def plotFFT(filename): """Plots single sided FFT""" fs_rate, signal = wavfile.read(filename) len_audio = len(signal.shape) print(signal.shape) print(signal[:][0]) if len_audio == 2: signal = signal.sum(axis=1) / 2 N = signal.shape[0] FFT = abs(scipy.fft(signal)) FFT_side = FFT[range(N // 2)] freqs = scipy.fftpack.fftfreq(signal.size, 1.0 / fs_rate) fft_freqs = np.array(freqs) freqs_side = freqs[range(N // 2)] # one side frequency range plt.plot(freqs_side, abs(FFT_side), "b") # plotting the complete fft spectrum plt.xlabel('Frequency (Hz)') plt.ylabel('Single-sided Amplitude') plt.show()
def __init__(self, fs, signal): self.name = '' self.save = True self.signal = signal self.fs = fs # Sampling frequency self.shape = signal.shape self.Ns = 0 # Total num of samples # Dual-channel signals will be averaged to single channel. if (self.shape[0] == 2): self.signal = signal.sum(axis=1) / 2 self.Ns = self.shape[1] else: self.Ns = self.shape[0] self.secs = self.Ns / fs # Length of track self.Ts = 1.0/fs # Sample interval self.t = np.arange(0, self.secs, self.Ts) self.ft = self.Ts * np.fft.fft(self.signal) self.ftfreq = np.fft.fftfreq(self.Ns, d=self.Ts) self.ft_magn = np.abs(self.ft)
def printPlotWav(filename): # Note: this code is borrowed # Note: FFTs are seem to be slow in python fs_rate, signal = wavfile.read(filename) print("Frequency sampling", fs_rate) len_audio = len(signal.shape) print("Channels", len_audio) if len_audio == 2: signal = signal.sum(axis=1) / 2 N = signal.shape[0] print("Number of Samplings N", N) secs = N / float(fs_rate) print("secs", secs) Ts = 1.0 / fs_rate # sampling interval in time print("Timestep between samples Ts", Ts) t = scipy.arange(0, secs, Ts) # time vector as scipy arange field / numpy.ndarray FFT = abs(scipy.fft(signal)) FFT_side = FFT[range(N // 2)] # one side FFT range freqs = scipy.fftpack.fftfreq(signal.size, t[1] - t[0]) fft_freqs = np.array(freqs) freqs_side = freqs[range(N // 2)] # one side frequency range fft_freqs_side = np.array(freqs_side) plt.subplot(311) p1 = plt.plot(t, signal, "g") # plotting the signal plt.xlabel('Time') plt.ylabel('Amplitude') plt.subplot(312) p2 = plt.plot(freqs, FFT, "r") # plotting the complete fft spectrum plt.xlabel('Frequency (Hz)') plt.ylabel('Count dbl-sided') plt.subplot(313) p3 = plt.plot(freqs_side, abs(FFT_side), "b") # plotting the positive fft spectrum plt.xlabel('Frequency (Hz)') plt.ylabel('Count single-sided') plt.show()
def dc_offset(signal): """Correct DC offset""" log.debug('DC offset before: %.1f', np.sum(signal) / len(signal)) signal = signal - signal.sum(dtype=np.int64) / len(signal) log.debug('DC offset after: %.1f', np.sum(signal) / len(signal)) return signal
def gen_sec(intensity_array, eventid, sub_factor=32, plot_sec=False): fig = plt.figure(figsize = (35, 20)) arr = subband(intensity_array, sub_factor) arr = bandpasscorr_sec(arr) summ, summask, masked_arr, component_class = nonoise(arr, 0) #Make a secondary spectrum hamm = np.hamming(len(arr[0])) arr_tap = arr * hamm ss = fftshift(fft2(arr_tap)) ss = ss*np.conjugate(ss) ss_full = ss.real ss_crop = ss_full[256:306, 60:195] #ss = ss.real ax1 = fig.add_subplot(231) plt.imshow(arr, aspect = 'auto') plt.gca().invert_yaxis() plt.title(str(eventid) + " Dynamic Spectrum") plt.xlabel("Time (ms)") plt.ylabel("Frequency (MHz)") y = np.arange(0, len(arr.sum(1)), 64) x = np.arange(0, len(arr.sum(0)), 32) plt.yticks(y, np.arange(400, 800, 50)) plt.xticks(x, np.arange(0, 256, 32)) ax2 = fig.add_subplot(232) plt.plot(arr.sum(0)) plt.title(str(eventid) + " Timeseries") plt.xlabel("Time (ms)") x = np.arange(0, len(arr.sum(0)), 32) plt.xticks(x, np.arange(0, 256, 32)) ax3 = fig.add_subplot(233) plt.plot(arr.sum(1)) plt.title(str(eventid) + " Spectrum") plt.xlabel("Frequency (MHz)") x = np.arange(0, len(arr.sum(1)), 64) plt.xticks(x, np.arange(400, 800, 50)) ax4 = fig.add_subplot(234) #plt.plot(ss.sum(0)) plt.imshow(ss_full, norm = LogNorm(), aspect = 'auto') plt.gca().invert_yaxis() plt.title(str(eventid)+ " " + "Secondary Spectrum") plt.ylabel("Time Delay " + r"($\mu$s)") plt.xlabel("Fringe Frequency " + "(Hz)") y = np.arange(0, len(ss.sum(1)), 64) x = np.arange(0, len(ss.sum(0)), 32) plt.yticks(y, np.arange(-2.5, 2.5, 0.625)) plt.xticks(x, np.arange(-4, 4, 1)) ax5 = fig.add_subplot(235) plt.imshow(ss_crop, norm = LogNorm(), aspect = 'auto') plt.gca().invert_yaxis() plt.title(str(eventid)+ " " + "Secondary Spectrum Cropped") plt.ylabel("Time Delay " + r"($\mu$s)") plt.xlabel("Fringe Frequency " + "(Hz)") y = np.arange(0, len(ss_crop.sum(1)), 6.2) x = np.arange(0, len(ss_crop.sum(0)), 11) plt.xticks(x, np.arange(-0.8, 0.8, 0.032)) plt.yticks(y, np.arange(0, 0.128, 0.016)) ax6 = fig.add_subplot(236) plt.imshow(ss_crop, aspect = 'auto') plt.gca().invert_yaxis() plt.title(str(eventid)+ " " + "Secondary Spectrum Cropped (No LogNorm)") plt.ylabel("Time Delay " + r"($\mu$s)") plt.xlabel("Fringe Frequency " + "(Hz)") y = np.arange(0, len(ss_crop.sum(1)), 6.2) x = np.arange(0, len(ss_crop.sum(0)), 11) plt.xticks(x, np.arange(-0.8, 0.8, 0.032)) plt.yticks(y, np.arange(0, 0.128, 0.016)) plt.tight_layout() fig.savefig(str(eventid) + " Secondary Spectrum") return
def anchorUpdateSK(signal, kernel, signal_deconv=np.float32(0), iterations=10, measure=True, clip=False, verbose=True): # for code agnosticity between Numpy/Cupy xp = pyb.get_array_module(signal) xps = cupyx.scipy.get_array_module(signal) # for performance evaluation start_time = time.time() if iterations < 100: breakcheck = iterations else: breakcheck = 100 # normalization signal /= signal.sum() epsilon = 1e-7 # starting guess with a flat image if signal_deconv.any() == 0: # xp.random.seed(0) signal_deconv = xp.full(signal.shape, 0.5) + 0.01 * xp.random.rand(*signal.shape) # signal_deconv = signal.copy() else: signal_deconv = signal_deconv #+ 0.1*prior.max()*xp.random.rand(*signal.shape) # normalization signal_deconv = signal_deconv / signal_deconv.sum() # to measure the distance between the guess convolved and the signal error = None if measure == True: error = xp.zeros(iterations) for i in range(iterations): # I use this property to make computation faster kernel_update = pyconv.correlate(signal_deconv, kernel, mode='same', method='fft') kernel_mirror = axisflip(kernel_update) relative_blur = pyconv.correlate(signal_deconv, kernel_update, mode='same', method='fft') # compute the measured distance metric if given if measure == True: # error[i] = xp.linalg.norm(signal/signal.sum()-relative_blur/relative_blur.sum()) error[i] = snrIntensity_db( signal / signal.sum(), xp.abs(signal / signal.sum() - relative_blur / relative_blur.sum())) if (error[i] < error[i - breakcheck]) and i > breakcheck: break if verbose == True and (i % 100) == 0 and measure == False: print('Iteration ' + str(i)) elif verbose == True and (i % 100) == 0 and measure == True: print('Iteration ' + str(i) + ' - noise level: ' + str(error[i])) relative_blur = signal / relative_blur # # avoid errors due to division by zero or inf # relative_blur[xp.isinf(relative_blur)] = epsilon # relative_blur = xp.nan_to_num(relative_blur) # multiplicative update, for the full model # signal_deconv *= 0.5 * (pyconv.convolve(relative_blur, kernel_mirror, mode='same') + pyconv.correlate((relative_blur), kernel_mirror, mode='same')) # signal_deconv *= (my_convolution(relative_blur, kernel_mirror) + my_correlation(relative_blur,kernel_mirror)) # multiplicative update, for the Anchor Update approximation signal_deconv *= pyconv.correlate(relative_blur, kernel_mirror, mode='same', method='fft') # multiplicative update, remaining term. This gives wrong reconstructions # signal_deconv *= pyconv.correlate((relative_blur), kernel_mirror, mode='same') if clip: signal_deconv[signal_deconv > +1] = +1 signal_deconv[signal_deconv < -1] = -1 print("\n\n Algorithm finished. Performance:") print("--- %s seconds ----" % (time.time() - start_time)) print("--- %s sec/step ---" % ((time.time() - start_time) / iterations)) return signal_deconv, error #,kernel_update
def anchorUpdateZ(signal, kernel, signal_deconv=np.float32(0), kerneltype='B', iterations=10, measure=True, clip=False, verbose=True): """ Reconstruction of signal_deconv from its auto-correlation signal, via a RichardsonLucy-like multiplicative procedure. At the same time, the kernel psf is deconvolved from the reconstruction so that the iteration converges corr(conv(signal_deconv, kernel), conv(signal_deconv, kernel),) -> signal. Parameters ---------- signal : ndarray, either numpy or cupy. The auto-correlation to be inverted kernel : ndarray, either numpy or cupy. Point spread function that blurred the signal. It must be signal.shape == kernel.shape. signal_deconv : ndarray, either numpy or cupy or 0. It must be signal.shape == signal_deconv.shape. The de-autocorrelated signal deconvolved with kernel at ith iteration. The default is np.float32(0). kerneltype : string. Type of kernel update used for the computation choosing from blurring directly the autocorrelation 'A', blurring the signal that is then autocorrelated 'B' and the window applied in fourier domain 'C'. The default is 'B'. iterations : int, optional Number of iteration to be done. The default is 10. measure : boolean, optional If true computes the euclidean distance between signal and the auto-correlation of signal_deconv. The default is True. clip : boolean, optional Clip the results within the range -1 to 1. Useless for the moment. The default is False. verbose : boolean, optional Print current step value. The default is True. Returns ------- signal_deconv : ndarray, either numpy or cupy. The de-autocorrelated signal deconvolved with kernel at ith iteration.. error : vector. Euclidean distance between signal and the auto-correlation of signal_deconv. Last implementation returns the SNR instead of euclidean distance. """ # for code agnosticity between Numpy/Cupy xp = pyb.get_array_module(signal) # for performance evaluation start_time = time.time() if iterations < 100: breakcheck = iterations else: breakcheck = 100 # normalization signal /= signal.sum() kernel /= kernel.sum() epsilon = 1e-7 # starting guess with a flat image if signal_deconv.any() == 0: # xp.random.seed(0) signal_deconv = xp.full(signal.shape, 0.5) + 0.01 * xp.random.rand(*signal.shape) # signal_deconv = signal.copy() else: signal_deconv = signal_deconv #+ 0.1*prior.max()*xp.random.rand(*signal.shape) # normalization signal_deconv = signal_deconv / signal_deconv.sum() # to measure the distance between the guess convolved and the signal error = None if measure == True: error = xp.zeros(iterations) for i in range(iterations): # I use this property to make computation faster K = my_convolution(signal_deconv, my_correlation(kernel, kernel)) relative_blur = my_correlation(K, signal_deconv) # compute the measured distance metric if given if measure == True: #error[i] = xp.linalg.norm(signal/signal.sum()-relative_blur/relative_blur.sum()) error[i] = snrIntensity_db( signal / signal.sum(), xp.abs(signal / signal.sum() - relative_blur / relative_blur.sum())) if (error[i] < error[i - breakcheck]) and i > breakcheck: break if verbose == True and (i % 100) == 0 and measure == False: print('Iteration ' + str(i)) elif verbose == True and (i % 100) == 0 and measure == True: print('Iteration ' + str(i) + ' - noise level: ' + str(error[i])) relative_blur = signal / relative_blur # avoid errors due to division by zero or inf relative_blur[xp.isinf(relative_blur)] = epsilon relative_blur = xp.nan_to_num(relative_blur) # multiplicative update, for the full model # signal_deconv *= 0.5 * (my_convolution(relative_blur, kernel_mirror) + my_correlation(axisflip(relative_blur), kernel_mirror)) # signal_deconv *= (my_convolution(kernel_mirror,relative_blur) + my_correlation(relative_blur, kernel_mirror)) # multiplicative update, for the Anchor Update approximation signal_deconv *= my_correlation((relative_blur), (K)) # signal_deconv *= (my_correlation(relative_blur, K) + my_convolution(relative_blur, K)) # multiplicative update, remaining term. This gives wrong reconstructions # signal_deconv *= my_correlation(axisflip(relative_blur), kernel_mirror) if clip: signal_deconv[signal_deconv > +1] = +1 signal_deconv[signal_deconv < -1] = -1 print("\n\n Algorithm finished. Performance:") print("--- %s seconds ----" % (time.time() - start_time)) print("--- %s sec/step ---" % ((time.time() - start_time) / iterations)) return signal_deconv, error #,kernel_update
def maxAPosteriori(signal, kernel, iterations=10, measure=True, clip=True, verbose=False): """ Deconvolution using the Maximum a Posteriori algorithm. Implementation identical to Richardson Lucy algorithm but with a different moltiplicative rule for the update. Parameters ---------- signal : ndarray, either numpy or cupy. The signal to be deblurred. kernel : ndarray, either numpy or cupy. Point spread function that blurred the signal. It must be signal.shape == kernel.shape. prior : ndarray, either numpy or cupy, optional the prior information to start the reconstruction. The default is np.float32(0). iterations : integer, optional Number of iteration to be done. The default is 10. measure : boolean, optional If true computes the euclidean distance between signal and the auto-correlation of signal_deconv. The default is True. clip : boolean, optional Clip the results within the range -1 to 1. The default is False. verbose : boolean, optional Print current step value. The default is True. Returns ------- signal_deconv : ndarray, either numpy or cupy. The deconvolved signal with respect the given kernel at ith iteration. error : one dimensional ndarray. Euclidean distance between signal and the auto-correlation of signal_deconv. """ xp = pyb.get_array_module(signal) start_time = time.time() epsilon = 1e-7 # starting guess with a flat image if prior.any() == 0: signal_deconv = xp.full(signal.shape, 0.5) + 0.01 * xp.random.rand(*signal.shape) else: signal_deconv = prior #+ 0.1*prior.max()*xp.random.rand(*signal.shape) kernel_mirror = axisflip(kernel) error = None if measure == True: error = xp.zeros(iterations) for i in range(iterations): if verbose == True and (i % 100) == 0: print('Iteration ' + str(i)) relative_blur = my_convolution(signal_deconv, kernel) if measure == True: error[i] = xp.linalg.norm(signal / signal.sum() - relative_blur / relative_blur.sum()) relative_blur = signal / relative_blur # avoid errors due to division by zero or inf relative_blur[xp.isinf(relative_blur)] = epsilon relative_blur = xp.nan_to_num(relative_blur) # multiplicative update given by the MAP signal_deconv *= xp.exp( my_convolution(relative_blur - 1, kernel_mirror)) if clip: signal_deconv[signal_deconv > +1] = +1 signal_deconv[signal_deconv < -1] = -1 print("\n\n Algorithm finished. Performance:") print("--- %s seconds ----" % (time.time() - start_time)) print("--- %s sec/step ---" % ((time.time() - start_time) / iterations)) return signal_deconv, error
import scipy.fftpack import numpy as np from matplotlib import pyplot as plt import os import glob os.chdir('train/') files = glob.glob('*.wav') show = False # True err = 0 for filename in files: fs_rate, signal = wavfile.read( filename) # fs_rate cxzestotliwosc probkowania l_audio = len(signal.shape) # liczba kanałow if l_audio == 2: signal = signal.sum(axis=1) / 2 # usrednianie jezeli stereo signal = signal[int(len(signal) / 20):-int(len(signal) / 20)] N = signal.shape[0] # liczba probek secs = N / float(fs_rate) # długosc nagrania Ts = 1.0 / fs_rate # okres pomiedzy probkami t = scipy.arange(0, secs, Ts) # czas odpowiadający próbkom signal = signal * np.kaiser(N, 12) # zastosowanie kaisera FFT = abs(scipy.fft(signal)) # Transformata FFT freqs = scipy.fftpack.fftfreq(signal.size, Ts) # wartosci czestotliwosci fft_freqs = np.array(freqs) min = 0