 0.05
    nsamples = T * fs
    t = np.linspace(0, T, nsamples, endpoint=False)
    a = 0.02
Esempio n. 56
0
ecg_one_lead = signals[:, 0]
fs = fields.get('fs')
nyq_frec = fs / 2

#%%
#------DISEÑO DE FILTROS y PLANTILLA-------
ripple = -0.05
atenua = -40.

#------- Notch ---------
Q = 100
wo = 30 / (fs / 2)
t = np.arange(0, n / fs, 1 / fs)

b, a = sig.iirnotch(wo, Q)
w_notch, h_notch = sig.freqz(b, a)
w_notch = w_notch / np.pi * nyq_frec

#------Pasa Bajos-------
wpb_p = 40.0  #Hz
wpb_s = 50.0  #Hz
cant_coef_pb = 201

frecs_pb = np.array([0.0, wpb_p, wpb_s, nyq_frec])
gainsDB_pb = np.array([ripple, ripple, atenua, atenua])
gains_pb = 10**(gainsDB_pb / 20)

fir_coeff_pb = sig.firls(cant_coef_pb, frecs_pb, gains_pb, fs=fs)
w_pb, hh_fir_pb = sig.freqz(fir_coeff_pb, 1)
w_pb = w_pb / np.pi * nyq_frec
Esempio n. 57
0
def butter_lowpass_filter(data, cutoff, fs, order=5):
    b, a = butter_lowpass(cutoff, fs, order=order)
    y = lfilter(b, a, data)
    return y


# Filter requirements.
order = 6
fs = 30.0  # sample rate, Hz
cutoff = 3.667  # desired cutoff frequency of the filter, Hz

# Get the filter coefficients so we can check its frequency response.
b, a = butter_lowpass(cutoff, fs, order)

# Plot the frequency response.
w, h = freqz(b, a, worN=8000)
plt.subplot(2, 1, 1)
plt.plot(0.5 * fs * w / np.pi, np.abs(h), 'b')
plt.plot(cutoff, 0.5 * np.sqrt(2), 'ko')
plt.axvline(cutoff, color='k')
plt.xlim(0, 0.5 * fs)
plt.title("Lowpass Filter Frequency Response")
plt.xlabel('Frequency [Hz]')
plt.grid()

# Demonstrate the use of the filter.
# First make some data to be filtered.
T = 5.0  # seconds
n = int(T * fs)  # total number of samples
t = np.linspace(0, T, n, endpoint=False)
# "Noisy" data.  We want to recover the 1.2 Hz signal from this.
    def change_freq_res(self, init=False, redraw=False):
        if self.cnp_gain is not None:
            self.cnp_gain.remove()
            self.cnp_gain = None
        if self.cnp_ph is not None:
            self.cnp_ph.remove()
            self.cnp_ph = None

        if init == True:
            # Generate the plots from scratch and name the axes
            with self.out:
                if redraw == True:
                    # Remove the gain and phase plots
                    for i in range(1, len(self.axs)):
                        self.axs[1].remove()
                        self.axs.pop(1)
                self.axs[0].lines[0].set_visible(self.discrete_mode)
                # Add gain (and phase) plot
                if self.show_phase:
                    self.axs.append(self.fig.add_subplot(self.gs[:1, 1]))
                    self.axs.append(self.fig.add_subplot(self.gs[1:, 1]))
                else:
                    self.axs.append(self.fig.add_subplot(self.gs[:, 1]))

        # Get zeros and poles from the zero pole plot
        z_re, z_im = self.axs[0].lines[1].get_data()
        z = z_re + 1j * z_im
        p_re, p_im = self.axs[0].lines[2].get_data()
        p = p_re + 1j * p_im
        # Calculate the gain (C)
        gaind = np.prod(1. + 0.j - z) / np.prod(1. + 0.j - p)
        gainc = np.prod(-z) / np.prod(-p)

        try:
            if self.discrete_mode:
                # Generate the transfer function
                H = signal.ZerosPolesGain(z, p, gaind, dt=0.1).to_tf()
                # Generate dicrete frequency response
                w, h = signal.freqz(H.num, H.den, whole=True)
                # Shift the angles to [-pi, pi]
                w = w - np.pi
                # Shift the gain and phase accordingly
                h_ph = np.fft.fftshift(np.angle(h, deg=True))
                h = np.abs(np.fft.fftshift(h))
                if self.show_dB:
                    h = 20 * np.log10(h)
            else:
                # Generate the transfer function
                H = signal.ZerosPolesGain(z, p, gainc)
                # Generate the continuous frequency response
                w1, h11 = signal.freqresp(H, w=None, n=1000)
                h_ph1 = np.angle(h11, deg=True)
                h1 = np.abs(h11)
                w2 = np.flip(-w1)
                w2, h21 = signal.freqresp(H, w2, n=1000)
                h_ph2 = np.angle(h21, deg=True)
                h2 = np.abs(h21)
                w = np.concatenate((w2, w1))
                h = np.concatenate((h2, h1))

                if self.show_dB:
                    h = 20 * np.log10(h)
                h_ph = np.concatenate((h_ph2, h_ph1))
        except ValueError:
            w = 1
            h = 1
            h_ph = 1
            self.calc_not_possible()

        if np.any(np.isinf(h)) or np.any(np.isnan(h)) or np.any(
                np.isinf(h_ph)) or np.any(np.isnan(h_ph)):
            w = 1
            h = 1
            h_ph = 1
            self.calc_not_possible()

        #This is to check if any pole is on/outside of the unit circle
        if np.any(np.abs(p) >= 1):
            self.tx_deb.set_text("Filter is non causal")
        else:
            self.tx_deb.set_text("")

        if init == True:
            with self.out:
                # Gain
                self.axs[1].set_title('Frequency response')
                if self.discrete_mode:
                    self.axs[1].plot(w, h)
                else:
                    self.axs[1].plot(w, h)
                self.axs[1].set_xlabel('$\omega$ [rad]')
                self.axs[1].set_ylabel(
                    '|H(z)| [dB]' if self.show_dB else '|H(z)|')
                # Phase
                if self.show_phase:
                    if self.discrete_mode:
                        self.axs[2].plot(w, h_ph)
                    else:
                        self.axs[2].plot(w, h_ph)
                    self.axs[2].set_xlabel('$\omega$ [rad]')
                    self.axs[2].set_ylabel('$\phi$(H(z)) [deg]')
                if self.discrete_mode:
                    positions = [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi]
                    labels = [
                        '-$\pi$', '-$\dfrac{\pi}{2}$', '0', '$\dfrac{\pi}{2}$',
                        '$\pi$'
                    ]
                    self.axs[1].set_xticks(positions)
                    self.axs[1].set_xticklabels(labels)
                    # Move y axis to the right
                    self.axs[1].yaxis.set_label_position("right")
                    self.axs[1].yaxis.tick_right()
                    if self.show_phase:
                        self.axs[1].xaxis.set_visible(False)
                        positions = [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi]
                        labels = [
                            '-$\pi$', '-$\dfrac{\pi}{2}$', '0',
                            '$\dfrac{\pi}{2}$', '$\pi$'
                        ]
                        self.axs[2].set_xticks(positions)
                        self.axs[2].set_xticklabels(labels)
                        # Move y axis to the right
                        self.axs[2].yaxis.set_label_position("right")
                        self.axs[2].yaxis.tick_right()
                else:
                    w_max = np.round(np.max(w) / np.pi) * np.pi
                    w_min = np.round(np.min(w) / np.pi) * np.pi
                    t = np.linspace(w_min, w_max,
                                    int((w_max - w_min) // np.pi) + 1)
                    t_labels = [
                        f'{int(np.round(tick/np.pi))}$\pi$'
                        if abs(int(np.round(tick / np.pi))) > 1 else
                        '$\pi$' if tick > 0 else
                        '$-\pi$' if int(np.round(tick / np.pi)) != 0 else '0'
                        for tick in t
                    ]
                    self.axs[1].set_xticks(t)
                    self.axs[1].set_xticklabels(t_labels)
                    if self.show_phase:
                        self.axs[1].xaxis.set_visible(False)
                        self.axs[2].set_xticks(t)
                        self.axs[2].set_xticklabels(t_labels)
        else:
            # Only change the values of the plots
            # Gain
            self.axs[1].lines[0].set_data(w, h)
            h_min = np.min(h)
            h_max = np.max(h)
            h_range = abs(h_max - h_min)
            self.axs[1].set_ylim(
                [h_min - 0.05 * h_range, h_max +
                 0.05 * h_range] if h_min != h_max else [h_min - 1, h_max + 1])
            # Phase
            if self.show_phase:
                h_ph_min = np.min(h_ph)
                h_ph_max = np.max(h_ph)
                h_ph_range = abs(h_ph_max - h_ph_min)
                self.axs[2].lines[0].set_data(w, h_ph)
                self.axs[2].set_ylim([
                    h_ph_min - 0.05 * h_ph_range, h_ph_max + 0.05 * h_ph_range
                ] if h_ph_min != h_ph_max else [h_ph_min - 1, h_ph_max + 1])
#                 self.axs[2].set_xlim([w_min-0.05*w_range, w_max+0.05*w_range] if w_min != w_max and check else [w_min, w_max+1])

            if self.active_line is not None:
                l_x, l_y = self.axs[0].lines[self.active_line + 1].get_data()
                if len(l_y) > self.active_point and len(
                        l_x) > self.active_point:
                    self.actual_change = False
                    self.lastzeroRe = round(l_x[self.active_point], 3)
                    self.input_Zero_RE.value = self.lastzeroRe
                    self.lastzeroIm = round(l_y[self.active_point], 3)
                    self.input_Zero_IM.value = self.lastzeroIm
                    self.actual_change = True
Esempio n. 59
0
def calculate_Pst(data):    
    show_time_signals = 0           #Aktivierung des Plots der Zeitsignale im Flickermeter
    show_filter_responses = 0       #Aktivierung des Plots der Amplitudengänge der Filter.
                                    #(zu Prüfzecken der internen Filter)
    
    fs = 4000    
       
    ## Block 1: Modulierung des Spannungssignals
    
    u = data - np.mean(data)                      # entfernt DC-Anteil
    u_rms = np.sqrt(np.mean(np.power(u,2))) # Normierung des Eingangssignals
    u = u / (u_rms * np.sqrt(2))
    
    ## Block 2: Quadratischer Demulator
    
    u_0 = u**2
    
    ## Block 3: Hochpass-, Tiefpass- und Gewichtungsfilter
    
    # Konfiguration der Filter
    HIGHPASS_ORDER  = 1 #Ordnungszahl der Hochpassfilters
    HIGHPASS_CUTOFF = 0.05 #Hz Grenzfrequenz
    
    LOWPASS_ORDER = 6 #Ordnungszahl des Tiefpassfilters
    if (f_line == 50):
      LOWPASS_CUTOFF = 35.0 #Hz Grenzfrequenz
    
    if (f_line == 60):
      LOWPASS_CUTOFF = 42.0 #Hz Grenzfrequenz
    
    # subtract DC component to limit filter transients at start of simulation
    u_0_ac = u_0 - np.mean(u_0)
    
    b_hp, a_hp = signal.butter(HIGHPASS_ORDER, (HIGHPASS_CUTOFF/(fs/2)), 'highpass')
    u_hp = signal.lfilter(b_hp, a_hp, u_0_ac)
    
    # smooth start of signal to avoid filter transient at start of simulation
    smooth_limit = min(round(fs / 10), len(u_hp))
    u_hp[ : smooth_limit] = u_hp[ : smooth_limit] * np.linspace(0, 1, smooth_limit)
    
    b_bw, a_bw = signal.butter(LOWPASS_ORDER, (LOWPASS_CUTOFF/(fs/2)), 'lowpass')
    u_bw = signal.lfilter(b_bw, a_bw, u_hp)
    
    # Gewichtungsfilter (Werte sind aus der Norm)
    
    if (f_line == 50):
      K = 1.74802
      LAMBDA = 2 * np.pi * 4.05981
      OMEGA1 = 2 * np.pi * 9.15494
      OMEGA2 = 2 * np.pi * 2.27979
      OMEGA3 = 2 * np.pi * 1.22535
      OMEGA4 = 2 * np.pi * 21.9
    
    if (f_line == 60):
      K = 1.6357
      LAMBDA = 2 * np.pi * 4.167375
      OMEGA1 = 2 * np.pi * 9.077169
      OMEGA2 = 2 * np.pi * 2.939902
      OMEGA3 = 2 * np.pi * 1.394468
      OMEGA4 = 2 * np.pi * 17.31512
    
    num1 = [K * OMEGA1, 0]
    denum1 = [1, 2 * LAMBDA, OMEGA1**2]
    num2 = [1 / OMEGA2, 1]
    denum2 = [1 / (OMEGA3 * OMEGA4), 1 / OMEGA3 + 1 / OMEGA4, 1]
    
    b_w, a_w = signal.bilinear(np.convolve(num1, num2), np.convolve(denum1, denum2), fs)
    u_w = signal.lfilter(b_w, a_w, u_bw)
    
    ## Block 4: Quadrierung und Varianzschätzer
    
    LOWPASS_2_ORDER  = 1
    LOWPASS_2_CUTOFF = 1 / (2 * np.pi * 300e-3)  # Zeitkonstante 300 msek.
    SCALING_FACTOR   = 1238400  # Skalierung des Signals auf eine Wahrnehmbarkeitsskala
    
    u_q = u_w**2
    
    b_lp, a_lp = signal.butter(LOWPASS_2_ORDER, (LOWPASS_2_CUTOFF/(fs/2)), 'low')
    s = SCALING_FACTOR * signal.lfilter(b_lp, a_lp, u_q)
    
    ## Block 5: Statistische Berechnung
    
    p_50s = np.mean([np.percentile(s, 100-30, interpolation="linear"),
                     np.percentile(s, 100-50, interpolation="linear"),
                     np.percentile(s, 100-80, interpolation="linear")])
    p_10s = np.mean([np.percentile(s, 100-6, interpolation="linear"),
                     np.percentile(s, 100-8, interpolation="linear"), 
                     np.percentile(s, 100-10, interpolation="linear"),
                     np.percentile(s, 100-13, interpolation="linear"),
                     np.percentile(s, 100-17, interpolation="linear")])
    p_3s = np.mean([np.percentile(s, 100-2.2, interpolation="linear"),
                    np.percentile(s, 100-3, interpolation="linear"),
                    np.percentile(s, 100-4, interpolation="linear")])
    p_1s = np.mean([np.percentile(s, 100-0.7, interpolation="linear"),
                    np.percentile(s, 100-1, interpolation="linear"),
                    np.percentile(s, 100-1.5, interpolation="linear")])
    p_0_1s = np.percentile(s, 100-0.1, interpolation="linear")
    
    P_st = np.sqrt(0.0314*p_0_1s+0.0525*p_1s+0.0657*p_3s+0.28*p_10s+0.08*p_50s)
    
    if (show_time_signals):
        t = np.linspace(0, len(u) / fs, num=len(u))
        plt.figure()
        plt.clf()
        #plt.subplot(2, 2, 1)
        plt.hold(True)
        plt.plot(t, u, 'b', label="u")
        plt.plot(t, u_0, 'm', label="u_0")
        plt.plot(t, u_hp, 'r', label="u_hp")
        plt.xlim(0, len(u)/fs)
        plt.hold(False)
        plt.legend(loc=1)
        plt.grid(True)
        #plt.subplot(2, 2, 2)
        plt.figure()
        plt.clf()    
        plt.hold(True)
        plt.plot(t, u_bw, 'b', label="u_bw")
        plt.plot(t, u_w, 'm', label="u_w")
        plt.xlim(0, len(u)/fs)
        plt.legend(loc=1)
        plt.hold(False)
        plt.grid(True)
        #plt.subplot(2, 2, 3)
        plt.figure()
        plt.clf()    
        plt.plot(t, u_q, 'b', label="u_q")
        plt.xlim(0, len(u)/fs)
        plt.legend(loc=1)
        plt.grid(True)
        #plt.subplot(2, 2, 4)
        plt.figure()
        plt.clf()    
        plt.plot(t, s, 'b', label="s")
        plt.xlim(0, len(u)/fs)
        plt.legend(loc=1)
        plt.grid(True)
    
    if (show_filter_responses):
        f, h_hp = signal.freqz(b_hp, a_hp, 4096)
        f, h_bw = signal.freqz(b_bw, a_bw, 4096)
        f, h_w = signal.freqz(b_w, a_w, 4096)
        f, h_lp = signal.freqz(b_lp, a_lp, 4096)
        f = f/np.pi*fs/2    
        
        plt.figure()
        plt.clf()
        plt.hold(True)
        plt.plot(f, abs(h_hp), 'b', label="Hochpass 1. Ordnung")
        plt.plot(f, abs(h_bw), 'r', label="Butterworth Tiefpass 6.Ordnung")
        plt.plot(f, abs(h_w), 'g', label="Gewichtungsfilter")
        plt.plot(f, abs(h_lp), 'm', label="Varianzschätzer")
        plt.legend(bbox_to_anchor=(1., 1.), loc=2)    
        plt.hold(False)
        plt.grid(True)
        plt.axis([0, 35, 0, 1])
        
    return P_st 
Esempio n. 60
0
__author__ = 'caocongcong'
from primary_signal.const_value import constValue
import scipy.signal as signal
import pylab as plt
import numpy as np
if __name__ == "__main__":
    b = np.array(constValue.lp_fs400_Overband20)
    w, h = signal.freqz(b, 1)
    plt.plot(w / 2 / np.pi, 20 * np.log10(np.abs(h)))
    plt.show()
    # 进行滤波实验
    fs = 1.2e9
    f1 = 0.2e9
    f2 = 0.5e9
    time = 0.000001
    t = np.linspace(0, time, int(time * fs))
    s = np.sin(2 * np.pi * f1 * t) + np.sin(2 * np.pi * f2 * t)
    plt.plot(t, s)
    plt.xlabel('time/s')
    plt.title('before fliter')
    plt.show()
    sf = signal.filtfilt(b, 1, s)
    plt.plot(t, sf)
    plt.xlabel('time/s')
    plt.title('after fliter')
    plt.show()