Esempio n. 1
0
def dists(G, nbunch = None):
    
    G = G.copy()
    
    if nbunch is None:
        nbunch = G.nodes()
    
    try:
        out_degree = G.out_degree(nbunch = nbunch)
        in_degree = G.in_degree(nbunch = nbunch)
        gross_out_weight = G.out_degree(weighted = True, nbunch = nbunch)
        gross_in_weight = G.in_degree(weighted = True, nbunch = nbunch)

    except TypeError:
        out_degree = G.out_degree(nbunch = nbunch)
        in_degree = G.in_degree(nbunch = nbunch)
        gross_out_weight = G.out_degree(weight = 'weight', nbunch = nbunch)
        gross_in_weight = G.in_degree(weight = 'weight', nbunch = nbunch)

        
    A = nx.to_scipy_sparse_matrix(G, nodelist = nbunch)
    i, j, grosscells = extract.find(A)

    selfloops = G.selfloop_edges(data = True)
    G.remove_edges_from(selfloops)
    
    
    try:
        net_out_weight = G.out_degree(weighted = True, nbunch = nbunch)
        net_in_weight = G.in_degree(weighted = True, nbunch = nbunch)

    except TypeError:
        net_out_weight = G.out_degree(weight = 'weight', nbunch = nbunch)
        net_in_weight = G.in_degree(weight = 'weight', nbunch = nbunch)


    A = nx.to_scipy_sparse_matrix(G, nodelist = nbunch)
    i, j, netcells = extract.find(A)

    dists = {
    'out-degree': 
    np.array([out_degree[i] for i in nbunch],dtype = np.float32), 
    'in-degree': 
    np.array([in_degree[i] for i in nbunch],dtype = np.float32), 
    'gross_out-weight': 
    np.array([gross_out_weight[i] for i in nbunch],dtype = np.float32), 
    'gross_in-weight': 
    np.array([gross_in_weight[i] for i in nbunch],dtype = np.float32),  
    'net_out-weight': 
    np.array([net_out_weight[i] for i in nbunch],dtype = np.float32), 
    'net_in-weight': 
    np.array([net_in_weight[i] for i in nbunch],dtype = np.float32),  
    'gross_cells': grosscells,
    'net_cells': netcells
    }
    
    return dists
Esempio n. 2
0
    def __init__(self, Year, pvalue = 0.01):

        A =Year.Adj
        v = float(A.sum())

        n, m = A.shape
        self.sets = (n, m)
        alpha = pvalue / float(n * m)
        in_degree = A.sum(0)
        out_degree = A.sum(1)
        i, j, aij = extract.find(A)
        
        nonzero = len(i)
        pij = np.zeros((nonzero, ))
        for h in xrange(nonzero):                      
            pij[h] = out_degree[i[h]] * in_degree[0,j[h]] / v**2
        P = 1-binom.cdf(aij - 1,v,pij)
        data = 1. * (P<= alpha)
        zero_entries = np.where(data == 0) 
        data = np.delete(data, zero_entries)
        i = np.delete(i, zero_entries)
        j = np.delete(j, zero_entries)
        aij = np.delete(aij,zero_entries)
        ij = np.asarray(zip(i,j)).T
        self.svnet = csc_matrix((data, ij))
        self.Adj = csc_matrix((aij,ij))
        self.filename = Year.filename
        self.edgetype = Year.edgetype
        self.banks = Year.banks
        self.firms = Year.firms
        self.descr = 'valid network'
Esempio n. 3
0
    def __init__(self, Year, pvalue = 0.01):

        A = Year.Adj
        
        n, m = A.shape
        alpha = pvalue / n / m
        in_degree = A.sum(0)
        out_degree = A.sum(1)
        i, j, wij = extract.find(A)
        indices = np.where(wij > 0)
        eps = max(wij[indices].min(),0.1)
        v = A.sum() / eps
        
        nonzero = len(i)
        pij = np.zeros((nonzero, ))
        for h in xrange(nonzero):                      
            pij[h] = out_degree[i[h]] * in_degree[0,j[h]] / v**2
        P = 1 - binom.cdf(wij - 1,v,pij)
        data = P <= alpha
        zero_entries = np.where(data == 0)
        data = np.delete(data, zero_entries)
        i = np.delete(i, zero_entries)
        j = np.delete(j, zero_entries)
        wij = np.delete(wij,zero_entries)
        ij = np.asarray(zip(i,j)).T
        self.svnet = csc_matrix((data, ij), shape = (n,m) )
        self.Adj = csc_matrix((wij, ij), shape = (n,m) )
        self.nodes = Year.nodes
        self.filename = Year.filename
        self.edgetype = Year.edgetype
Esempio n. 4
0
    def to_pajek(self):
        
        os.chdir('Infomap')
    
        W = csc_matrix(self.Adj)
        row,col,data = extract.find(W)
        n = len(self.nodes)
        nodes = np.array(range(n))
        nodes = np.resize(nodes,(n,1))
        row = np.resize(row,(n,1))
        col = np.resize(col,(n,1))
        data = np.resize(data,(n,1))
        row = 1 + row # NB this is for pajek
        col = 1 + col # idem
        edges = np.concatenate((row,col,data),axis = 1)
        nodes = np.concatenate((nodes + 1,nodes),axis=1)

        filename = self.filename.split('.')[0]
        filename = '%s.net' % (filename)
        output = open(filename,'wb')
        output.write("*vertices %i\n"%(n))
        np.savetxt(output,nodes,fmt = ('%1.1i','%1.10s'))
        output.write("*arcs\n")
        np.savetxt(output,edges,fmt = ('%1.1i','%1.1i','%1.18e'))
    
    
        os.chdir('..')
Esempio n. 5
0
def extract_distance_graph(manifold_distance, graph, start):
    """
    Extract a graph with edges filled with the distance from start.
    This is mainly for plotting purposes in order to plot the graph,
    and distances along it.
    """
    pt_graph = sparse.csc_matrix(graph.shape)
    D = manifold_distance

    start = 6

    for i,j in zip(*find(graph)[:2]):
        pt_graph[i,j] = D[start,j]
        if j == start:
            pt_graph[i,j] = D[i,start]
    return pt_graph
Esempio n. 6
0
def extract_distance_graph(manifold_distance, graph, start):
    """
    Extract a graph with edges filled with the distance from start.
    This is mainly for plotting purposes in order to plot the graph,
    and distances along it.
    """
    pt_graph = sparse.csc_matrix(graph.shape)
    D = manifold_distance

    start = 6

    for i, j in zip(*find(graph)[:2]):
        pt_graph[i, j] = D[start, j]
        if j == start:
            pt_graph[i, j] = D[i, start]
    return pt_graph
Esempio n. 7
0
    def edgelist(self, weighted = True):

        i, j, data = extract.find(self.Adj)
        n_edges = len(data)
     
        firms = dict(zip(range(len(self.firms)), self.firms))
        banks = dict(zip(range(len(self.banks)), self.banks))
        edgelist = np.zeros((n_edges, ), dtype = self.edgetype)

        for k in xrange(n_edges):
            row = i[k]
            col = j[k]
            edgelist['source'][k] = firms[row]
            edgelist['dest'][k] = banks[col]
            edgelist['weight'][k] = data[k]

        return  edgelist
Esempio n. 8
0
    def edgelist(self , weighted = True):

        nodes = dict(zip(range(len(self.nodes)), self.nodes))
        i, j, data = extract.find(self.Adj)

        n_edges = len(data)
        edgelist = np.zeros((n_edges, ), dtype = self.edgetype)

        for k in xrange(n_edges):
            row = i[k]
            col = j[k]
            edgelist['source'][k] = nodes[row]
            edgelist['dest'][k] = nodes[col]
            edgelist['weight'][k] = data[k]
        
        filename = self.filename.split('.')[0]
        np.savetxt(filename + '.svnet', edgelist, fmt = ['%10s','%10s','%10.10f'])
        
        return edgelist
Esempio n. 9
0
    def graph(self):
        """
        Return the k-nearest-neighbour graph with self.k neighbours.

        Optionally the minimum_spanning_tree is added in, according to
        self.include_mst.
        """
        if getattr(self, '_graph', None) is None:
            D = self.manifold_corrected_distance_matrix.toarray()
            idxs = np.argsort(D)
            r = range(D.shape[0])
            idx = idxs[:, :self.k]
            self._graph = lil_matrix(D.shape)
            for neighbours in idx.T:
                self._graph[r, neighbours] = D[r, neighbours]
            if self.include_mst:
                mst = self.minimal_spanning_tree
                for i,j,v in zip(*find(mst)):
                    if self._graph[i,j] == 0:
                        self._graph[i,j] = v
        return self._graph
Esempio n. 10
0
    def graph(self):
        """
        Return the k-nearest-neighbour graph with self.k neighbours.

        Optionally the minimum_spanning_tree is added in, according to
        self.include_mst.
        """
        if getattr(self, '_graph', None) is None:
            D = self.manifold_corrected_distance_matrix.toarray()
            idxs = np.argsort(D)
            r = range(D.shape[0])
            idx = idxs[:, :self.k]
            self._graph = lil_matrix(D.shape)
            for neighbours in idx.T:
                self._graph[r, neighbours] = D[r, neighbours]
            if self.include_mst:
                mst = self.minimal_spanning_tree
                for i, j, v in zip(*find(mst)):
                    if self._graph[i, j] == 0:
                        self._graph[i, j] = v
        return self._graph
Esempio n. 11
0
 def find(self):
     for A in self.cases:
         I, J, V = extract.find(A)
         assert_equal(A.toarray(), csr_matrix(((I, J), V), shape=A.shape))
Esempio n. 12
0
 def find(self):
     for A in self.cases:
         I,J,V = extract.find(A)
         assert_equal(A.toarray(), csr_matrix(((I,J),V), shape=A.shape))
Esempio n. 13
0
def threshold(Mcorr, sthresh, hthresh):
    nelems = shape(Mcorr)[0]
    rows, cols, dat = find(Mcorr >= hthresh)
    Mthresh = abs(Mcorr)
    Mthresh[Mthresh < hthresh] = 0
    return Mthresh**sthresh, zip(rows, cols)