Esempio n. 1
0
 def standard_deviation(cls, month):
     stats = cls.objects.filter(month_id=month)
     total = stats.values_list("rating", flat=True)
     N = stats.count()
     mean = cls.mean(month)
     sum_diff = sum([(mean-float(each))**2 for each in total])
     sd = cmath.sqrt(sum_diff / N-1)
     return sd.imag * 100
Esempio n. 2
0
    def calcrating(cls, comp, month):
        stats = CompanyStats.objects.filter(
            company_id=comp, month_id=month).select_related("param")

        rating = float(sum([
            each.param.associated_value * each.value for each in stats]) / sum(
                stats.values_list("param__associated_value", flat=True)))
        return cls.objects.get_or_create(month_id=month, company_id=comp, defaults={
            "month_id": month, "company_id": comp, "rating": rating})
Esempio n. 3
0
 def mean(cls, month):
     stats = cls.objects.filter(month_id=month)
     total = sum(stats.values_list("rating", flat=True))
     N = stats.count()
     return total / N