Esempio n. 1
0
 def test_integer_matrix(self):
     Q = np.array([
         [-3, 1, 1, 1],
         [1, -3, 1, 1],
         [1, 1, -3, 1],
         [1, 1, 1, -3]])
     assert_allclose(expm(Q), expm(1.0 * Q))
Esempio n. 2
0
    def test_triangularity_perturbation(self):
        # Experiment (1) of
        # Awad H. Al-Mohy and Nicholas J. Higham (2012)
        # Improved Inverse Scaling and Squaring Algorithms
        # for the Matrix Logarithm.
        A = np.array([
            [3.2346e-1, 3e4, 3e4, 3e4],
            [0, 3.0089e-1, 3e4, 3e4],
            [0, 0, 3.221e-1, 3e4],
            [0, 0, 0, 3.0744e-1]],
            dtype=float)
        A_logm = np.array([
            [-1.12867982029050462e+00, 9.61418377142025565e+04,
             -4.52485573953179264e+09, 2.92496941103871812e+14],
            [0.00000000000000000e+00, -1.20101052953082288e+00,
             9.63469687211303099e+04, -4.68104828911105442e+09],
            [0.00000000000000000e+00, 0.00000000000000000e+00,
             -1.13289322264498393e+00, 9.53249183094775653e+04],
            [0.00000000000000000e+00, 0.00000000000000000e+00,
             0.00000000000000000e+00, -1.17947533272554850e+00]],
            dtype=float)
        assert_allclose(expm(A_logm), A, rtol=1e-4)

        # Perturb the upper triangular matrix by tiny amounts,
        # so that it becomes technically not upper triangular.
        random.seed(1234)
        tiny = 1e-17
        A_logm_perturbed = A_logm.copy()
        A_logm_perturbed[1, 0] = tiny
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "Ill-conditioned.*")
            A_expm_logm_perturbed = expm(A_logm_perturbed)
        rtol = 1e-4
        atol = 100 * tiny
        assert_(not np.allclose(A_expm_logm_perturbed, A, rtol=rtol, atol=atol))
Esempio n. 3
0
    def test_integer_matrix_2(self):
        # Check for integer overflows
        Q = np.array([[-500, 500, 0, 0],
                      [0, -550, 360, 190],
                      [0, 630, -630, 0],
                      [0, 0, 0, 0]], dtype=np.int16)
        assert_allclose(expm(Q), expm(1.0 * Q))

        Q = csc_matrix(Q)
        assert_allclose(expm(Q).A, expm(1.0 * Q).A)
Esempio n. 4
0
 def test_burkardt_11(self):
     # This is Ward's example #2.
     # It is a symmetric matrix.
     A = np.array([
         [29.87942128909879, 0.7815750847907159, -2.289519314033932],
         [0.7815750847907159, 25.72656945571064, 8.680737820540137],
         [-2.289519314033932, 8.680737820540137, 34.39400925519054],
         ], dtype=float)
     assert_allclose(scipy.linalg.eigvalsh(A), (20, 30, 40))
     desired = np.array([
          [
              5.496313853692378E+15,
              -1.823188097200898E+16,
              -3.047577080858001E+16],
          [
             -1.823188097200899E+16,
             6.060522870222108E+16,
             1.012918429302482E+17],
          [
             -3.047577080858001E+16,
             1.012918429302482E+17,
             1.692944112408493E+17],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 5
0
 def test_burkardt_13(self):
     # This is Ward's example #4.
     # This is a version of the Forsythe matrix.
     # The eigenvector problem is badly conditioned.
     # Ward's algorithm has difficulty esimating the accuracy
     # of its results for this problem.
     #
     # Check the construction of one instance of this family of matrices.
     A4_actual = _burkardt_13_power(4, 1)
     A4_desired = [[0, 1, 0, 0],
                   [0, 0, 1, 0],
                   [0, 0, 0, 1],
                   [1e-4, 0, 0, 0]]
     assert_allclose(A4_actual, A4_desired)
     # Check the expm for a few instances.
     for n in (2, 3, 4, 10):
         # Approximate expm using Taylor series.
         # This works well for this matrix family
         # because each matrix in the summation,
         # even before dividing by the factorial,
         # is entrywise positive with max entry 10**(-floor(p/n)*n).
         k = max(1, int(np.ceil(16/n)))
         desired = np.zeros((n, n), dtype=float)
         for p in range(n*k):
             Ap = _burkardt_13_power(n, p)
             assert_equal(np.min(Ap), 0)
             assert_allclose(np.max(Ap), np.power(10, -np.floor(p/n)*n))
             desired += Ap / factorial(p)
         actual = expm(_burkardt_13_power(n, 1))
         assert_allclose(actual, desired)
Esempio n. 6
0
 def test_padecases_dtype_float(self):
     for dtype in [np.float32, np.float64]:
         for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
             A = scale * eye(3, dtype=dtype)
             observed = expm(A)
             expected = exp(scale) * eye(3, dtype=dtype)
             assert_array_almost_equal_nulp(observed, expected, nulp=100)
Esempio n. 7
0
 def test_padecases_dtype_sparse_complex(self):
     # float32 and complex64 lead to errors in spsolve/UMFpack
     dtype = np.complex128
     for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
         a = scale * speye(3, 3, dtype=dtype, format='csc')
         e = exp(scale) * eye(3, dtype=dtype)
         assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100)
Esempio n. 8
0
    def test_overscaling_example(self):
        # See the blog post
        # http://blogs.mathworks.com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/
        a = 2e10
        b = 4e8/6.
        c = 200/3.
        d = 3
        e = 1e-8
        A = np.array([[0,e,0],[-(a+b), -d, a], [c, 0, -c]])

        # This answer is wrong, and it is caused by overscaling.
        wrong_solution = np.array([
            [1.7465684381715e+17, -923050477.783131, -1.73117355055901e+17],
            [-3.07408665108297e+25, 1.62463553675545e+17, 3.04699053651329e+25],
            [1.09189154376804e+17, -577057840.468934, -1.08226721572342e+17]])

        # This is the correct answer.
        correct_solution = np.array([
            [0.446849468283175, 1.54044157383952e-09, 0.462811453558774],
            [-5743067.77947947, -0.0152830038686819, -4526542.71278401],
            [0.447722977849494, 1.54270484519591e-09, 0.463480648837651]])

        # Higham 2005 expm would give the wrong answer.
        # Assert that the Higham 2009 expm gives the correct answer.
        assert_allclose(expm(A), correct_solution)
Esempio n. 9
0
 def test_padecases_dtype_sparse_complex(self):
     # float32 and complex64 lead to errors in spsolve/UMFpack
     dtype = np.complex128
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
         for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
             a = scale * speye(3, 3, dtype=dtype, format='csc')
             e = exp(scale) * eye(3, dtype=dtype)
             assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100)
Esempio n. 10
0
 def test_padecases_dtype_sparse_complex(self):
     # float32 and complex64 lead to errors in spsolve/UMFpack
     dtype = np.complex128
     for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
         a = scale * speye(3, 3, dtype=dtype, format='csc')
         e = exp(scale) * eye(3, dtype=dtype)
         with suppress_warnings() as sup:
             sup.filter(SparseEfficiencyWarning,
                        "Changing the sparsity structure of a csc_matrix is expensive.")
             assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100)
Esempio n. 11
0
 def test_logm_consistency(self):
     random.seed(1234)
     for dtype in [np.float64, np.complex128]:
         for n in range(1, 10):
             for scale in [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]:
                 # make logm(A) be of a given scale
                 A = (eye(n) + random.rand(n, n) * scale).astype(dtype)
                 if np.iscomplexobj(A):
                     A = A + 1j * random.rand(n, n) * scale
                 assert_array_almost_equal(expm(logm(A)), A)
Esempio n. 12
0
 def test_burkardt_2(self):
     # This matrix is symmetric.
     # The calculation of the matrix exponential is straightforward.
     A = np.array([
         [1, 3],
         [3, 2],
         ], dtype=float)
     desired = np.array([
         [39.322809708033859, 46.166301438885753],
         [46.166301438885768, 54.711576854329110],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 13
0
 def test_bidiagonal_sparse(self):
     A = csc_matrix([
         [1, 3, 0],
         [0, 1, 5],
         [0, 0, 2]], dtype=float)
     e1 = math.exp(1)
     e2 = math.exp(2)
     expected = np.array([
         [e1, 3*e1, 15*(e2 - 2*e1)],
         [0, e1, 5*(e2 - e1)],
         [0, 0, e2]], dtype=float)
     observed = expm(A).toarray()
     assert_array_almost_equal(observed, expected)
Esempio n. 14
0
 def test_burkardt_4(self):
     # This example is due to Moler and Van Loan.
     # The example will cause problems for the series summation approach,
     # as well as for diagonal Pade approximations.
     A = np.array([
         [-49, 24],
         [-64, 31],
         ], dtype=float)
     U = np.array([[3, 1], [4, 2]], dtype=float)
     V = np.array([[1, -1/2], [-2, 3/2]], dtype=float)
     w = np.array([-17, -1], dtype=float)
     desired = np.dot(U * np.exp(w), V)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 15
0
 def test_burkardt_14(self):
     # This is Moler's example.
     # This badly scaled matrix caused problems for MATLAB's expm().
     A = np.array([
         [0, 1e-8, 0],
         [-(2e10 + 4e8/6.), -3, 2e10],
         [200./3., 0, -200./3.],
         ], dtype=float)
     desired = np.array([
         [0.446849468283175, 1.54044157383952e-09, 0.462811453558774],
         [-5743067.77947947, -0.0152830038686819, -4526542.71278401],
         [0.447722977849494, 1.54270484519591e-09, 0.463480648837651],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 16
0
 def test_burkardt_6(self):
     # This example is due to Moler and Van Loan.
     # This matrix does not have a complete set of eigenvectors.
     # That means the eigenvector approach will fail.
     exp1 = np.exp(1)
     A = np.array([
         [1, 1],
         [0, 1],
         ], dtype=float)
     desired = np.array([
         [exp1, exp1],
         [0, exp1],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 17
0
 def test_burkardt_8(self):
     # This matrix was an example in Wikipedia.
     exp4 = np.exp(4)
     exp16 = np.exp(16)
     A = np.array([
         [21, 17, 6],
         [-5, -1, -6],
         [4, 4, 16],
         ], dtype=float)
     desired = np.array([
         [13*exp16 - exp4, 13*exp16 - 5*exp4, 2*exp16 - 2*exp4],
         [-9*exp16 + exp4, -9*exp16 + 5*exp4, -2*exp16 + 2*exp4],
         [16*exp16, 16*exp16, 4*exp16],
         ], dtype=float) * 0.25
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 18
0
 def test_burkardt_10(self):
     # This is Ward's example #1.
     # It is defective and nonderogatory.
     A = np.array([
         [4, 2, 0],
         [1, 4, 1],
         [1, 1, 4],
         ], dtype=float)
     assert_allclose(sorted(scipy.linalg.eigvals(A)), (3, 3, 6))
     desired = np.array([
         [147.8666224463699, 183.7651386463682, 71.79703239999647],
         [127.7810855231823, 183.7651386463682, 91.88256932318415],
         [127.7810855231824, 163.6796017231806, 111.9681062463718],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 19
0
 def test_burkardt_12(self):
     # This is Ward's example #3.
     # Ward's algorithm has difficulty estimating the accuracy
     # of its results.
     A = np.array([
         [-131, 19, 18],
         [-390, 56, 54],
         [-387, 57, 52],
         ], dtype=float)
     assert_allclose(sorted(scipy.linalg.eigvals(A)), (-20, -2, -1))
     desired = np.array([
         [-1.509644158793135, 0.3678794391096522, 0.1353352811751005],
         [-5.632570799891469, 1.471517758499875, 0.4060058435250609],
         [-4.934938326088363, 1.103638317328798, 0.5413411267617766],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 20
0
 def test_burkardt_9(self):
     # This matrix is due to the NAG Library.
     # It is an example for function F01ECF.
     A = np.array([
         [1, 2, 2, 2],
         [3, 1, 1, 2],
         [3, 2, 1, 2],
         [3, 3, 3, 1],
         ], dtype=float)
     desired = np.array([
         [740.7038, 610.8500, 542.2743, 549.1753],
         [731.2510, 603.5524, 535.0884, 542.2743],
         [823.7630, 679.4257, 603.5524, 610.8500],
         [998.4355, 823.7630, 731.2510, 740.7038],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 21
0
 def test_burkardt_7(self):
     # This example is due to Moler and Van Loan.
     # This matrix is very close to example 5.
     # Mathematically, it has a complete set of eigenvectors.
     # Numerically, however, the calculation will be suspect.
     exp1 = np.exp(1)
     eps = np.spacing(1)
     A = np.array([
         [1 + eps, 1],
         [0, 1 - eps],
         ], dtype=float)
     desired = np.array([
         [exp1, exp1],
         [0, exp1],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 22
0
 def test_burkardt_5(self):
     # This example is due to Moler and Van Loan.
     # This matrix is strictly upper triangular
     # All powers of A are zero beyond some (low) limit.
     # This example will cause problems for Pade approximations.
     A = np.array([
         [0, 6, 0, 0],
         [0, 0, 6, 0],
         [0, 0, 0, 6],
         [0, 0, 0, 0],
         ], dtype=float)
     desired = np.array([
         [1, 6, 18, 36],
         [0, 1, 6, 18],
         [0, 0, 1, 6],
         [0, 0, 0, 1],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 23
0
    def test_pascal(self):
        # Test pascal triangle.
        # Nilpotent exponential, used to trigger a failure (gh-8029)

        for scale in [1.0, 1e-3, 1e-6]:
            for n in range(120):
                A = np.diag(np.arange(1, n + 1), -1) * scale
                B = expm(A)

                sc = scale**np.arange(n, -1, -1)
                if np.any(sc < 1e-300):
                    continue

                got = B
                expected = binom(np.arange(n + 1)[:,None],
                                 np.arange(n + 1)[None,:]) * sc[None,:] / sc[:,None]
                err = abs(expected - got).max()
                atol = 1e-13 * abs(expected).max()
                assert_allclose(got, expected, atol=atol)
Esempio n. 24
0
 def test_burkardt_3(self):
     # This example is due to Laub.
     # This matrix is ill-suited for the Taylor series approach.
     # As powers of A are computed, the entries blow up too quickly.
     exp1 = np.exp(1)
     exp39 = np.exp(39)
     A = np.array([
         [0, 1],
         [-39, -40],
         ], dtype=float)
     desired = np.array([
         [
             39/(38*exp1) - 1/(38*exp39),
             -np.expm1(-38) / (38*exp1)],
         [
             39*np.expm1(-38) / (38*exp1),
             -1/(38*exp1) + 39/(38*exp39)],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
Esempio n. 25
0
 def test_burkardt_1(self):
     # This matrix is diagonal.
     # The calculation of the matrix exponential is simple.
     #
     # This is the first of a series of matrix exponential tests
     # collected by John Burkardt from the following sources.
     #
     # Alan Laub,
     # Review of "Linear System Theory" by Joao Hespanha,
     # SIAM Review,
     # Volume 52, Number 4, December 2010, pages 779--781.
     #
     # Cleve Moler and Charles Van Loan,
     # Nineteen Dubious Ways to Compute the Exponential of a Matrix,
     # Twenty-Five Years Later,
     # SIAM Review,
     # Volume 45, Number 1, March 2003, pages 3--49.
     #
     # Cleve Moler,
     # Cleve's Corner: A Balancing Act for the Matrix Exponential,
     # 23 July 2012.
     #
     # Robert Ward,
     # Numerical computation of the matrix exponential
     # with accuracy estimate,
     # SIAM Journal on Numerical Analysis,
     # Volume 14, Number 4, September 1977, pages 600--610.
     exp1 = np.exp(1)
     exp2 = np.exp(2)
     A = np.array([
         [1, 0],
         [0, 2],
         ], dtype=float)
     desired = np.array([
         [exp1, 0],
         [0, exp2],
         ], dtype=float)
     actual = expm(A)
     assert_allclose(actual, desired)
 def test_integer_matrix(self):
     Q = np.array([[-3, 1, 1, 1], [1, -3, 1, 1], [1, 1, -3, 1],
                   [1, 1, 1, -3]])
     assert_allclose(expm(Q), expm(1.0 * Q))
Esempio n. 27
0
 def test_padecases_dtype_complex(self):
     for dtype in [np.complex64, np.complex128]:
         for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
             a = scale * eye(3, dtype=dtype)
             e = exp(scale) * eye(3, dtype=dtype)
             assert_array_almost_equal_nulp(expm(a), e, nulp=100)
 def test_zero_ndarray(self):
     a = array([[0., 0], [0, 0]])
     assert_array_almost_equal(expm(a), [[1, 0], [0, 1]])
 def test_zero_sparse(self):
     a = csc_matrix([[0., 0], [0, 0]])
     assert_array_almost_equal(expm(a).toarray(), [[1, 0], [0, 1]])
Esempio n. 30
0
 def test_zero_sparse(self):
     a = csc_matrix([[0.,0],[0,0]])
     assert_array_almost_equal(expm(a).toarray(),[[1,0],[0,1]])
Esempio n. 31
0
 def test_zero(self):
     a = array([[0.,0],[0,0]])
     assert_array_almost_equal(expm(a),[[1,0],[0,1]])
Esempio n. 32
0
 def test_misc_types(self):
     A = expm(np.array([[1]]))
     assert_allclose(expm(((1,),)), A)
     assert_allclose(expm([[1]]), A)
     assert_allclose(expm(matrix([[1]])), A)
     assert_allclose(expm(np.array([[1]])), A)
     assert_allclose(expm(csc_matrix([[1]])).A, A)
     B = expm(np.array([[1j]]))
     assert_allclose(expm(((1j,),)), B)
     assert_allclose(expm([[1j]]), B)
     assert_allclose(expm(matrix([[1j]])), B)
     assert_allclose(expm(csc_matrix([[1j]])).A, B)
Esempio n. 33
0
 def test_zero_matrix(self):
     a = np.matrix([[0., 0], [0, 0]])
     assert_array_almost_equal(expm(a), [[1, 0], [0, 1]])
Esempio n. 34
0
 def test_misc_types(self):
     A = expm(np.array([[1]]))
     yield assert_allclose, expm(((1, ), )), A
     yield assert_allclose, expm([[1]]), A
     yield assert_allclose, expm(np.matrix([[1]])), A
     yield assert_allclose, expm(np.array([[1]])), A
     yield assert_allclose, expm(csc_matrix([[1]])), A
     B = expm(np.array([[1j]]))
     yield assert_allclose, expm(((1j, ), )), B
     yield assert_allclose, expm([[1j]]), B
     yield assert_allclose, expm(np.matrix([[1j]])), B
     yield assert_allclose, expm(csc_matrix([[1j]])), B
 def test_misc_types(self):
     A = expm(np.array([[1]]))
     assert_allclose(expm(((1,),)), A)
     assert_allclose(expm([[1]]), A)
     assert_allclose(expm(np.matrix([[1]])), A)
     assert_allclose(expm(np.array([[1]])), A)
     assert_allclose(expm(csc_matrix([[1]])).A, A)
     B = expm(np.array([[1j]]))
     assert_allclose(expm(((1j,),)), B)
     assert_allclose(expm([[1j]]), B)
     assert_allclose(expm(np.matrix([[1j]])), B)
     assert_allclose(expm(csc_matrix([[1j]])).A, B)
Esempio n. 36
0
 def test_zero_matrix(self):
     a = matrix([[0.,0],[0,0]])
     assert_array_almost_equal(expm(a),[[1,0],[0,1]])