def __init__(self, which_case, LUT, RandomSamples, interp_type):
     print 'SciPy Interpolating ', which_case
     
     select = {\
     "rhoe":('Density','StaticEnergy'),\
     "PT":('Pressure','Temperature'),\
     "Prho":('Pressure','Density'),\
     "rhoT":('Density','Temperature'),\
     "Ps":('Pressure','Entropy'),\
     "hs":('Enthalpy','Entropy')\
     }
     
     thermo1, thermo2, = select[which_case]
     x =getattr(LUT,thermo1)
     y =getattr(LUT,thermo2)
     samples_x = getattr(RandomSamples,thermo1)
     samples_y = getattr(RandomSamples,thermo2)
     setattr(self,thermo1, samples_x)
     setattr(self,thermo2, samples_y)
     
     variables = sp.array(['Temperature','Density','Enthalpy','StaticEnergy',\
     'Entropy','Pressure','SoundSpeed2','dPdrho_e','dPde_rho',\
     'dTdrho_e','dTde_rho','Cp','Mu','Kt']);
     
     for var in variables[sp.where((variables!=thermo1) * (variables!=thermo2))]:
         z = getattr(LUT,var)            
         interp_func = sp.interpolate.griddata((x,y),z,sp.column_stack((samples_x,samples_y)),\
         method=interp_type) 
         nan_index = sp.where(sp.isnan(interp_func))
         interp_func[nan_index]= sp.interpolate.griddata((x,y),z,\
         sp.column_stack((samples_x[nan_index],samples_y[nan_index])),\
         method='nearest') 
         setattr(self,var,interp_func)
         
     return  
Esempio n. 2
0
def GetFermiSigns(filename, refstate=None, channel=None):
    attr = GetAttr(filename)
    filetype = ''
    try:
        filetype = attr['type']
    except KeyError:
        mo = re.match('.*/?[0-9]+-(.*)\.h5', filename)
        filetype = mo.groups()[0]
    L = attr['L']
    if refstate == None:
        refstate = sc.zeros(2 * L * L)
        refstate[0::2] = 1
    if filetype == 'WaveFunction':
        hfile = h5py.File(filename, 'r')
        if 'states_up' in hfile.keys():
            states = sc.column_stack([hfile['states_up'], hfile['states_do']])
        else:
            states = sc.column_stack([hfile['states_0'], hfile['states_1']])
        hfile.close()
        return sf.fermisigns(states, refstate)
    else:
        if channel == None:
            channel = attr['channel']
        L = int(attr['L'])
        if 'phasex' in attr.keys():
            shift = [attr['phasex'] / 2.0, attr['phasey'] / 2.0]
        else:
            shift = [attr['phase_shift_x'] / 2.0, attr['phase_shift_y'] / 2.0]
        q = [float(attr['qx']) / L, float(attr['qy']) / L]
        if channel == 'trans':
            return sf.transfermisigns(L, L, shift, q)
        elif channel == 'long':
            return sf.longfermisigns(L, L, shift, q)
        else:
            raise KeyError('\"channel\" must be either \"trans\" or \"long\".')
Esempio n. 3
0
    def _packData(self, G1, indices2select, effect):
        if effect == 'fixed':
            if G1 is None and self.G0 is None:
                data = self.X[self.data_permutation][indices2select]
            elif G1 is None:
                data = sp.column_stack((self.G0[self.data_permutation][indices2select],
                                        self.X[self.data_permutation][indices2select]))
            elif self.G0 is None:
                data = sp.column_stack((G1[self.data_permutation][indices2select],
                                        self.X[self.data_permutation][indices2select]))
            else:
                data = sp.column_stack((self.G0[self.data_permutation][indices2select],
                                        G1[self.data_permutation][indices2select],
                                        self.X[self.data_permutation][indices2select]))
        elif effect == 'mixed':
            X = self.X[self.data_permutation]
            if self.G0 is not None:
                G0 = self.G0[self.data_permutation]
            if G1 is not None:
                G1 = G1[self.data_permutation]

            data = []
            for i in range(len(indices2select)):

                lis = [X[indices2select[i]]]
                if G0 is not None:
                    lis.append( G0[indices2select[i]] )
                if G1 is not None:
                    lis.append( G1[indices2select[i]] )

                data.append( lis )
            else:
                assert False, 'Unkown effect type.'

        return (data, self.Y[self.data_permutation][indices2select])
Esempio n. 4
0
    def _packData(self, G1, indices2select, effect):
        if effect == 'fixed':
            if G1 is None and self.G0 is None:
                data = self.X[self.data_permutation][indices2select]
            elif G1 is None:
                data = sp.column_stack((self.G0[self.data_permutation][indices2select],
                                        self.X[self.data_permutation][indices2select]))
            elif self.G0 is None:
                data = sp.column_stack((G1[self.data_permutation][indices2select],
                                        self.X[self.data_permutation][indices2select]))
            else:
                data = sp.column_stack((self.G0[self.data_permutation][indices2select],
                                        G1[self.data_permutation][indices2select],
                                        self.X[self.data_permutation][indices2select]))
        elif effect == 'mixed':
            X = self.X[self.data_permutation]
            if self.G0 is not None:
                G0 = self.G0[self.data_permutation]
            if G1 is not None:
                G1 = G1[self.data_permutation]

            data = []
            for i in range(len(indices2select)):

                lis = [X[indices2select[i]]]
                if G0 is not None:
                    lis.append( G0[indices2select[i]] )
                if G1 is not None:
                    lis.append( G1[indices2select[i]] )

                data.append( lis )
            else:
                assert False, 'Unkown effect type.'

        return (data, self.Y[self.data_permutation][indices2select])
Esempio n. 5
0
def GetFermiSigns(filename,refstate=None,channel=None):
    attr=GetAttr(filename)
    filetype=''
    try:
        filetype=attr['type']
    except KeyError:
        mo=re.match('.*/?[0-9]+-(.*)\.h5',filename)
        filetype=mo.groups()[0]
    L=attr['L']
    if refstate==None:
        refstate=sc.zeros(2*L*L)
        refstate[0::2]=1
    if filetype=='WaveFunction':
        hfile=h5py.File(filename,'r')
        if 'states_up' in hfile.keys():
            states=sc.column_stack([hfile['states_up'],hfile['states_do']])
        else:
            states=sc.column_stack([hfile['states_0'],hfile['states_1']])
        hfile.close()
        return sf.fermisigns(states,refstate)
    else:
        if channel==None:
            channel=attr['channel']
        L=int(attr['L'])
        if 'phasex' in attr.keys():
            shift=[attr['phasex']/2.0,attr['phasey']/2.0]
        else:
            shift=[attr['phase_shift_x']/2.0,attr['phase_shift_y']/2.0]
        q=[float(attr['qx'])/L,float(attr['qy'])/L]
        if channel=='trans':
            return sf.transfermisigns(L,L,shift,q)
        elif channel=='long':
            return sf.longfermisigns(L,L,shift,q)
        else:
            raise KeyError('\"channel\" must be either \"trans\" or \"long\".')
Esempio n. 6
0
    def bm29write(self,
                  filename=None,
                  newdata=None,
                  comment=True,
                  newdatacol_head=None,
                  columns=None):
        """function to write a bm29 file, define a series of array with the same name
        of column defined in the file
        input \n
        filename =>string
        newdata =>numpy array
        comment =>boolean or new comments line
        col_head =>string heders of column
        columns =>list of strings with the columns to write 
        P.S or newdata and col_head or columns
        """
        if not (filename):
            try:
                filename = getattr(self, "fullfilename")
            except:
                raise FileFormatError(
                    'no filename specified and self.fullfilenames not defined')
        if os.path.exists(filename):
            filename += ".1"
        outFile = open(filename, 'w')

        if comment is True:
            if hasattr(self, "comments"):
                outFile.writelines(self.comments[:-2])
        elif comment is False:
            pass
        else:
            outFile.writelines(comment)
        if newdata is None:
            if columns:
                outFile.writelines("#N " + str(len(columns)) + "\n")
                col_head = "#L " + " ".join(columns)
                outFile.writelines(col_head + "\n")
                f = lambda x: getattr(self, x)
                newdata = scipy.column_stack(map(f, columns))
            else:
                if self.All_Column == False:
                    outFile.writelines("#N 2\n")
                    outFile.writelines("#L   E     Mu\n")
                    newdata = scipy.column_stack((self.E, self.Mu))
                elif self.All_Column == True:
                    try:
                        outFile.writelines(self.comments[-2])
                        outFile.write("#L  " +
                                      " ".join(getattr(self, "col_head")))
                        outFile.write("\n")
                        newdata = self.data
                    except:
                        pass
        scipy.savetxt(outFile, newdata, fmt='%1.10f')
        outFile.close
        return
Esempio n. 7
0
    def __init__(self,ionoin,configfile,timein=None,mattype='matrix'):
        """ This will create the RadarSpaceTimeOperator object.
            Inputs
                ionoin - The input ionocontainer. This can be either an string that is a ionocontainer file,
                    a list of ionocontainer objects or a list a strings to ionocontainer files.
                config  - The ini file that used to set up the simulation.
                timein - A Ntx2 numpy array of times.
                RSTOPinv - The inverse operator object.
                invmat - The inverse matrix to the original operator.
        """
        mattype=mattype.lower()
        accepttypes=['matrix','sim','real']
        if not mattype in accepttypes:
            raise ValueError('Matrix type can only be {0}'.format(', '.join(accepttypes)))
        d2r = sp.pi/180.0
        (sensdict,simparams) = readconfigfile(configfile)
        # determine if the input ionocontainer is a string, a list of strings or a list of ionocontainers.
        ionoin=makeionocombined(ionoin)
        #Input location
        self.Cart_Coords_In = ionoin.Cart_Coords
        self.Sphere_Coords_In = ionoin.Sphere_Coords

        # Set the input times
        if timein is None:
            self.Time_In = ionoin.Time_Vector
        else:
            self.Time_In = timein

        #Create an array of output location based off of the inputs
        rng_vec2 = simparams['Rangegatesfinal']
        nrgout = len(rng_vec2)

        angles = simparams['angles']
        nang =len(angles)

        ang_data = sp.array([[iout[0],iout[1]] for iout in angles])
        rng_all = sp.repeat(rng_vec2,(nang),axis=0)
        ang_all = sp.tile(ang_data,(nrgout,1))
        self.Sphere_Coords_Out = sp.column_stack((rng_all,ang_all))
        (R_vec,Az_vec,El_vec) = (self.Sphere_Coords_Out[:,0],self.Sphere_Coords_Out[:,1],
            self.Sphere_Coords_Out[:,2])
        xvecmult = sp.sin(Az_vec*d2r)*sp.cos(El_vec*d2r)
        yvecmult = sp.cos(Az_vec*d2r)*sp.cos(El_vec*d2r)
        zvecmult = sp.sin(El_vec*d2r)
        X_vec = R_vec*xvecmult
        Y_vec = R_vec*yvecmult
        Z_vec = R_vec*zvecmult

        self.Cart_Coords_Out = sp.column_stack((X_vec,Y_vec,Z_vec))
        self.Time_Out = sp.column_stack((simparams['Timevec'],simparams['Timevec']+simparams['Tint']))+self.Time_In[0,0]
        self.simparams=simparams
        self.sensdict=sensdict
        self.lagmat = self.simparams['amb_dict']['WttMatrix']
        self.mattype=mattype
        # create the matrix
        (self.RSTMat,self.overlaps,self.blocklocs) = makematPA(ionoin.Sphere_Coords,ionoin.Cart_Coords,ionoin.Time_Vector,configfile,ionoin.Velocity,mattype)
Esempio n. 8
0
def makedata(testpath, tint):
    """ This will make the input data for the test case. The data will have cases
        where there will be enhancements in Ne, Ti and Te in one location. Each 
        case will have 3 integration periods. The first 3 integration periods will
        be the default set of parameters Ne=Ne=1e11 and Te=Ti=2000.
        Inputs
            testpath - Directory that will hold the data.
            tint - The integration time in seconds.
    """
    testpath = Path(testpath).expanduser()
    finalpath = testpath.joinpath('Origparams')
    if not finalpath.is_dir():
        finalpath.mkdir()
    data = sp.array([[1e11, 1100.], [1e11, 2100.]])
    z = (50. + sp.arange(50) * 10.)
    nz = len(z)
    params = sp.tile(data[sp.newaxis, sp.newaxis], (nz, 1, 1, 1))
    epnt = range(20, 22)
    p2 = sp.tile(params, (1, 4, 1, 1))
    #enhancement in Ne
    p2[epnt, 1, :, 0] = 5e11
    #enhancement in Ti
    p2[epnt, 2, 0, 1] = 2200.
    #enhancement in Te
    p2[epnt, 3, 1, 1] = 4200.
    coords = sp.column_stack((sp.ones(nz), sp.ones(nz), z))
    species = ['O+', 'e-']
    times = sp.array([[0, 1e3]])
    times2 = sp.column_stack((sp.arange(0, 4), sp.arange(1, 5))) * 3 * tint
    vel = sp.zeros((nz, 1, 3))
    vel2 = sp.zeros((nz, 4, 3))
    Icontstart = IonoContainer(coordlist=coords,
                               paramlist=params,
                               times=times,
                               sensor_loc=sp.zeros(3),
                               ver=0,
                               coordvecs=['x', 'y', 'z'],
                               paramnames=None,
                               species=species,
                               velocity=vel)
    Icont1 = IonoContainer(coordlist=coords,
                           paramlist=p2,
                           times=times2,
                           sensor_loc=sp.zeros(3),
                           ver=0,
                           coordvecs=['x', 'y', 'z'],
                           paramnames=None,
                           species=species,
                           velocity=vel2)

    finalfile = finalpath.joinpath('0 stats.h5')
    Icont1.saveh5(str(finalfile))
    Icontstart.saveh5(str(testpath.joinpath('startfile.h5')))
Esempio n. 9
0
def writeCSVOutput(hdf5File=None,cout=None):
    f = h5py.File(hdf5File,'r')

    csv_filename = os.path.join(cout,f['phenotype_name'].value.replace(" ","_") + ".csv") 
    csv_header = None
    csv_matrix = None
    
    if "betas" in f.keys():
        csv_header = sp.array(["CHR","Positions","P-Value","TestStatistic","Q-Value","Benjamini-Hochberg-P-Value","Benjamini-Hochberg-Yekutieli-P-Value","Beta0","SEBeta0","Beta1","SEBeta1","MAF","SNP-Hash"])
    else:
        csv_header = sp.array(["CHR","Positions","P-Value","TestStatistic","Q-Value","Benjamini-Hochberg-P-Value","Benjamini-Hochberg-Yekutieli-P-Value","MAF","SNP-Hash"])
    tmp_matrix = None
    if "betas" in f.keys():
        tmp_matrix = sp.column_stack([sp.array(f["chromosomes"],dtype="S50"),
                                          f['positions'],
                                          f['p_values'],
                                          f['scores'],
                                          f['q_values'],
                                          f['bh_p_values'],
                                          f['bhy_p_values'],
                                          f['betas'][:,0],
                                          f['betas_se'][:,0],
                                          f['betas'][:,1],
                                          f['betas_se'][:,1],
                                          f['maf'],
                                          f['snp_hash']])
    else:
        tmp_matrix = sp.column_stack([sp.array(f["chromosomes"],dtype="S50"),
                              f['positions'],
                              f['p_values'],
                              f['scores'],
                              f['q_values'],
                              f['bh_p_values'],
                              f['bhy_p_values'],
                              f['maf'],
                              f['snp_hash']])
     
    csv_matrix = tmp_matrix
    mf = open(csv_filename,'w')
    string = ""
    for i in xrange(csv_header.shape[0]):
        string += str(csv_header[i]) + ","
    mf.write(string[:-1] + "\n")
    for i in xrange(csv_matrix.shape[0]):
        string = ""
        for j in xrange(csv_matrix.shape[1]):
            string += str(csv_matrix[i,j]) + ","
        mf.write(string[:-1] + "\n")
    mf.close()
    f.close()
Esempio n. 10
0
 def bm29write(self, filename= None,  newdata=None, comment=True, newdatacol_head=None, columns=None):
     """function to write a bm29 file, define a series of array with the same name
     of column defined in the file
     input \n
     filename =>string
     newdata =>numpy array
     comment =>boolean or new comments line
     col_head =>string heders of column
     columns =>list of strings with the columns to write 
     P.S or newdata and col_head or columns
     """
     if not(filename):
         try:
             filename =getattr(self,"fullfilename")
         except:
             raise FileFormatError('no filename specified and self.fullfilenames not defined')
     if os.path.exists(filename):
             filename += ".1"
     outFile = open(filename, 'w')
     
     if comment is True:
         if hasattr(self, "comments"):
             outFile.writelines(self.comments[:-2])
     elif comment is False:
           pass
     else: outFile.writelines(comment)
     if newdata is None:
         if columns:
             outFile.writelines("#N "+str(len(columns))+ "\n")   
             col_head= "#L "+" ".join(columns)
             outFile.writelines(col_head+"\n")
             f=lambda x: getattr(self,x)
             newdata= scipy.column_stack(map(f,columns))
         else:
             if self.All_Column == False:
                 outFile.writelines("#N 2\n")                    
                 outFile.writelines("#L   E     Mu\n")
                 newdata= scipy.column_stack((self.E, self.Mu))
             elif self.All_Column == True: 
                 try: 
                     outFile.writelines(self.comments[-2])                        
                     outFile.write("#L  "+" ".join(getattr(self, "col_head")))
                     outFile.write("\n")
                     newdata = self.data
                 except:
                     pass    
     scipy.savetxt(outFile, newdata, fmt= '%1.10f')
     outFile.close
     return
Esempio n. 11
0
def create_csv(file_path=None, csv_filename=None):
    f = h5py.File(file_path, 'r')
    csv_filename = os.path.join(
        csv_filename, f['phenotype_name'].value.replace(" ", "_") + ".csv")
    csv_header = None
    csv_matrix = None

    if "betas" in f.keys():
        csv_header = sp.array([
            "CHR", "Positions", "P-Value", "TestStatistic", "Q-Value",
            "Benjamini-Hochberg-P-Value",
            "Benjamini-Hochberg-Yekutieli-P-Value", "Beta0", "SEBeta0",
            "Beta1", "SEBeta1", "MAF", "SNP-Hash"
        ])
    else:
        csv_header = sp.array([
            "CHR", "Positions", "P-Value", "TestStatistic", "Q-Value",
            "Benjamini-Hochberg-P-Value",
            "Benjamini-Hochberg-Yekutieli-P-Value", "MAF", "SNP-Hash"
        ])
    tmp_matrix = None
    if "betas" in f.keys():
        tmp_matrix = sp.column_stack([
            sp.array(f["chromosomes"], dtype="S50"), f['positions'],
            f['p_values'], f['scores'], f['q_values'], f['bh_p_values'],
            f['bhy_p_values'], f['betas'][:, 0], f['betas_se'][:, 0],
            f['betas'][:, 1], f['betas_se'][:, 1], f['maf'], f['snp_hash']
        ])
    else:
        tmp_matrix = sp.column_stack([
            sp.array(f["chromosomes"], dtype="S50"), f['positions'],
            f['p_values'], f['scores'], f['q_values'], f['bh_p_values'],
            f['bhy_p_values'], f['maf'], f['snp_hash']
        ])

    csv_matrix = tmp_matrix
    mf = open(csv_filename, 'w')
    string = ""
    for i in xrange(csv_header.shape[0]):
        string += str(csv_header[i]) + ","
    mf.write(string[:-1] + "\n")
    for i in xrange(csv_matrix.shape[0]):
        string = ""
        for j in xrange(csv_matrix.shape[1]):
            string += str(csv_matrix[i, j]) + ","
        mf.write(string[:-1] + "\n")
    mf.close()
    f.close()
Esempio n. 12
0
def pyglowinput(
        latlonalt=[65.1367, -147.4472, 250.00],
        dn_list=[datetime(2015, 3, 21, 8, 00),
                 datetime(2015, 3, 21, 20, 00)],
        z=None):

    if z is None:
        z = sp.linspace(50., 1000., 200)
    dn_diff = sp.diff(dn_list)
    dn_diff_sec = dn_diff[-1].seconds
    timelist = sp.array([calendar.timegm(i.timetuple()) for i in dn_list])
    time_arr = sp.column_stack((timelist, sp.roll(timelist, -1)))
    time_arr[-1, -1] = time_arr[-1, 0] + dn_diff_sec

    v = []
    coords = sp.column_stack((sp.zeros((len(z), 2), dtype=z.dtype), z))
    all_spec = ['O+', 'NO+', 'O2+', 'H+', 'HE+']
    Param_List = sp.zeros((len(z), len(dn_list), len(all_spec), 2))
    for idn, dn in enumerate(dn_list):
        for iz, zcur in enumerate(z):
            latlonalt[2] = zcur
            pt = Point(dn, *latlonalt)
            pt.run_igrf()
            pt.run_msis()
            pt.run_iri()

            # so the zonal pt.u and meriodinal winds pt.v  will coorispond to x and y even though they are
            # supposed to be east west and north south. Pyglow does not seem to have
            # vertical winds.
            v.append([pt.u, pt.v, 0])

            for is1, ispec in enumerate(all_spec):
                Param_List[iz, idn, is1, 0] = pt.ni[ispec] * 1e6

            Param_List[iz, idn, :, 1] = pt.Ti

            Param_List[iz, idn, -1, 0] = pt.ne * 1e6
            Param_List[iz, idn, -1, 1] = pt.Te
    Param_sum = Param_List[:, :, :, 0].sum(0).sum(0)
    spec_keep = Param_sum > 0.
    species = sp.array(all_spec)[spec_keep[:-1]].tolist()
    species.append('e-')
    Param_List[:, :] = Param_List[:, :, spec_keep]
    Iono_out = IonoContainer(coords,
                             Param_List,
                             times=time_arr,
                             species=species)
    return Iono_out
Esempio n. 13
0
def readMahalih5(filename,des_site):
    """ This function will read the mahali GPS data into a GeoData data structure.
        The user only has to give a filename and name of the desired site.
        Input
            filename - A string that holds the file name.
            des_site - The site name. Should be listed in the h5 file in the
                table sites.
    """
    h5fn = Path(filename).expanduser()

    with h5py.File(str(h5fn), "r", libver='latest') as f:

        despnts = sp.where(f['data']['site']==des_site)[0]
        # TODO: hard coded for now
        doy =  doy= f['data']['time'][despnts]
        year = 2015*sp.ones_like(doy,dtype=int)

        TEC = f['data']['los_tec'][despnts]

        nTEC = f['data']['err_los_tec'][despnts]

        vTEC = f['data']['vtec'][despnts]
        az2sat = f['data']['az'][despnts]
        el2sat = f['data']['az'][despnts]

        piercelat = f['data']['pplat'][despnts]
        piercelong = f['data']['pplon'][despnts]
        satnum= f['data']['prn'][despnts]
        recBias = f['data']['rec_bias'][despnts]
        nrecBias = f['data']['err_rec_bias'][despnts]

    # Make the integration time on the order of 15 seconds.
    if (year==year[1]).all():
        unixyear =(datetime(year[0],1,1,0,0,0,tzinfo=UTC) - EPOCH).total_seconds()
        uttime = unixyear + sp.round_(24*3600*sp.column_stack((doy,doy+15./24./3600.))) # Making the difference in time to be a minute
    else:
        (y_u,y_iv) = np.unique(year,return_inverse=True)
        unixyearu = sp.array([(datetime(iy,1,1,0,0,0,tzinfo=UTC) - EPOCH).total_seconds() for iy in y_u])
        unixyear = unixyearu[y_iv]
        uttime = unixyear + 24*3600*sp.column_stack((doy,doy+15./24./3600.))


    data = {'TEC':TEC,'nTEC':nTEC,'vTEC':vTEC,'recBias':recBias,'nrecBias':nrecBias,'satnum':satnum,'az2sat':az2sat,'el2sat':el2sat}
    coordnames = 'WGS84'
    sensorloc = sp.nan*sp.ones(3)
    dataloc = sp.column_stack((piercelat,piercelong, 350e3*sp.ones_like(piercelat)))

    return (data,coordnames,dataloc,sensorloc,uttime)
Esempio n. 14
0
def readMahalih5(filename,des_site):
    """ This function will read the mahali GPS data into a GeoData data structure.
        The user only has to give a filename and name of the desired site.
        Input
            filename - A string that holds the file name.
            des_site - The site name. Should be listed in the h5 file in the
                table sites.
    """
    h5fn = Path(filename).expanduser()

    with h5py.File(str(h5fn), "r", libver='latest') as f:

        despnts = sp.where(f['data']['site']==des_site)[0]
        # TODO: hard coded for now
        doy =  doy= f['data']['time'][despnts]
        year = 2015*sp.ones_like(doy,dtype=int)

        TEC = f['data']['los_tec'][despnts]

        nTEC = f['data']['err_los_tec'][despnts]

        vTEC = f['data']['vtec'][despnts]
        az2sat = f['data']['az'][despnts]
        el2sat = f['data']['az'][despnts]

        piercelat = f['data']['pplat'][despnts]
        piercelong = f['data']['pplon'][despnts]
        satnum= f['data']['prn'][despnts]
        recBias = f['data']['rec_bias'][despnts]
        nrecBias = f['data']['err_rec_bias'][despnts]

    # Make the integration time on the order of 15 seconds.
    if (year==year[1]).all():
        unixyear =(datetime(year[0],1,1,0,0,0,tzinfo=UTC) - EPOCH).total_seconds()
        uttime = unixyear + sp.round_(24*3600*sp.column_stack((doy,doy+15./24./3600.))) # Making the difference in time to be a minute
    else:
        (y_u,y_iv) = np.unique(year,return_inverse=True)
        unixyearu = sp.array([(datetime(iy,1,1,0,0,0,tzinfo=UTC) - EPOCH).total_seconds() for iy in y_u])
        unixyear = unixyearu[y_iv]
        uttime = unixyear + 24*3600*sp.column_stack((doy,doy+15./24./3600.))


    data = {'TEC':TEC,'nTEC':nTEC,'vTEC':vTEC,'recBias':recBias,'nrecBias':nrecBias,'satnum':satnum,'az2sat':az2sat,'el2sat':el2sat}
    coordnames = 'WGS84'
    sensorloc = sp.nan*sp.ones(3)
    dataloc = sp.column_stack((piercelat,piercelong, 350e3*sp.ones_like(piercelat)))

    return (data,coordnames,dataloc,sensorloc,uttime)
Esempio n. 15
0
def makedata(testpath):
    """
        This will make the input data for the test case. The data will have the
        default set of parameters Ne=Ne=1e11 and Te=Ti=2000.
        Inputs
            testpath - Directory that will hold the data.

    """
    finalpath = testpath.joinpath('Origparams')
    if not finalpath.exists():
        finalpath.mkdir()
    data = SIMVALUES
    z = sp.linspace(50., 1e3, 50)
    nz = len(z)
    params = sp.tile(data[sp.newaxis, sp.newaxis, :, :], (nz, 1, 1, 1))
    coords = sp.column_stack((sp.ones(nz), sp.ones(nz), z))
    species = ['O+', 'e-']
    times = sp.array([[0, 1e9]])
    vel = sp.zeros((nz, 1, 3))
    Icont1 = IonoContainer(coordlist=coords,
                           paramlist=params,
                           times=times,
                           sensor_loc=sp.zeros(3),
                           ver=0,
                           coordvecs=['x', 'y', 'z'],
                           paramnames=None,
                           species=species,
                           velocity=vel)

    finalfile = finalpath.joinpath('0 stats.h5')
    Icont1.saveh5(str(finalfile))
    # set start temp to 1000 K.
    Icont1.Param_List[:, :, :, 1] = 1e3
    Icont1.saveh5(str(testpath.joinpath('startfile.h5')))
Esempio n. 16
0
def main():
    saved_handler = sp.seterrcall(err_handler)
    saved_err = sp.seterr(all='call')

    print('============ Part 1: Plotting =============================')
    x, y = load_data('ex2/ex2data1.txt')
    plot_data(x, y)
    pl.show()

    print('============ Part 2: Compute Cost and Gradient ============')
    m, n = x.shape
    x = sp.column_stack((sp.ones((m, 1)), x))
    init_theta = sp.asmatrix(sp.zeros((n + 1, 1)))
    cost, grad = cost_function(init_theta, x, y)
    print('Cost at initial theta: %s' % cost)
    print('Gradient at initial theta:\n %s' % grad)

    print('============ Part 3: Optimizing minimize ====================')
    # res = op.minimize(cost_function, init_theta, args=(x, y), jac=True, method='Newton-CG')
    res = op.minimize(cost_function_without_grad, init_theta, args=(x, y), method='Powell')
    # print('Cost at theta found by fmin: %s' % cost)
    print('Result by minimize:\n%s' % res)
    plot_decision_boundary(res.x, x, y)
    pl.show()

    print('============ Part 4: Optimizing fmin ====================')
    res = op.fmin(cost_function_without_grad, init_theta, args=(x, y))
    # print('Cost at theta found by fmin: %s' % cost)
    print('Result by fmin:\n%s' % res)
    plot_decision_boundary(res, x, y)
    pl.show()

    sp.seterrcall(saved_handler)
    sp.seterr(**saved_err)
Esempio n. 17
0
def makedata(testpath):
    """ This will make the input data for the test case. The data will have the 
        default set of parameters Ne=Ne=1e11 and Te=Ti=2000.
        Inputs
            testpath - Directory that will hold the data.
            
    """
    finalpath = testpath.joinpath('Origparams')
    if not finalpath.exists():
        finalpath.mkdir()
    data=SIMVALUES
    z = sp.linspace(50.,1e3,50)
    nz = len(z)
    params = sp.tile(data[sp.newaxis,sp.newaxis,:,:],(nz,1,1,1))
    coords = sp.column_stack((sp.ones(nz),sp.ones(nz),z))
    species=['O+','e-']
    times = sp.array([[0,1e3]])
    vel = sp.zeros((nz,1,3))
    Icont1 = IonoContainer(coordlist=coords,paramlist=params,times = times,sensor_loc = sp.zeros(3),ver =0,coordvecs =
        ['x','y','z'],paramnames=None,species=species,velocity=vel)
        
    finalfile = finalpath.joinpath('0 stats.h5')
    Icont1.saveh5(str(finalfile))
    # set start temp to 1000 K.
    Icont1.Param_List[:,:,:,1]=1e3
    Icont1.saveh5(str(testpath.joinpath('startfile.h5')))
 def apply_flow(self,flowrate):
     r'''
     Convert the invaded sequence into an invaded time for a given flow rate
     considering the volume of invaded pores and throats.
     
     Parameters
     ----------
     flowrate : float
         The flow rate of the injected fluid
         
     Returns
     -------
     Creates a throat array called 'invasion_time' in the Algorithm 
     dictionary
     
     '''
     P12 = self._net['throat.conns']  # List of throats conns
     a = self['throat.invasion_sequence']  # Invasion sequence
     b = sp.argsort(self['throat.invasion_sequence'])
     P12_inv = self['pore.invasion_sequence'][P12]  # Pore invasion sequence
     # Find if the connected pores were invaded with or before each throat
     P1_inv = P12_inv[:,0] == a
     P2_inv = P12_inv[:,1] == a
     c = sp.column_stack((P1_inv,P2_inv))  
     d = sp.sum(c,axis=1,dtype=bool)  # List of Pores invaded with each throat
     # Find volume of these pores
     P12_vol = sp.zeros((self.Nt,))
     P12_vol[d] = self._net['pore.volume'][P12[c]]
     # Add invaded throat volume to pore volume (if invaded)
     T_vol = P12_vol + self._net['throat.volume']
     # Cumulative sum on the sorted throats gives cumulated inject volume
     e = sp.cumsum(T_vol[b]/flowrate)
     t = sp.zeros((self.Nt,))
     t[b] = e  # Convert back to original order
     self._phase['throat.invasion_time'] = t
    def apply_flow(self, flowrate):
        r"""
        Convert the invaded sequence into an invaded time for a given flow rate
        considering the volume of invaded pores and throats.

        Parameters
        ----------
        flowrate : float
            The flow rate of the injected fluid

        Returns
        -------
        Creates a throat array called 'invasion_time' in the Algorithm
        dictionary

        """
        P12 = self._net['throat.conns']
        a = self['throat.invasion_sequence']
        b = sp.argsort(self['throat.invasion_sequence'])
        P12_inv = self['pore.invasion_sequence'][P12]
        # Find if the connected pores were invaded with or before each throat
        P1_inv = P12_inv[:, 0] == a
        P2_inv = P12_inv[:, 1] == a
        c = sp.column_stack((P1_inv, P2_inv))
        d = sp.sum(c, axis=1, dtype=bool)  # List of Pores invaded with each throat
        # Find volume of these pores
        P12_vol = sp.zeros((self.Nt,))
        P12_vol[d] = self._net['pore.volume'][P12[c]]
        # Add invaded throat volume to pore volume (if invaded)
        T_vol = P12_vol + self._net['throat.volume']
        # Cumulative sum on the sorted throats gives cumulated inject volume
        e = sp.cumsum(T_vol[b] / flowrate)
        t = sp.zeros((self.Nt,))
        t[b] = e  # Convert back to original order
        self._phase['throat.invasion_time'] = t
Esempio n. 20
0
def makeinputh5(Iono, basedir):
    basedir = Path(basedir).expanduser()

    Param_List = Iono.Param_List
    dataloc = Iono.Cart_Coords
    times = Iono.Time_Vector
    velocity = Iono.Velocity
    zlist, idx = sp.unique(dataloc[:, 2], return_inverse=True)
    siz = list(Param_List.shape[1:])
    vsiz = list(velocity.shape[1:])

    datalocsave = sp.column_stack(
        (sp.zeros_like(zlist), sp.zeros_like(zlist), zlist))
    outdata = sp.zeros([len(zlist)] + siz)
    outvel = sp.zeros([len(zlist)] + vsiz)

    for izn, iz in enumerate(zlist):
        arr = sp.argwhere(idx == izn)
        outdata[izn] = sp.mean(Param_List[arr], axis=0)
        outvel[izn] = sp.mean(velocity[arr], axis=0)

    Ionoout = IonoContainer(datalocsave,
                            outdata,
                            times,
                            Iono.Sensor_loc,
                            ver=0,
                            paramnames=Iono.Param_Names,
                            species=Iono.Species,
                            velocity=outvel)

    ofn = basedir / 'startdata.h5'
    print('writing {}'.format(ofn))
    Ionoout.saveh5(str(ofn))
Esempio n. 21
0
    def train(self):
        if self.__algo_model=="MWUrt" or self.__algo_model=="WCrt":
            data = asso.MatrixData(x=self.__x,y=self.__y,covariates=self.__cov)
            self.__ass.setData(data)
            self.__ass.train()
        else:
            self.__ass.setPhenotype(self.__y)
            self.__ass.setGenotype(self.__x)

            if not self.__cov is None:
                self.__ass.setCovariates(sp.column_stack([sp.ones(self.__y.shape),self.__cov]))
            if self.__permutation==True:
                if self.__x.shape[1]<1000:
                    self.__perms = 1000000
                elif self.__x.shape[1]<10000:
                    self.__perms = 100000
                elif self.__x.shape[1]<100000:
                    self.__perms = 10000
                elif self.__x.shape[1]<1000000:
                    self.__perms = 1000
                elif self.__x.shape[1]<10000000:
                    self.__perms = 100
                else:
                    self.__perms = 10
                print "SNPS: ", self.__x.shape[1]
                print "Perms: ", self.__perms
                self.__ass.permutations(self.__perms)
            else:
                self.__ass.test_associations()
Esempio n. 22
0
File: dp.py Progetto: jrnold/psc585
    def backsolve(self, T=None, vterm=None):
        """Solve finite system by backward recursion

        Parameters
        -------------
        T : int, optional
            Number of periods of time.

        Returns
        ----------
        X : array, shape (n, T)
            Optimal controls. An optimal policy for each starting state
        V : array, shape (n, T + 1)
            Value function.             

        """
        if T is None:
            if self.T is not None:
                T = self.T
            else:
                print ("Not a finite time model")
                return
        if vterm is None and self.vterm is None:
            vterm = sp.zeros(self.n)
        else:
            vterm = self.vterm
        x = sp.zeros((self.n, T), dtype=int)
        v = sp.column_stack((sp.zeros((self.n, T)), vterm))
        pstar = sp.zeros((self.n, self.n, T))
        for t in sp.arange(T - 1, -1, -1):
            v[ :, t] , x[ :, t]  = self.valmax(v[ : , t + 1])
            pstar[..., t] = self.valpol(x[:, t])[0]
        return (x, v, pstar)
Esempio n. 23
0
    def train(self):
        if self.__algo_model == "MWUrt" or self.__algo_model == "WCrt":
            data = asso.MatrixData(x=self.__x,
                                   y=self.__y,
                                   covariates=self.__cov)
            self.__ass.setData(data)
            self.__ass.train()
        else:
            self.__ass.setPhenotype(self.__y)
            self.__ass.setGenotype(self.__x)

            if not self.__cov is None:
                self.__ass.setCovariates(
                    sp.column_stack([sp.ones(self.__y.shape), self.__cov]))
            if self.__permutation == True:
                if self.__x.shape[1] < 1000:
                    self.__perms = 1000000
                elif self.__x.shape[1] < 10000:
                    self.__perms = 100000
                elif self.__x.shape[1] < 100000:
                    self.__perms = 10000
                elif self.__x.shape[1] < 1000000:
                    self.__perms = 1000
                elif self.__x.shape[1] < 10000000:
                    self.__perms = 100
                else:
                    self.__perms = 10
                print "SNPS: ", self.__x.shape[1]
                print "Perms: ", self.__perms
                self.__ass.permutations(self.__perms)
            else:
                self.__ass.test_associations()
Esempio n. 24
0
    def kmeanspp_initialisation( self, X ):
        """Initialise means using K-Means++"""
        N, _ = X.shape
        k, d = self.k, self.d
        M = []

        # Choose one center amongst the X at random
        m = sc.random.randint( N )
        M.append( X[m] )

        # Choose k centers
        while( len( M ) < self.k ):
            # Create a probability distribution D^2 from the previous mean
            D = cdist( X, M ).min( 1 )**2
            assert( D.shape == (N,) )

            # Normalise and sample a new point
            D /= D.sum()

            m = sc.random.multinomial( 1, D ).argmax()
            M.append( X[m] )

        M = sc.column_stack( M )
        sigma = sc.sqrt(cdist( X, M.T, 'sqeuclidean').sum(0)/(N))
        w = ones( k )/float(k)

        return M, sigma, w
Esempio n. 25
0
def PathSPCA(A, k):
    M, N = A.shape
    # Loop through variables
    As = ((A * A).sum(axis=0))
    vmax = As.max()
    vp = As.argmax()
    subset = [vp]
    vars = []
    res = subset
    rhos = [(A[:, vp] * A[:, vp]).sum()]
    Stemp = array([rhos])
    for i in range(1, k):
        lev, v = la.eig(Stemp)
        vars.append(real(lev).max())
        vp = real(lev).argmax()
        x = dot(A[:, subset], v[:, vp])
        x = x / la.norm(x)
        seto = list(range(0, N))
        for j in subset:
            seto.remove(j)
        vals = dot(x.T, A[:, seto])
        vals = vals * vals
        rhos.append(vals.max())
        vpo = seto[vals.argmax()]
        Stemp = column_stack((Stemp, dot(A[:, subset].T, A[:, vpo])))
        vbuf = append(dot(A[:, vpo].T, A[:, subset]),
                      array([(A[:, vpo] * A[:, vpo]).sum()]))
        Stemp = row_stack((Stemp, vbuf))
        subset.append(vpo)
    lev, v = la.eig(Stemp)
    vars.append(real(lev).max())
    return vars, res, rhos
Esempio n. 26
0
def makeinputh5(Iono,basedir):
    basedir = Path(basedir).expanduser()

    Param_List = Iono.Param_List
    dataloc = Iono.Cart_Coords
    times = Iono.Time_Vector
    velocity = Iono.Velocity
    zlist,idx = sp.unique(dataloc[:,2],return_inverse=True)
    siz = list(Param_List.shape[1:])
    vsiz = list(velocity.shape[1:])

    datalocsave = sp.column_stack((sp.zeros_like(zlist),sp.zeros_like(zlist),zlist))
    outdata = sp.zeros([len(zlist)]+siz)
    outvel = sp.zeros([len(zlist)]+vsiz)

    for izn,iz in enumerate(zlist):
        arr = sp.argwhere(idx==izn)
        outdata[izn]=sp.mean(Param_List[arr],axis=0)
        outvel[izn]=sp.mean(velocity[arr],axis=0)

    Ionoout = IonoContainer(datalocsave,outdata,times,Iono.Sensor_loc,ver=0,
                            paramnames=Iono.Param_Names, species=Iono.Species,velocity=outvel)


    ofn = basedir/'startdata.h5'
    print('writing {}'.format(ofn))
    Ionoout.saveh5(str(ofn))
Esempio n. 27
0
def generate_data_case(sigma, beta, rho, N, t_delta, x, y, z):
    """
    Generate output data for a given case for later processing. The output
    is a 2D array containing the all the states and the conditions
    used to generate them as columns for the given case. This will simplify
    the processing and plotting at a later stage.

    Input:
    sigma: Integer for the sigma attractor parameter
    beta: Float64 for the beta attractor parameter
    rho: Integer for the rho attractor parameter
    N: Integer for the total number of steps of the solver
    t_delta: Float64 for the step size of the solver
    x: Scipy array for the x-positions
    y: Scipy array for the y-positions
    z: Scipy array for the z-positions
    """
    S = sigma * sp.ones([N, 1])
    B = beta * sp.ones([N, 1])
    R = rho * sp.ones([N, 1])
    Na = N * sp.ones([N, 1])
    T = t_delta * sp.ones([N, 1])

    data = sp.column_stack((S, B, R, Na, T, x, y, z))
    return data
Esempio n. 28
0
    def kmeanspp_initialisation(self, X):
        """Initialise means using K-Means++"""
        N, _ = X.shape
        k, d = self.k, self.d
        M = []

        # Choose one center amongst the X at random
        m = sc.random.randint(N)
        M.append(X[m])

        # Choose k centers
        while (len(M) < self.k):
            # Create a probability distribution D^2 from the previous mean
            D = cdist(X, M).min(1)**2
            assert (D.shape == (N, ))

            # Normalise and sample a new point
            D /= D.sum()

            m = sc.random.multinomial(1, D).argmax()
            M.append(X[m])

        M = sc.column_stack(M)
        sigma = sc.sqrt(cdist(X, M.T, 'sqeuclidean').sum(0) / (N))
        w = ones(k) / float(k)

        return M, sigma, w
Esempio n. 29
0
def get_data():
    # data is a 2d array which now contains the data
    data = sp.genfromtxt(os.path.join(DATA_DIR, "visitors_per_hour.txt"),
                         delimiter="\t")

    temp = data[0:740 * 24, 1]
    temp_1 = data[0:740 * 24, 0]

    day = sp.arange(1, 366, 1)
    #print(day)
    hits = data[0:731, 1]

    #print(temp)

    # Cleaning the data i.e. removing NAN values if present
    temp = temp[~sp.isnan(temp)]

    for i in range(1, len(temp)):
        temp_1[i - 1] = temp[i] - temp[i - 1]

    #print(temp_1)

    for i in range(0, 731):
        x = 0
        for j in range(0, 24):
            x += temp_1[i * 24 + j]
        hits[i] = x

    sp.savetxt(os.path.join(DATA_DIR, "visitors_per_day_train.txt"),
               sp.column_stack([day.astype(int), hits[0:365].astype(int)]),
               fmt='%.18g',
               delimiter=' ')

    return [day, hits]
Esempio n. 30
0
def makeinputh5(Iono,basedir):
    """This will make a h5 file for the IonoContainer that can be used as starting
    points for the fitter. The ionocontainer taken will be average over the x and y dimensions
    of space to make an average value of the parameters for each altitude.
    Inputs
    Iono - An instance of the Ionocontainer class that will be averaged over so it can
    be used for fitter starting points.
    basdir - A string that holds the directory that the file will be saved to.
    """
    # Get the parameters from the original data
    Param_List = Iono.Param_List
    dataloc = Iono.Cart_Coords
    times = Iono.Time_Vector
    velocity = Iono.Velocity
    zlist,idx = sp.unique(dataloc[:,2],return_inverse=True)
    siz = list(Param_List.shape[1:])
    vsiz = list(velocity.shape[1:])

    datalocsave = sp.column_stack((sp.zeros_like(zlist),sp.zeros_like(zlist),zlist))
    outdata = sp.zeros([len(zlist)]+siz)
    outvel = sp.zeros([len(zlist)]+vsiz)
    #  Do the averaging across space
    for izn,iz in enumerate(zlist):
        arr = sp.argwhere(idx==izn)
        outdata[izn]=sp.mean(Param_List[arr],axis=0)
        outvel[izn]=sp.mean(velocity[arr],axis=0)

    Ionoout = IonoContainer(datalocsave,outdata,times,Iono.Sensor_loc,ver=0,
                            paramnames=Iono.Param_Names, species=Iono.Species,velocity=outvel)
    Ionoout.saveh5(os.path.join(basedir,'startdata.h5'))
Esempio n. 31
0
 def run(self):
 
     # Parameters passed are current data array, along with time step
     # between current data points
     self.times = sp.arange(0,self.Tfinal,self.dt)
     self.sim = odeint(self.eqns,self.init,self.times,(self.inj,self.injdt))
     sp.savetxt('simulation.txt',sp.column_stack((self.times,self.sim)))
Esempio n. 32
0
def recover_topics( P, T, k, a0 ):
    """Recover the k components given input Pairs and Triples and
    $\\alpha_0$"""

    # Consider the k rank approximation of P,
    P = approxk( P, k )
    # Get the whitening matrix and coloring matrices
    W, Wt = get_whitener( P, k )

    # Whiten the third moment
    Tw = lambda theta: W.T.dot( T( W.dot(theta) ) ).dot( W )

    # Project Tw onto a matrix
    theta = orthogonal( k ).T[0] 

    U, S, _ = svd( Tw( theta ) )
    assert( (S > 1e-10).all() ) # Make sure it is non-singular

    O = []
    for i in xrange( k ):
        v = U.T[i]
        Zinv = (a0 + 2)/2 * (v.T.dot(Tw(v)).dot(v))
        O.append( Zinv * Wt.T.dot( v ) )

    O = sc.column_stack( O )

    return abs( O )
Esempio n. 33
0
def makeinputh5(Iono,basedir):
    """This will make a h5 file for the IonoContainer that can be used as starting
    points for the fitter. The ionocontainer taken will be average over the x and y dimensions
    of space to make an average value of the parameters for each altitude.
    Inputs
    Iono - An instance of the Ionocontainer class that will be averaged over so it can
    be used for fitter starting points.
    basdir - A string that holds the directory that the file will be saved to.
    """
    # Get the parameters from the original data
    Param_List = Iono.Param_List
    dataloc = Iono.Cart_Coords
    times = Iono.Time_Vector
    velocity = Iono.Velocity
    zlist,idx = sp.unique(dataloc[:,2],return_inverse=True)
    siz = list(Param_List.shape[1:])
    vsiz = list(velocity.shape[1:])

    datalocsave = sp.column_stack((sp.zeros_like(zlist),sp.zeros_like(zlist),zlist))
    outdata = sp.zeros([len(zlist)]+siz)
    outvel = sp.zeros([len(zlist)]+vsiz)
    #  Do the averaging across space
    for izn,iz in enumerate(zlist):
        arr = sp.argwhere(idx==izn)
        outdata[izn] = sp.mean(Param_List[arr],axis=0)
        outvel[izn] = sp.mean(velocity[arr],axis=0)

    Ionoout = IonoContainer(datalocsave,outdata,times,Iono.Sensor_loc,ver=0,
                            paramnames=Iono.Param_Names, species=Iono.Species,velocity=outvel)
    Ionoout.saveh5(basedir/'startdata.h5')
Esempio n. 34
0
def historial():
    """Funcion que permite graficar la energia a lo largo del tiempo especificiado por el usuario"""
    global EnergiaK, EnergiaP, EnergiaT

    t = dt * np.arange(npasos_temporales + 1)
    plt.figure('Energias del sistema')
    plt.title('Energies')
    plt.plot(t, EnergiaP, 'b', label='Potential')
    plt.plot(t, EnergiaK, 'r', label='Kinetic')
    plt.plot(t, EnergiaT, 'black', label='Total')
    plt.xlabel('t', fontsize=18)
    plt.xticks(np.linspace(0, 14, 6), fontsize=18)
    plt.yticks(np.linspace(0, 35e-7, 6), fontsize=18)
    plt.ylim(0, 40e-7)
    plt.xlim(0, 14)
    plt.legend(loc=1)
    plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
    plt.figure('Potential Energy')
    plt.plot(t, EnergiaP, 'b')
    plt.xlabel('t', fontsize=18)
    plt.ylabel('Ex Energy', fontsize=18)
    plt.xticks(np.linspace(0, 100, 11), fontsize=18)
    plt.yticks(np.linspace(0, 16, 8), fontsize=18)
    plt.xlim(0, 100)
    plt.ylim(0, 25)
    if  os.path.exists("Energias") and\
    os.path.isfile("Energias/Energias.png")==\
    True:
        os.remove("Energias/Energias.png")
        plt.savefig('Energias.png', dpi=720)
        shutil.move('Energias.png', "Energias")
        os.remove("Energias/energies.out")
        # Escribe y guarda el archivo con los valores de la energia en el tiempo:
        sp.savetxt('energies.out',
                   sp.column_stack((t, EnergiaP, EnergiaK, EnergiaT)),
                   fmt=('%1.4e', '%1.4e', '%1.4e', '%1.4e'))
        shutil.move('energies.out', "Energias")

    else:
        os.mkdir("Energias")
        plt.savefig('Energias.png', dpi=720)
        shutil.move('Energias.png', "Energias")
        # Escribe y guarda el archivo con los valores de la energia en el tiempo:
        sp.savetxt('energies.out',
                   sp.column_stack((t, EnergiaP, EnergiaK, EnergiaT)),
                   fmt=('%1.4e', '%1.4e', '%1.4e', '%1.4e'))
        shutil.move('energies.out', "Energias")
Esempio n. 35
0
def analysisdump(maindir, configfile, suptitle=None):
    """ This function will perform all of the plotting functions in this module
        given the main directory that all of the files live.
        Inputs
            maindir - The directory for the simulation.
            configfile - The name of the configuration file used.
            suptitle - The supertitle used on the files.
    """
    maindir = Path(maindir)
    plotdir = maindir.joinpath("AnalysisPlots")
    if not plotdir.is_dir():
        plotdir.mkdir()

    # plot spectrums
    filetemplate1 = str(maindir.joinpath("AnalysisPlots", "Spec"))
    filetemplate3 = str(maindir.joinpath("AnalysisPlots", "ACF"))
    filetemplate4 = str(maindir.joinpath("AnalysisPlots", "AltvTime"))
    (sensdict, simparams) = readconfigfile(configfile)
    angles = simparams["angles"]
    ang_data = sp.array([[iout[0], iout[1]] for iout in angles])
    if not sensdict["Name"].lower() in ["risr", "pfisr"]:
        ang_data_temp = ang_data.copy()
        beamlistlist = sp.array(simparams["outangles"]).astype(int)
        ang_data = sp.array([ang_data_temp[i].mean(axis=0) for i in beamlistlist])

    zenang = ang_data[sp.argmax(ang_data[:, 1])]
    rnggates = simparams["Rangegatesfinal"]
    rngchoices = sp.linspace(sp.amin(rnggates), sp.amax(rnggates), 4)
    angtile = sp.tile(zenang, (len(rngchoices), 1))
    coords = sp.column_stack((sp.transpose(rngchoices), angtile))
    times = simparams["Timevec"]

    filetemplate2 = str(maindir.joinpath("AnalysisPlots", "Params"))
    if simparams["Pulsetype"].lower() == "barker":
        params = ["Ne"]
        if suptitle is None:
            plotbeamparametersv2(times, configfile, maindir, params=params, filetemplate=filetemplate2, werrors=True)
        else:
            plotbeamparametersv2(
                times, configfile, maindir, params=params, filetemplate=filetemplate2, suptitle=suptitle, werrors=True
            )
    else:
        params = ["Ne", "Nepow", "Te", "Ti", "Vi"]
        if suptitle is None:
            plotspecs(coords, times, configfile, maindir, cartcoordsys=False, filetemplate=filetemplate1)
            plotacfs(coords, times, configfile, maindir, cartcoordsys=False, filetemplate=filetemplate3)
            plotbeamparametersv2(times, configfile, maindir, params=params, filetemplate=filetemplate2, werrors=True)
            beamvstime(configfile, maindir, params=params, filetemplate=filetemplate4)
        else:
            plotspecs(
                coords, times, configfile, maindir, cartcoordsys=False, filetemplate=filetemplate1, suptitle=suptitle
            )
            plotacfs(
                coords, times, configfile, maindir, cartcoordsys=False, filetemplate=filetemplate3, suptitle=suptitle
            )
            plotbeamparametersv2(
                times, configfile, maindir, params=params, filetemplate=filetemplate2, suptitle=suptitle, werrors=True
            )
            beamvstime(configfile, maindir, params=params, filetemplate=filetemplate4, suptitle=suptitle)
Esempio n. 36
0
def getColourFeatures(df):
    BV = sp.array(df["BV"].tolist())
    BR = sp.array(df["BR"].tolist())
    BI = sp.array(df["BI"].tolist())
    VR = sp.array(df["VR"].tolist())
    VI = sp.array(df["VI"].tolist())
    RI = sp.array(df["RI"].tolist())
    return sp.column_stack((BV, BR, BI, VR, VI, RI))
Esempio n. 37
0
def generate_Custom(cleaned, file_name, line_count, state_th, state_tth, state_chi, state_phi, state_x, state_y, state_temp,
                     start, stop):
    line_count = int(line_count)
    start = int(start)
    stop = int(stop)
    temperature = cleaned[:,0] - 273
    chi = cleaned[:,1]
    phi = cleaned[:,2]
    tx = cleaned[:,3]
    ty = cleaned[:,4]
    om = cleaned[:,5]
    tth = cleaned[:,7]
    angle = cleaned[:,8]
    intensity = cleaned[:,9]

    if ((start!=0) or (stop!=0)):
        temperature = crop_data(temperature,line_count, start, stop, 0, 0)
        chi = crop_data(chi,line_count, start, stop, 0, 0)
        phi = crop_data(phi,line_count, start, stop, 0, 0)
        tx = crop_data(tx,line_count, start, stop, 0, 0)
        ty = crop_data(ty,line_count, start, stop, 0, 0)
        om = crop_data(om,line_count, start, stop, 0, 0)
        tth = crop_data(tth,line_count, start, stop, 0, 0)
        angle = crop_data(angle,line_count, start, stop, 0, 0)
        intensity = crop_data(intensity,line_count, start, stop, 0, 0)

        line_count = line_count - start - stop

    temperature = temperature[::int(line_count)]
    chi = chi[::int(line_count)]
    phi = phi[::int(line_count)]
    tx = tx[::int(line_count)]
    ty = ty[::int(line_count)]
    om = om[::int(line_count)]
    tth = tth[::int(line_count)]
    angle = angle[:int(line_count):]
    int_matrix = intensity.reshape(int(len(intensity)/line_count), int(line_count))

    for i in range(shape(int_matrix)[0]):
        out_scan = column_stack((angle, int_matrix[i,:]))
        name = file_name + "_Scan"+str(i)
        if state_temp == 1:
            name += " T= " + str(round(temperature[i],2))
        if state_chi == 1:
            name += " CHI= " + str(round(chi[i],2))
        if state_phi == 1:
            name += " PHI= " + str(round(phi[i],2))
        if state_x == 1:
            name += " X= " + str(round(tx[i],2))
        if state_y == 1:
            name += " Y= " + str(round(ty[i],2))
        if state_th == 1:
            name += " TH= " + str(round(om[i],3))
        if state_tth == 1:
            name += " TTH= " + str(round(tth[i],3))
        savetxt(name+".txt", out_scan, fmt = '%10.8f')

    return 1
def SRIparams2iono(filename):

    fullfile = h5file(filename)
    fullfiledict = fullfile.readWholeh5file()

    #Size = Nrecords x Nbeams x Nranges x Nions+1 x 4 (fraction, temperature, collision frequency, LOS speed)
    fits = fullfiledict['/FittedParams']['Fits']
    (nt,nbeams,nrng,nspecs,nstuff) = fits.shape
    nlocs = nbeams*nrng
    fits = fits.transpose((1,2,0,3,4))
    fits = fits.reshape((nlocs,nt,nspecs,nstuff))
    #  Nrecords x Nbeams x Nranges
    Ne = fullfiledict['/FittedParams']['Ne']
    Ne = Ne.transpose((1,2,0))
    Ne = Ne.reshape((nlocs,nt))
    param_lists =sp.zeros((nlocs,nt,nspecs,2))
    param_lists[:,:,:,0] = fits[:,:,:,0]
    param_lists[:,:,:,1] = fits[:,:,:,1]
    param_lists[:,:,-1,0]=Ne
    Velocity = fits[:,:,0,3]


    if fullfiledict['/FittedParams']['IonMass']==16:
        species = ['O+','e-']
        pnames = sp.array([['Ni','Ti'],['Ne','Te']])

    time= fullfiledict['/Time']['UnixTime']
    time = time
    rng = fullfiledict['/FittedParams']['Range']
    bco = fullfiledict['/']['BeamCodes']
    angles = bco[:,1:3]
    (nang,nrg) = rng.shape

    allang = sp.tile(angles[:,sp.newaxis],(1,nrg,1))
    all_loc = sp.column_stack((rng.flatten(),allang.reshape(nang*nrg,2)))
    lkeep = ~ sp.any(sp.isnan(all_loc),1)
    all_loc = all_loc[lkeep]
    Velocity = Velocity[lkeep]
    param_lists = param_lists[lkeep]
    all_loc[:,0]=all_loc[:,0]*1e-3
    iono1 = IonoContainer(all_loc,param_lists,times=time,ver = 1,coordvecs = ['r','theta','phi'],
                          paramnames = pnames,species=species,velocity=Velocity)
                          
                          
                          
    # MSIS
    tn = fullfiledict['/MSIS']['Tn']
    tn = tn.transpose((1,2,0))
    tn = tn.reshape((nlocs,nt))
    
    
    startparams = sp.ones((nlocs,nt,2,2))
    startparams[:,:,0,1] = tn
    startparams[:,:,1,1] = tn
    startparams = startparams[lkeep]
    ionoS = IonoContainer(all_loc,startparams,times=time,ver = 1,coordvecs = ['r','theta','phi'],
                          paramnames = pnames,species=species)
    return iono1,ionoS
Esempio n. 39
0
def count_feature(X, tbl_lst = None, min_cnt = 1):
    X_lst = [pd.Series(X[:, i]) for i in range(X.shape[1])]
    if tbl_lst is None:
        tbl_lst = [x.value_counts() for x in X_lst]
        if min_cnt > 1:
            tbl_lst = [s[s >= min_cnt] for s in tbl_lst]
    X = sp.column_stack([x.map(tbl).values for x, tbl in zip(X_lst, tbl_lst)])
    # NA(unseen values) to 0
    return np.nan_to_num(X), tbl_lst
Esempio n. 40
0
def planeFromPoints(points):
    """ Produces a plane from N points using least squares, and returns of the form:
        Z = aX + bY + c
        Follows logic from http://www.velocityreviews.com/forums/t368189-re-linear-regression-in-3-dimensions.html
    """
    x, y, z = zip(*points)
    A = column_stack([x, y, ones_like(x)])
    abc, residuals, rank, s = lstsq(A,z)
    return abc
Esempio n. 41
0
def count_feature(X, tbl_lst=None, min_cnt=1):
    X_lst = [pd.Series(X[:, i]) for i in range(X.shape[1])]
    if tbl_lst is None:
        tbl_lst = [x.value_counts() for x in X_lst]
        if min_cnt > 1:
            tbl_lst = [s[s >= min_cnt] for s in tbl_lst]
    X = sp.column_stack([x.map(tbl).values for x, tbl in zip(X_lst, tbl_lst)])
    # NA(unseen values) to 0
    return np.nan_to_num(X), tbl_lst
Esempio n. 42
0
def centre_of_mass(geometry, vertices='throat.offset_vertices', **kwargs):
    r"""
    Calculate the centre of mass of the throat from the voronoi vertices.
    """
    Nt = geometry.num_throats()
    outer_verts = geometry['throat.vertices']
    offset_verts = geometry[vertices]
    normal = geometry['throat.normal']
    z_axis = [0, 0, 1]
    value = _sp.ndarray([Nt, 3])
    for i in range(Nt):
        if len(offset_verts[i]) > 2:
            verts = offset_verts[i]
        elif len(outer_verts[i]) > 2:
            verts = outer_verts[i]
        else:
            verts = []
        if len(verts) > 0:
            # For boundaries some facets will already be aligned with the axis -
            # if this is the case a rotation is unnecessary and could also cause
            # problems
            angle = tr.angle_between_vectors(normal[i], z_axis)
            if angle == 0.0 or angle == _sp.pi:
                "We are already aligned"
                rotate_input = False
                facet = verts
            else:
                rotate_input = True
                M = tr.rotation_matrix(
                    tr.angle_between_vectors(normal[i], z_axis),
                    tr.vector_product(normal[i], z_axis))
                facet = _sp.dot(verts, M[:3, :3].T)
            # Now we have a rotated facet aligned with the z axis - make 2D
            facet_2D = _sp.column_stack((facet[:, 0], facet[:, 1]))
            z = _sp.unique(_sp.around(facet[:, 2], 10))
            if len(z) == 1:
                # We need the vertices arranged in order so perform a convex hull
                hull = ConvexHull(facet_2D)
                ordered_facet_2D = facet_2D[hull.vertices]
                # Call the routine to calculate an area wighted centroid from the
                # 2D polygon
                COM_2D = vo.PolyWeightedCentroid2D(ordered_facet_2D)
                COM_3D = _sp.hstack((COM_2D, z))
                # If we performed a rotation we need to rotate back
                if (rotate_input):
                    MI = tr.inverse_matrix(M)
                    # Unrotate the offset coordinates using the inverse of the
                    # original rotation matrix
                    value[i] = _sp.dot(COM_3D, MI[:3, :3].T)
                else:
                    value[i] = COM_3D
            else:
                logger.error('Rotation Failed: ' +
                             str(_sp.unique(facet[:, 2])))

    return value
Esempio n. 43
0
File: Compare.py Progetto: mands/ode
def compare_arrays(a, b, inc_time=False):
    diffAbs = (sp.absolute(sp.subtract(a, b)))
    diffMax = sp.nanmax(diffAbs)
    diffEps = (diffMax / sys.float_info.epsilon
               ) * 2  # we have to mult by two as python epsilon is not correct

    if inc_time:
        return sp.column_stack((a[:, 0], diffAbs)), diffMax, diffEps
    else:
        return diffAbs, diffMax, diffEps
    def nstats(self, upto):
        """Given an n-values array returns the average and standard deviation
		of the n-values taken at each stage-height for each cross-section.
		'nvals' - array of n-values with shape (x,y) with cross-sections
			along the x axis and stage-heights along the y axis"""
        self.get_xs_n(upto)
        means = scipy.mean(self.xs_nvals, axis=1)
        stdevs = scipy.std(self.xs_nvals, axis=1)
        # if filename = True: # Write to csv
        return scipy.column_stack((self.handstage[:upto], means, stdevs))
Esempio n. 45
0
    def __init__(self,ionoin,configfile):
        r2d = 180.0/sp.pi
        d2r = sp.pi/180.0
        (sensdict,simparams) = readconfigfile(configfile)
        nt = ionoin.Time_Vector.shape[0]
        nloc = ionoin.Sphere_Coords.shape[0]

        #Input location
        self.Cart_Coords_in = ionoin.Cart_Coords
        self.Sphere_Coords_In = ionoin.Sphere_Coords,
        self.Time_In = ionoin.Time_Vector
        self.Cart_Coords_In_Rep = sp.tile(ionoin.Cart_Coords,(nt,1))
        self.Sphere_Coords_In_Rep = sp.tile(ionoin.Sphere_Coords,(nt,1))
        self.Time_In_Rep  = sp.repeat(ionoin.Time_Vector,nloc,axis=0)

        #output locations
        rng_vec2 = simparams['Rangegatesfinal']
        nrgout = len(rng_vec2)

        angles = simparams['angles']
        nang =len(angles)

        ang_data = sp.array([[iout[0],iout[1]] for iout in angles])
        rng_all = sp.tile(rng_vec2,(nang))
        ang_all = sp.repeat(ang_data,nrgout,axis=0)
        nlocout = nang*nrgout

        ntout = len(simparams['Timevec'])
        self.Sphere_Coords_Out = sp.column_stack((rng_all,ang_all))
        (R_vec,Az_vec,El_vec) = (self.Sphere_Coords_Out[:,0],self.Sphere_Coords_Out[:,1],self.Sphere_Coords_Out[:,2])
        xvecmult = sp.cos(Az_vec*d2r)*sp.cos(El_vec*d2r)
        yvecmult = sp.sin(Az_vec*d2r)*sp.cos(El_vec*d2r)
        zvecmult = sp.sin(El_vec*d2r)
        X_vec = R_vec*xvecmult
        Y_vec = R_vec*yvecmult
        Z_vec = R_vec*zvecmult

        self.Cart_Coords_Out = sp.column_stack((X_vec,Y_vec,Z_vec))
        self.Time_Out = simparams['Timevec']
        self.Time_Out_Rep =sp.repeat(simparams['Timevec'],nlocout,axis=0)
        self.Sphere_Coords_Out_Rep =sp.tile(self.Sphere_Coords_Out,(ntout,1))
        self.RSTMat = makematPA(ionoin.Sphere_Coords,ionoin.Time_Vector)
Esempio n. 46
0
def pyglowinput(latlonalt=[65.1367, -147.4472, 250.00], dn_list=[datetime(2015, 3, 21, 8, 00), datetime(2015, 3, 21, 20, 00)], z=None):


    if z is None:
        z = sp.linspace(50., 1000., 200)
    dn_diff = sp.diff(dn_list)
    dn_diff_sec = dn_diff[-1].seconds
    timelist = sp.array([calendar.timegm(i.timetuple()) for i in dn_list])
    time_arr = sp.column_stack((timelist, sp.roll(timelist, -1)))
    time_arr[-1, -1] = time_arr[-1, 0]+dn_diff_sec

    v=[]
    coords = sp.column_stack((sp.zeros((len(z), 2), dtype=z.dtype), z))
    all_spec = ['O+', 'NO+', 'O2+', 'H+', 'HE+']
    Param_List = sp.zeros((len(z), len(dn_list),len(all_spec),2))
    for idn, dn in enumerate(dn_list):
        for iz, zcur in enumerate(z):
            latlonalt[2] = zcur
            pt = Point(dn, *latlonalt)
            pt.run_igrf()
            pt.run_msis()
            pt.run_iri()

            # so the zonal pt.u and meriodinal winds pt.v  will coorispond to x and y even though they are
            # supposed to be east west and north south. Pyglow does not seem to have
            # vertical winds.
            v.append([pt.u, pt.v, 0])

            for is1, ispec in enumerate(all_spec):
                Param_List[iz, idn, is1, 0] = pt.ni[ispec]*1e6

            Param_List[iz, idn, :, 1] = pt.Ti

            Param_List[iz, idn, -1, 0] = pt.ne*1e6
            Param_List[iz, idn, -1, 1] = pt.Te
    Param_sum = Param_List[:, :, :, 0].sum(0).sum(0)
    spec_keep = Param_sum > 0.
    species = sp.array(all_spec)[spec_keep[:-1]].tolist()
    species.append('e-')
    Param_List[:, :] = Param_List[:, :, spec_keep]
    Iono_out = IonoContainer(coords, Param_List, times = time_arr, species=species)
    return Iono_out
Esempio n. 47
0
def centre_of_mass(geometry, vertices='throat.offset_vertices', **kwargs):
    r"""
    Calculate the centre of mass of the throat from the voronoi vertices.
    """
    Nt = geometry.num_throats()
    outer_verts = geometry['throat.vertices']
    offset_verts = geometry[vertices]
    normal = geometry['throat.normal']
    z_axis = [0, 0, 1]
    value = _sp.ndarray([Nt, 3])
    for i in range(Nt):
        if len(offset_verts[i]) > 2:
            verts = offset_verts[i]
        elif len(outer_verts[i]) > 2:
            verts = outer_verts[i]
        else:
            verts = []
        if len(verts) > 0:
            # For boundaries some facets will already be aligned with the axis -
            # if this is the case a rotation is unnecessary and could also cause
            # problems
            angle = tr.angle_between_vectors(normal[i], z_axis)
            if angle == 0.0 or angle == _sp.pi:
                "We are already aligned"
                rotate_input = False
                facet = verts
            else:
                rotate_input = True
                M = tr.rotation_matrix(tr.angle_between_vectors(normal[i], z_axis),
                                       tr.vector_product(normal[i], z_axis))
                facet = _sp.dot(verts, M[:3, :3].T)
            # Now we have a rotated facet aligned with the z axis - make 2D
            facet_2D = _sp.column_stack((facet[:, 0], facet[:, 1]))
            z = _sp.unique(_sp.around(facet[:, 2], 10))
            if len(z) == 1:
                # We need the vertices arranged in order so perform a convex hull
                hull = ConvexHull(facet_2D)
                ordered_facet_2D = facet_2D[hull.vertices]
                # Call the routine to calculate an area wighted centroid from the
                # 2D polygon
                COM_2D = vo.PolyWeightedCentroid2D(ordered_facet_2D)
                COM_3D = _sp.hstack((COM_2D, z))
                # If we performed a rotation we need to rotate back
                if (rotate_input):
                    MI = tr.inverse_matrix(M)
                    # Unrotate the offset coordinates using the inverse of the
                    # original rotation matrix
                    value[i] = _sp.dot(COM_3D, MI[:3, :3].T)
                else:
                    value[i] = COM_3D
            else:
                print('Rotation Failed: ' + str(_sp.unique(facet[:, 2])))

    return value
def run_clock(beta_file):
    """
    Function to run clock given the path to a CSV
    file containing the normalised beta values
    """
    probes = np.load("model/probes.npy")
    newx, samples = read_file(beta_file, probes)

    nbeta = np.load("model/nbeta.npy")
    result = scipy.dot(scipy.column_stack((scipy.ones([newx.shape[0], 1]), newx)), nbeta)[:, 0]
    return scipy.row_stack((samples, result.flatten()))
Esempio n. 49
0
def makedata(testpath,tint):
    """ This will make the input data for the test case. The data will have cases
        where there will be enhancements in Ne, Ti and Te in one location. Each
        case will have 3 integration periods. The first 3 integration periods will
        be the default set of parameters Ne=Ne=1e11 and Te=Ti=2000.
        Inputs
            testpath - Directory that will hold the data.
            tint - The integration time in seconds.
    """
    testpath = Path(testpath).expanduser()
    finalpath = testpath.joinpath('Origparams')
    if not finalpath.is_dir():
        finalpath.mkdir()
    data = sp.array([[1e11,1100.], [1e11,2100.]])
    z = (50.+sp.arange(50)*10.)
    nz = len(z)
    params = sp.tile(data[sp.newaxis, sp.newaxis],(nz, 1, 1, 1))
    epnt = range(20,22)
    p2 = sp.tile(params, (1, 4, 1, 1))
    #enhancement in Ne
    p2[epnt, 1, :, 0] = 5e11
    #enhancement in Ti
    p2[epnt,2,0,1] = 2200.
    #enhancement in Te
    p2[epnt,3,1,1] = 4200.
    coords = sp.column_stack((sp.zeros(nz), sp.zeros(nz), z))
    species=['O+', 'e-']
    times = sp.array([[0, 1e3]])
    times2 = sp.column_stack((sp.arange(0, 4), sp.arange(1, 5)))*3*tint
    vel = sp.zeros((nz, 1, 3))
    vel2 = sp.zeros((nz, 4, 3))
    Icontstart = IonoContainer(coordlist=coords, paramlist=params, times=times,
                               sensor_loc=sp.zeros(3), ver=0, coordvecs=['x', 'y', 'z'],
                               paramnames=None, species=species, velocity=vel)
    Icont1 = IonoContainer(coordlist=coords, paramlist=p2, times=times2,
                           sensor_loc=sp.zeros(3), ver=0, coordvecs=['x', 'y', 'z'],
                           paramnames=None, species=species, velocity=vel2)

    finalfile = finalpath.joinpath('0 stats.h5')
    Icont1.saveh5(str(finalfile))
    Icontstart.saveh5(str(testpath.joinpath('startfile.h5')))
def makedata(testpath,tint):
    """ This will make the input data for the test case. The data will have cases
        where there will be enhancements in Ne, Ti and Te in one location. Each 
        case will have 3 integration periods. The first 3 integration periods will
        be the default set of parameters Ne=Ne=1e11 and Te=Ti=2000.
        Inputs
            testpath - Directory that will hold the data.
            tint - The integration time in seconds.
    """
    finalpath = os.path.join(testpath,'Origparams')
    if not os.path.isdir(finalpath):
        os.mkdir(finalpath)
    z = sp.linspace(50.,750,150)
    nz = len(z)
    Z_0 = 250.
    H_0=30.
    N_0=6.5e11
    c1 = Chapmanfunc(z,H_0,Z_0,N_0)+5e10
    z0=50.
    T0=600.
    Te,Ti = TempProfile(z,T0,z0)
    
    params = sp.zeros((nz,1,2,2))
    params[:,0,0,0] = c1
    params[:,0,1,0] = c1
    params[:,0,0,1] = Ti
    params[:,0,1,1] = Te
    coords = sp.column_stack((sp.zeros(nz),sp.zeros(nz),z))
    species=['O+','e-']
    times = sp.array([[0,1e3]])
    times2 = sp.column_stack((sp.arange(0,1),sp.arange(1,2)))*3*tint
    vel = sp.zeros((nz,1,3))
    vel2 = sp.zeros((nz,4,3))
    Icontstart = IonoContainer(coordlist=coords,paramlist=params,times = times,sensor_loc = sp.zeros(3),ver =0,coordvecs =
        ['x','y','z'],paramnames=None,species=species,velocity=vel)
    Icont1 = IonoContainer(coordlist=coords,paramlist=params,times = times,sensor_loc = sp.zeros(3),ver =0,coordvecs =
        ['x','y','z'],paramnames=None,species=species,velocity=vel2)
        
    finalfile = os.path.join(finalpath,'0 stats.h5')
    Icont1.saveh5(finalfile)
    Icontstart.saveh5(os.path.join(testpath,'startfile.h5'))
Esempio n. 51
0
def getFeatures(df):
    B = sp.array(df["cB"].tolist())
    R = sp.array(df["cR"].tolist())
    I = sp.array(df["cI"].tolist())
    V = sp.array(df["cV"].tolist())
    Ha = sp.array(df["lHa"].tolist())
    Hb = sp.array(df["lHb"].tolist())
    Hg = sp.array(df["lHg"].tolist())
    totCounts = sp.array(df["cTotal"].tolist())
    randomFeature = sp.random.normal(0.5, 0.2, len(totCounts))
    return sp.column_stack((B - V, B - R, B - I, V - R, V - I, R - I,
                            totCounts, Ha, Hb, Hg, randomFeature))
Esempio n. 52
0
    def generate( k, n, scale = 10, prior = "uniform" ):
        """Generate k topics, each with n words""" 

        if prior == "uniform":
            # Each topic is a multinomial generated from a Dirichlet
            topics = sc.column_stack( [ dirichlet( sc.ones( n ) * scale
                ) for i in xrange( k ) ] )
            # We also draw the weights of each topic
            weights = dirichlet( sc.ones(k) * scale ) 

            return TopicModel( weights, topics )
        else:
            # TODO: Support the anchor word assumption.
            raise NotImplementedError
Esempio n. 53
0
def getFeatures(df):
    BV = sp.array(df["BV"].tolist())
    BR = sp.array(df["BR"].tolist())
    BI = sp.array(df["BI"].tolist())
    VR = sp.array(df["VR"].tolist())
    VI = sp.array(df["VI"].tolist())
    RI = sp.array(df["RI"].tolist())
    Ha = sp.array(df["Ha"].tolist())
    Hb = sp.array(df["Hb"].tolist())
    Hg = sp.array(df["Hg"].tolist())
    totCounts = sp.array(df["totalCounts"].tolist())
    #spike = sp.array(df["spike"].tolist())
    randomFeature = sp.random.normal(0.5, 0.2, len(totCounts))
    return sp.column_stack((BV, BR, BI, VR, VI, RI, totCounts, Ha, Hb, Hg,
                            randomFeature))  #,spike,randomFeature))
Esempio n. 54
0
    def main(self):
        bins = 50
        halfwidth=0.5
        histories = 10000
        iterations = 50
        restarts = 5
        geo = Geometry.Geometry(bins, [[-halfwidth,halfwidth]])
        xs = CrossSection.CrossSection(xS=0.5,nu=1.0,xF=0.5,xG=0)
        self.mark = Markov.Markov(geo, xs, histories)
        self.mark.score = self.score
        self.Q = scipy.zeros((bins,0))

        for i in xrange(bins):
            print "I am at %i" %i
            point = scipy.zeros((bins))
            point[i] = 1
            pSource = fissionSource.histogramSource(point,geo)

            self.response = fissionBank.fissionBank()
            self.mark.transport(pSource)
            q = fissionSource.histogramSource(self.response,geo)
            q = q*(1.0/self.mark.histories)
            self.printVector(q)
            self.Q = scipy.column_stack((self.Q,q))

        
        q = scipy.ones(bins)
        q = q/scipy.linalg.norm(q,2)

        print "Calling Deterministic Arnoldi"
        adtm = ArnoldiDtm.Arnoldi(self.Q, iterations, restarts)
        eValues, eVectors = adtm.Arnoldi(q)
        print "Eigenvalues: "
        self.printVector(eValues)
        print "Dominant eigenvector: "
        self.printVector(eVectors[:,-1])
        print "\nAll eigenvectors: "
        self.printM(eVectors)

        Chart = Gnuplot.Gnuplot()
        Chart.title("Histories per 'vector': %i, bins = %i" %(histories, bins))
        
        length = len(eValues)-1
        for i in xrange(5):
            data = Gnuplot.Data(eVectors[:,length-i],with='lines', 
                    title='vector %i' %i)
            Chart.replot(data)
Esempio n. 55
0
def make2dhist(testpath, xaxis=TE, yaxis=TI, figmplf=None, curax=None):
    """
        This will plot a 2-D histogram of two variables.

        Args:
            testpath (obj:`str`): The path where the SimISR data is stored.
            npulses (obj:`int`): The number of pulses.
            xaxis (obj: `dict`): default TE, Dictionary that holds the parameter info along the x axis of the distribution.
            yaxis (obj: `dict`): default TE, Dictionary that holds the parameter info along the y axis of the distribution.
            figmplf (obj: `matplotb figure`): default None, Figure that the plot will be placed on.
            curax (obj: `matplotlib axis`): default None, Axis that the plot will be made on.

        Returns:
            figmplf (obj: `matplotb figure`), curax (obj: `matplotlib axis`):,hist_h (obj: `matplotlib axis`)):
            The figure handle the plot is made on, the axis handle the plot is on, the plot handle itself.
    """

    sns.set_style("whitegrid")
    sns.set_context("notebook")
    params = [xaxis['param'], yaxis['param']]
    datadict, _, _, _ = makehistdata(params, testpath)
    if (figmplf is None) and (curax is None):
        (figmplf, curax) = plt.subplots(1, 1, figsize=(6, 6), facecolor='w')

    b1 = sp.linspace(*xaxis['lims'])
    b2 = sp.linspace(*yaxis['lims'])
    bins = [b1, b2]
    d1 = sp.column_stack((datadict[params[0]], datadict[params[1]]))
    H, xe, ye = sp.histogram2d(d1[:, 0].real,
                               d1[:, 1].real,
                               bins=bins,
                               normed=True)

    hist_h = curax.pcolor(xe[:-1],
                          ye[:-1],
                          sp.transpose(H),
                          cmap='viridis',
                          vmin=0)
    curax.set_xlabel(r'$' + xaxis['paramLT'] + '$')
    curax.set_ylabel(r'$' + yaxis['paramLT'] + '$')
    curax.set_title(r'Joint distributions for $' + xaxis['paramLT'] + '$' +
                    ' and $' + yaxis['paramLT'] + '$')
    plt.colorbar(hist_h, ax=curax, label='Probability', format='%1.1e')
    return (figmplf, curax, hist_h)
Esempio n. 56
0
    def _calc_eVectors(self, Q, V):
        """
        calc_eVectors will calculate the eigenvectors.  The 
        eigevector is a linear combination of the vectors of Q with the elements
        of an eigenvector of H as the expansion coefficients.  calc_eVecctors 
        returns a matrix who's columns are the eigenvectors.

        Q: List of orthornormal basis vectors
        V: Matrix of column vectors
        """
        n = len(V)
        m = len(Q[0])
        Vectors = scipy.zeros((m, 0))
        for j in xrange(n):
            Vector = scipy.zeros(m)
            for i in xrange(n):
                Vector = Vector + V[i, j] * Q[i]
            Vectors = scipy.column_stack((Vectors, Vector))

        return Vectors
Esempio n. 57
0
    def _calc_eVectors(self, Q, V):
        """
        calc_eVectors will calculate the eigenvectors.  The 
        eigevector is a linear combination of the vectors of Q with the elements
        of an eigenvector of H as the expansion coefficients.  calc_eVecctors 
        returns a matrix who's columns are the eigenvectors.

        Q: List of orthornormal basis vectors
        V: Matrix of column vectors
        """
        n = len(V)
        m = len(Q[0])
        Vectors = scipy.zeros((m,0))
        for j in xrange(n):
            Vector = scipy.zeros(m)
            for i in xrange(n):
                Vector = Vector + V[i,j]*Q[i]
            Vectors = scipy.column_stack((Vectors,Vector))

        return Vectors
Esempio n. 58
0
def get_logit_endog(true_params, exog, noise_level):
    """
    Gets an endogenous response that is consistent with the true_params,
        perturbed by noise at noise_level.
    """
    N = exog.shape[0]
    ### Create the probability of entering the different classes,
    ### given exog and true_params
    Xdotparams = sp.dot(exog, true_params)
    noise = noise_level * sp.randn(*Xdotparams.shape)
    eXB = sp.column_stack((sp.ones(len(Xdotparams)), sp.exp(Xdotparams)))
    class_probabilities = eXB / eXB.sum(1)[:, None]

    ### Create the endog
    cdf = class_probabilities.cumsum(axis=1)
    endog = sp.zeros(N)
    for i in xrange(N):
        endog[i] = sp.searchsorted(cdf[i, :], sp.rand())

    return endog