Esempio n. 1
0
        def onselectcirc(center, radius, x, y):
            self.center = center
            self.radius = radius

            if radius < 0.5:
                i, j = int(x), int(
                    y)  # Test if the selected area is smaller than a spaxel
                ind = self.cube.get_lindex(
                    (i, j)
                )  # In that case we display the spectrum corresponding to
                self.update_spec(
                    ind
                )  # the spaxel where the mouse button has been released.
                self.dot.set_visible(
                    True
                )  # We also display a dot on this spaxel on the image window
                if ((i == 14) and (j == 0)):
                    self.text['numlens1'].set_text('%3.0d' % (ind + 1))
                else:
                    self.text['numlens1'].set_text('%3.0d' % (ind + 2))
                self.print_nbspec(1)
                self.dot.set_data((i + 0.5, i + 0.5), (j + 0.5, j + 0.5))
                pylab.show()
            else:
                radius = sqrt((x - self.center[0])**2 +
                              (y - self.center[1])**2)
                self.integ_aperture()
                self.print_nbspec()
                self.dot.set_visible(False)
                pylab.show()
Esempio n. 2
0
 def integ_aperture(self):
     print "int_ap(1)"
     if self.erase_flag:
         self.axes[2].cla()
     r = sqrt((self.cube.i - self.center[0] + 0.5)**2 +
              (self.cube.j - self.center[1] + 0.5)**2)
     self.cube.plot_spec(mask=(r <= self.radius), ax=self.axes[2])
     self.erase_flag = True
     self.update_sp_stat()
Esempio n. 3
0
 def update_sp_stat(self):
     """Calculate the statistics of the spectrum/spectra selected and print it"""
     n = len(self.axes[2].lines) - 1
     data = self.axes[2].lines[n].get_ydata()
     med = scipy.median(data)
     Mean = scipy.mean(data)
     sigma = scipy.std(data)
     disp = sqrt(scipy.median((data - med)**2))
     self.text['mean_sp1'].set_text('%8.2f' % Mean)
     self.text['sigma_sp1'].set_text('%8.2f' % sigma)
     self.text['median_sp1'].set_text('%8.2f' % med)
     self.text['med_disp_sp1'].set_text('%8.2f' % disp)
Esempio n. 4
0
 def print_nbspec(self, n=None):
     """Calculate how many spectra was selected in the reconstructed image and print it"""
     print "nbspec"
     if n == None:
         r = sqrt((self.cube.i - self.center[0] + 0.5)**2 +
                  (self.cube.j - self.center[1] + 0.5)**2)
         nbspec = len(compress(r <= self.radius, r))
     else:
         nbspec = n
     if nbspec <= 1:
         self.text['nbspec'].set_text('%i spectrum selected' % nbspec)
     else:
         self.text['nbspec'].set_text('%i spectra selected' % nbspec)
     pylab.show()
Esempio n. 5
0
    def release(self, event):
        'on button release event'
        if self.pressx is None or self.ignore(event): return
        if self.pressy is None or self.ignore(event): return

        self.canvas.draw()
	self.center = [self.pressx, self.pressy]
	self.radius = sqrt((event.xdata-self.center[0])**2 + (event.ydata-self.center[1])**2)
	y = event.ydata
	x = event.xdata
        if self.minspan is not None and radius<self.minspan: return
        self.onselect(self.center, self.radius, x, y)
        self.pressx = None
	self.pressy = None
        return False
Esempio n. 6
0
    def onmove(self, event):
        'on motion notify event'
        if self.pressx is None or self.ignore(event): return
        if self.pressy is None or self.ignore(event): return

        self.center = [self.pressx,self.pressy]
	self.radius = sqrt((event.xdata-self.center[0])**2 + (event.ydata-self.center[1])**2)
	if self.radius > 0.5:
	    self.circ.set_visible(True)
	else:
	    self.circ.set_visible(False)
        self.circ.verts = [(v[0]*self.radius+self.center[0],v[1]*self.radius+self.center[1]) for v in self.unit_verts]
	pylab.draw()

        self.update()
        return False
Esempio n. 7
0
 def update_slice(self, ind=None):
     print "up_sl(1)"
     if ind != None:
         self.slice = transpose(self.cube.slice2d(ind, coord='p'))
         self.sl_med = scipy.median(ravel(self.slice))
         self.sl_mdisp = sqrt(
             scipy.median((ravel(self.slice) - self.sl_med)**2))
         self.sl_mean = scipy.mean(
             numpy.compress(1 - isnan(self.slice), self.slice))
         self.sl_disp = scipy.std(
             numpy.compress(1 - isnan(self.slice), self.slice))
     if self.hcut0 < self.lcut0: self.lcut0 = self.hcut0
     vmin = self.sl_med + self.lcut0 * self.sl_mdisp
     vmax = self.sl_med + self.hcut0 * self.sl_mdisp
     self.axes[0].images[0].set_array(self.slice)
     self.axes[0].images[0].set_clim(vmin, vmax)
     self.update_sl_stat(ind)
     pylab.show()
Esempio n. 8
0
    def __init__(self, fig, cube):
        self.cube = cube
        self.cube_med = scipy.median(ravel(self.cube.data))
        self.cube_mdisp = sqrt(
            scipy.median((ravel(self.cube.data) - self.cube_med)**2))
        self.fig = fig
        self.axes = fig.get_axes()
        ax0 = self.axes[0]
        ax1 = self.axes[1]
        ax2 = self.axes[2]
        ax3 = self.axes[3]

        print('etape 1')
        # Prepare text strings
        self.text = {}
        self.text['stat'] = ax3.text(0.4, 0.92, 'statistics')
        self.text['stat'].set_fontweight('Bold')
        self.text['sl'] = ax3.text(0.04, 0.86, 'current slice')
        self.text['sp'] = ax3.text(0.65, 0.85, 'current spectrum')
        self.text['mean'] = ax3.text(0.35, 0.75, '......Mean......', color="r")
        self.text['sigma'] = ax3.text(0.35,
                                      0.65,
                                      '.......RMS......',
                                      color="b")
        self.text['median'] = ax3.text(0.35,
                                       0.55,
                                       '.....Median.....',
                                       color="r")
        self.text['med_disp'] = ax3.text(0.35,
                                         0.45,
                                         '...Med. disp....',
                                         color="b")
        self.text['wav_range'] = ax3.text(0.45,
                                          0.35,
                                          '...Wav. range',
                                          color="r")
        self.text['current_int'] = ax3.text(0.35,
                                            0.25,
                                            '...Current int',
                                            color="b")
        self.text['nbspec'] = ax3.text(0.04, 0.10, '', fontname='Times')
        self.text['numslice'] = ax3.text(0.5, 0.15, 'Slice : ')
        self.text['numlens'] = ax3.text(0.5, 0.05, 'Lens : ')

        self.text['nbspec'] = ax3.text(0.02, 0.1, '', fontname='Times')
        self.text['mean1'] = ax3.text(0.05, 0.75, '', color="r")
        self.text['sigma1'] = ax3.text(0.05, 0.65, '', color="b")
        self.text['median1'] = ax3.text(0.05, 0.55, '', color="r")
        self.text['med_disp1'] = ax3.text(0.05, 0.45, '', color="b")
        self.text['wav_range1'] = ax3.text(0.05, 0.35, '', color="r")
        self.text['current_int1'] = ax3.text(0.05, 0.25, '', color="b")
        self.text['mean_sp1'] = ax3.text(0.7, 0.75, '', color="r")
        self.text['sigma_sp1'] = ax3.text(0.7, 0.65, '', color="b")
        self.text['median_sp1'] = ax3.text(0.7, 0.55, '', color="r")
        self.text['med_disp_sp1'] = ax3.text(0.7, 0.45, '', color="b")
        self.text['numslice1'] = ax3.text(0.65, 0.15, '')
        self.text['numlens1'] = ax3.text(0.65, 0.06, '')

        self.lcut0 = -3
        self.hcut0 = 10
        self.lcut1 = -3
        self.hcut1 = 10

        print('etape 2')
        # Display reconstructed image in the whole spectral range
        self.slice = transpose(cube.slice2d([0, cube.nslice - 1], coord='p'))
        self.sl_med = scipy.median(ravel(self.slice))
        self.sl_mdisp = sqrt(scipy.median(
            (ravel(self.slice) - self.sl_med)**2))
        self.sl_mean = scipy.mean(
            numpy.compress(1 - isnan(self.slice), self.slice))
        self.sl_disp = scipy.std(
            numpy.compress(1 - isnan(self.slice), self.slice))
        vmin = self.sl_med + self.lcut0 * self.sl_disp
        vmax = self.sl_med + self.hcut0 * self.sl_disp
        ax0.imshow(self.slice,
                   interpolation='nearest',
                   aspect='preserve',
                   vmin=vmin,
                   vmax=vmax,
                   cmap=pylab.cm.hot,
                   origin='lower')

        print('etape 3')
        # Display statistics of the reconstructed image
        ind = [0, self.cube.nslice - 1]
        self.update_sl_stat(ind)

        # Import widgets library to select in the stacked spectra image
        try:
            from pySNIFS_special import Cursor, HorizontalSpanSelector, CircleSpanSelector
        except ImportError:
            print "Download pySNIFS_special on CVS to use cube_explorer correctly"
            print "Trying to import matplotlib.widgets"
            try:
                from matplotlib.widgets import Cursor, HorizontalSpanSelector
            except ImportError:
                print "Download the last version of matplotlib to have widgets library"
            else:
                cursor = Cursor(
                    ax1, useblit=False, color='green', linewidth=1
                )  # Use to display reconstructed image and spectrum at the same time
        else:
            cursor = Cursor(ax1, useblit=False, color='blue', linewidth=1)

        print('etape 4')
        # Display the stacked spectra image
        vmin = self.cube_med + self.lcut1 * self.cube_mdisp
        vmax = self.cube_med + self.hcut1 * self.cube_mdisp
        ax1.imshow(transpose(cube.data),
                   interpolation='nearest',
                   vmin=vmin,
                   vmax=vmax,
                   cmap=pylab.cm.hot,
                   origin='lower')

        print('etape 5')
        # Store the x/y limits of both images
        ax0_xlim = ax0.get_xlim()
        ax0_ylim = ax0.get_ylim()
        ax1_xlim = ax1.get_xlim()
        ax1_ylim = ax1.get_ylim()

        print('etape 6')
        # Initialize the dot on the slice window showing the selected spectrum
        self.dot, = ax0.plot((0, 0), (0, 0), 'wo')

        print('etape 7')
        # Dirty trick necessary, otherwise, the axes limits are changed I don't know why...
        ax0.set_xlim(ax0_xlim)
        ax0.set_ylim(ax0_ylim)
        self.dot.set_visible(False)

        print('etape 8')
        # Initialize the begin selection flags. Any 1/2 button press will set the corresponding window flag
        # to false and any 1/2 button release will reset it to True
        self.erase_flag = True

        pylab.draw()

        # Use to select several slices on the stacked image
        def onselecthori(xmin, xmax, y):
            """draw the reconstructed image and spectra, and update statistics"""
            xm = int(xmin)
            xM = int(xmax)
            self.update_spec(ind=int(y))
            i = self.cube.i[int(y)]
            j = self.cube.j[int(y)]
            self.dot.set_visible(True)
            self.dot.set_data((i + 0.5, i + 0.5), (j + 0.5, j + 0.5))
            self.print_nbspec(1)
            self.text['numslice1'].set_text('[%4.0d:%4.0d]' % (xm, xM))
            if ((i == 14) and (j == 0)):
                self.text['numlens1'].set_text('%3.0d' % (int(y) + 1))
            else:
                self.text['numlens1'].set_text('%3.0d' % (int(y) + 2))
            ind = [xm, xM]
            self.update_slice(ind)

# Use to select several spectra on the reconstructed image

        def onselectcirc(center, radius, x, y):
            self.center = center
            self.radius = radius

            if radius < 0.5:
                i, j = int(x), int(
                    y)  # Test if the selected area is smaller than a spaxel
                ind = self.cube.get_lindex(
                    (i, j)
                )  # In that case we display the spectrum corresponding to
                self.update_spec(
                    ind
                )  # the spaxel where the mouse button has been released.
                self.dot.set_visible(
                    True
                )  # We also display a dot on this spaxel on the image window
                if ((i == 14) and (j == 0)):
                    self.text['numlens1'].set_text('%3.0d' % (ind + 1))
                else:
                    self.text['numlens1'].set_text('%3.0d' % (ind + 2))
                self.print_nbspec(1)
                self.dot.set_data((i + 0.5, i + 0.5), (j + 0.5, j + 0.5))
                pylab.show()
            else:
                radius = sqrt((x - self.center[0])**2 +
                              (y - self.center[1])**2)
                self.integ_aperture()
                self.print_nbspec()
                self.dot.set_visible(False)
                pylab.show()

        span1 = HorizontalSpanSelector(ax1,
                                       onselecthori,
                                       useblit=False,
                                       rectprops=dict(alpha=0.5,
                                                      facecolor='blue'))
        span2 = CircleSpanSelector(ax0,
                                   onselectcirc,
                                   useblit=False,
                                   circprops=dict(alpha=0.5, facecolor='blue'))
        pylab.show