Esempio n. 1
0
def fitGaussian2D(data, rangeFactor=0.1, xy=None):
	if xy is None:
		xyIndices = dnp.indices(data.shape)
		xy=[ xyIndices[1], xyIndices[0] ] ;

#	h0, xc0, yc0, xw0, yw0 = moments(data);
#	gf=dnp.fit.fit(myGaussian2DFunc, xy, data, [h0, xc0, yc0, xw0, yw0], [(4, 6), (80, 120), (80, 120), (10,30), (30,50)], optimizer='global')

	p0 = moments(data);
	rp=[(p*(1.0-rangeFactor), p*(1.0+rangeFactor)) for p in p0]
	gf=dnp.fit.fit(myGaussian2DFunc, xy, data, p0, rp, optimizer='local')
	print gf;
	
	height, center_x, center_y, sigma_x, sigma_y=gf.parameters;
	
	return [height, center_x, center_y, sigma_x, sigma_y];
Esempio n. 2
0
def moments(data):
	"""
	Returns (height, x, y, sigma_x, sigma_y)
	the gaussian parameters of a 2D distribution by calculating its moments
	"""
	total = data.sum()
	xyIndices = dnp.indices(data.shape)
	X=xyIndices[1]; Y=xyIndices[0];
	
	x = (X*data).sum()/total
	y = (Y*data).sum()/total

	row = data[int(y), :]
	sigma_x = math.sqrt(dnp.abs((dnp.arange(row.size)-x)**2*row).sum()/row.sum())

	col = data[:, int(x)]
	sigma_y = math.sqrt( dnp.abs((dnp.arange(col.size)-y)**2*col).sum()/col.sum() )
	
	height = data.max()
	return [height, x, y, sigma_x, sigma_y];
Esempio n. 3
0
 def testIndices(self):
     print 'Indices testing'
     x, y = np.indices((516, 516))
 def testIndices(self):
     print 'Indices testing'
     x, y = np.indices((516, 516))
Esempio n. 5
0
 def testIndices(self):
     print "Indices testing"
     x, y = np.indices((516, 516))