def plot_optCurve_nEvals(self, plot_best=True, scale='log', type='mean+65'): """ assume that the experiment have the same lenght :return: """ data = [] for idx, experiment in enumerate(self.experiments): max_lenght = 0 for rep in np.arange(experiment.repetitions): max_lenght = max(max_lenght, self._logs.logs[idx, rep].get_n_evals()) temp = np.nan * np.empty((experiment.repetitions, max_lenght)) # initialize matrix for rep in np.arange(experiment.repetitions): if plot_best: temp[rep, 0:self._logs.logs[idx, rep].get_n_evals()] = bestof(np.matrix(self._logs.logs[idx, rep].get_objectives()).T).T else: temp[rep, 0:self._logs.logs[idx, rep].get_n_evals()] = self._logs.logs[idx, rep].get_objectives() data.append(temp) # plt.figure() spp.rplot_data(data, legend=self.get_labels(), typeplot=type) plt.xlabel('Evaluations') plt.ylabel('Obj.Func.') if scale == 'log': try: ax = plt.gca() ax.set_yscale('log') except: print('log scale is not possible')
def test_rplot_data_yscale(self): y = [np.absolute(np.random.rand(100, 100)) + 0.00001] x = np.random.rand(100) h = spp.rplot_data(data=y) plt.yscale('log')
def test_rplot_data_matrix(self): y = np.random.rand(100, 100) h = spp.rplot_data(data=y)
def test_rplot_data_3(self): y = [np.random.rand(100, 100)] x = np.random.rand(100) h = spp.rplot_data(data=y)