Esempio n. 1
0
def _regrid_weighted_curvilinear_to_rectilinear__perform(
        src_cube, regrid_info):
    """
    Second (regrid) part of 'regrid_weighted_curvilinear_to_rectilinear'.

    Perform the prepared regrid calculation on a single 2d cube.

    """
    from iris.cube import Cube

    sparse_matrix, sum_weights, rows, grid_cube = regrid_info

    # Calculate the numerator of the weighted mean (M, 1).
    is_masked = ma.isMaskedArray(src_cube.data)
    if not is_masked:
        data = src_cube.data
    else:
        # Use raw data array
        data = src_cube.data.data
        # Check if there are any masked source points to take account of.
        is_masked = np.ma.is_masked(src_cube.data)
        if is_masked:
            # Zero any masked source points so they add nothing in output sums.
            mask = src_cube.data.mask
            data[mask] = 0.0
            # Calculate a new 'sum_weights' to allow for missing source points.
            # N.B. it is more efficient to use the original once-calculated
            # sparse matrix, but in this case we can't.
            # Hopefully, this post-multiplying by the validities is less costly
            # than repeating the whole sparse calculation.
            valid_src_cells = ~mask.flat[:]
            src_cell_validity_factors = sparse_diags(
                np.array(valid_src_cells, dtype=int), 0)
            valid_weights = sparse_matrix * src_cell_validity_factors
            sum_weights = valid_weights.sum(axis=1).getA()
            # Work out where output cells are missing all contributions.
            # This allows for where 'rows' contains output cells that have no
            # data because of missing input points.
            zero_sums = sum_weights == 0.0
            # Make sure we can still divide by sum_weights[rows].
            sum_weights[zero_sums] = 1.0

    # Calculate sum in each target cell, over contributions from each source
    # cell.
    numerator = sparse_matrix * data.reshape(-1, 1)

    # Create a template for the weighted mean result.
    weighted_mean = ma.masked_all(numerator.shape, dtype=numerator.dtype)

    # Calculate final results in all relevant places.
    weighted_mean[rows] = numerator[rows] / sum_weights[rows]
    if is_masked:
        # Ensure masked points where relevant source cells were all missing.
        if np.any(zero_sums):
            # Make masked if it wasn't.
            weighted_mean = np.ma.asarray(weighted_mean)
            # Mask where contributing sums were zero.
            weighted_mean[zero_sums] = np.ma.masked

    # Construct the final regridded weighted mean cube.
    tx = grid_cube.coord(axis="x", dim_coords=True)
    ty = grid_cube.coord(axis="y", dim_coords=True)
    (tx_dim, ) = grid_cube.coord_dims(tx)
    (ty_dim, ) = grid_cube.coord_dims(ty)
    dim_coords_and_dims = list(zip((ty.copy(), tx.copy()), (ty_dim, tx_dim)))
    cube = Cube(
        weighted_mean.reshape(grid_cube.shape),
        dim_coords_and_dims=dim_coords_and_dims,
    )
    cube.metadata = copy.deepcopy(src_cube.metadata)

    for coord in src_cube.coords(dimensions=()):
        cube.add_aux_coord(coord.copy())

    return cube
Esempio n. 2
0
def solve_hemholtz(f, boundary_func=lambda x,y: x*y, lap_f=lambda x: None, n=20,xint=(0,1), solver='spdiags', scheme='5-point', k=20):
	h = (xint[1]-xint[0])/float(n+1)

	if scheme == 'deferred':
		#Get the second-order approximation
		u_bar = np.zeros((n+2, n+2))
		u_bar[1:-1,1:-1] = solve_hemholtz(f, boundary_func, lap_f, n, xint,k=k).reshape((n,n))
		#Fill in the boundary data
		grid_1d = np.linspace(xint[0], xint[1], n+2)
		u_bar[0] = boundary_func(xint[0], grid_1d)
		u_bar[-1] = boundary_func(xint[1], grid_1d)
		u_bar[:,0] = boundary_func(grid_1d, xint[0])
		u_bar[:,-1] = boundary_func(grid_1d, xint[1])
		#Compute the xxyy derivative
		u_xx = (u_bar[:-2]+u_bar[2:]-2*u_bar[1:-1])/h**2
		u_xxyy = (u_xx[:,2:]+u_xx[:,:-2]-2*u_xx[:,1:-1])/h**2
	#First, construct the diagonals and the RHS
	#Here we assume that the domain is square
	b = np.zeros((n,n))
	yvals = np.linspace(xint[0], xint[1], n+2)[1:-1]
#	print h, yvals[1]-yvals[0]
	for i in xrange(n):
		xval = yvals[i]
		b[i] = f(xval, yvals)
		if scheme == '9-point':
			b[i] += h**2/12. * (lap_f(xval, yvals) - k**2*f(xval, yvals))
		elif scheme == 'deferred':
			b[i] += h**2/12. * (lap_f(xval, yvals) - k**2*f(xval, yvals) + k**4 * u_bar[i+1,1:-1] - 2*u_xxyy[i] )
	if scheme == '5-point' or scheme == 'deferred':
		b *= h**2
	else: b *= 6*h**2
#	print b
	if scheme=='5-point' or scheme == 'deferred':
		diags = make_5_point_diags(n, h)
		diags[0] += h**2 * k**2
		#Now we need to make use of the boundary conditions
		b[0] -= boundary_func(xint[0], yvals)
		b[-1] -= boundary_func(xint[1], yvals)
		b[:,0] -= boundary_func(yvals, xint[0])
		b[:,-1] -= boundary_func(yvals, xint[1])
	
	elif scheme=='9-point':
		diags = make_9_point_diags(n, h)
		diags[0] += 6 *((h*k)**2 - 1./12* (h*k)**4)
		#This is like the 5-point stencil
		b[0] -= 4*boundary_func(xint[0], yvals)
		b[-1] -= 4*boundary_func(xint[1], yvals)
		b[:,0] -= 4*boundary_func(yvals, xint[0])
		b[:,-1] -= 4*boundary_func(yvals, xint[1])
		#Here we handle the corners of the stencil
		vals = np.linspace(xint[0], xint[1], n+2)
		#Take care of effects to the top and bottom boundaries
		b[0] -= boundary_func(xint[0], vals[:-2]) + boundary_func(xint[0], vals[2:])
		b[-1] -= boundary_func(xint[1], vals[:-2]) + boundary_func(xint[1], vals[2:])
		#Handle the sides - be careful not to double count the corners
		b[1:,0] -= boundary_func(vals[1:-2], xint[0])
		b[:-1,0] -= boundary_func(vals[2:-1], xint[0])
		b[1:,-1] -= boundary_func(vals[1:-2], xint[1])
		b[:-1,-1] -= boundary_func(vals[2:-1], xint[1])

	else:
		raise ValueError("Unrecognized scheme {}".format(scheme))
	
	#Next, create the sparse matrix and solve the system
#	print([(d, sum(diags[d]!=0)) for d in diags if isinstance(diags[d], np.ndarray)])
	offsets = sorted(diags.keys())
	mat = sparse_diags([diags[d] for d in offsets], offsets, format='csc')
#	print mat.todense()
	if solver == 'spdiags':
#		print b
#		print mat.shape
		return spsolve(mat, b.flatten())
	elif solver == 'solve_banded':
		ab, l_and_u = diags_to_banded(diags)
#		print b.flatten().shape, ab.shape
		return solve_banded(l_and_u,ab, b.flatten())
	else:
		return solver(mat, b.flatten())