Esempio n. 1
0
def pc_weight_epsilon(pc_xyz, epsilon_scale):
    num_data , num_dim = pc_xyz.shape # N by d
    print('The number of the input signal is %d\n' % num_data)
    print('The dimension of the input signal is %d\n' % num_dim)
    pc_xyz_col = np.sum(pc_xyz ** 2, axis=1)
    pc_matrix_dist = np.tile(pc_xyz_col, (num_data, 1)) + np.tile(pc_xyz_col, (num_data, 1)).T - 2 * (pc_xyz @ pc_xyz.T) # square of dist
    epsilon_default = np.sqrt(np.mean(pc_matrix_dist)) # the default epsilon is the root of mean value of distance matrix
    epsilon = epsilon_default * epsilon_scale
    print('The e NN graph you would like to build is e = %.10f\n' % epsilon)

    pc_matrix_preserve = pc_matrix_dist
    pc_matrix_dist[pc_matrix_dist > epsilon] = 0


    pc_dist_kernel = np.exp(-pc_matrix_dist/epsilon)
    pc_dist_kernel[pc_dist_kernel == 1] = 0 # convert ii entry to 0
    pc_dist_kernel -= np.diag(np.diag(pc_dist_kernel))

    eps = 2.2204e-16
    pc_weight_epsilon_unit = csr_matrix(pc_dist_kernel/(np.sum(pc_dist_kernel, axis=1)[:, None] + eps)) # normalized
    pc_weight_epsilon_sym = csr_matrix(pc_dist_kernel)

    num_neigh = csr_matrix.count_nonzero(pc_weight_epsilon_sym[0, :])

    print('The number of neighbors of first point is %d\n' % num_neigh)
    return pc_weight_epsilon_sym , pc_weight_epsilon_unit , epsilon
Esempio n. 2
0
def format_metis(S, metis_fn):
    rows, cols = S.shape
    if isinstance(S, dok_matrix):
        edges = dok_matrix.count_nonzero(S) // 2
    elif isinstance(S, csr_matrix):
        edges = csr_matrix.count_nonzero(S) // 2

    with open(metis_fn, "w") as f:
        # header format: #nodes, #edges, 001 (indicates weighted edges)
        f.write("{} {} 001\n".format(rows, edges))
        for i in range(rows):
            cur_node = []
            for j in range(cols):
                if S[i, j] > 0:
                    cur_node.append("{} {}".format(j + 1, int(S[i, j])))
            f.write("{}\n".format(" ".join(cur_node)))
Esempio n. 3
0
test = plylst_test
#print(test)
row = np.repeat(range(n_train), plylst_train['num_songs'])
col = [song for songs in plylst_train['songs_id'] for song in songs]
dat = np.repeat(1, plylst_train['num_songs'].sum())
train_songs_A = spr.csr_matrix((dat, (row, col)), shape=(n_train, n_songs))

row = np.repeat(range(n_train), plylst_train['num_tags'])
col = [tag for tags in plylst_train['tags_id'] for tag in tags]
dat = np.repeat(1, plylst_train['num_tags'].sum())
train_tags_A = spr.csr_matrix((dat, (row, col)), shape=(n_train, n_tags))

train_songs_A_csr = train_songs_A.tocsr()
train_tags_A_csr = train_tags_A.tocsr()
WT = csr_matrix.count_nonzero(train_songs_A) / (train_songs_A.shape[0] *
                                                train_songs_A.shape[1])
Wt = csr_matrix.count_nonzero(train_tags_A) / (train_tags_A.shape[0] *
                                               train_tags_A.shape[1])
print(Wt)
j = 1
print(j)

x_train_song = train_songs_A_csr
batch_size = 512
epochs = 1
original_dim = n_songs  # number of songs

########AutoEncoder _ songs

    CC = np.linalg.inv(np.matmul(np.transpose(Coding_matrix),Coding_matrix))
    res_p = np.matmul(CC,np.matmul(np.transpose(Coding_matrix),output_worker))
    
    atw = list(range(k));
    aow = [i for i in atw if i not in amw];
    res_p = np.reshape(res_p, (q*c*np.size(aow), 1));

    for j in range(0,np.size(apw)):
        res[:,aow[j]] = res_p[j*c*q:(j+1)*c*q].ravel();

else:                                   ## Peeling Decoder for all 1's
    AA = csr_matrix(Coding_matrix);
    BB = output_worker;
    res2 = np.transpose(res);
    res2 = (np.reshape(res2, (Delta,c)));
    while csr_matrix.count_nonzero(AA)>0:
        ind1 = AA.sum(axis=1);                      ## Finding the rows with single unknown
        ind3 = np.where(ind1==1)
        ind2 = ind3[0];
        (aa,bb) = np.nonzero(AA[ind2,:])
        ij = np.argsort(aa)
        bb = bb[ij];
        (_, imp_rows) = np.unique(bb, axis=0,return_index=True);  
        bb = bb[imp_rows];
        res2[bb,:] = BB[ind2[imp_rows],:];                    ## Recovering unknowns
        (ee,ff) = np.nonzero(AA[:,bb])        
        for ii in range(0,np.size(ee)):
            BB[ee[ii],:] = BB[ee[ii],:] - res2[bb[ff[ii]],:];
            
        AA[ee,bb[ff]] = 0;