Esempio n. 1
0
def test_raw_even_and_odd_length():
    """Test raw periodogram of even and odd length sequences versus results
  obtained using R's spec.pgram function."""

    # even-length
    pgram = Periodogram(dat)
    rspec = flex.double([
        28.95417436723208, 8.804110562933733, 18.49821426322232,
        4.094928274829677, 10.664583495648557, 0.9510798979384458,
        4.818019271965207, 8.7890132834726, 0.34895472871642474,
        4.298708963847126, 17.808223044747802, 0.43460105379492137,
        9.846548561891545, 0.7189166875859443, 1.5700713159868809,
        7.006058124904175, 0.34542255079605266, 3.1168239060632974,
        1.263928801888548, 0.01861054239907847, 1.6636054250587091,
        1.882713242160402, 1.1719572134942402, 1.5202775036250407,
        9.849072239357147, 8.154656878294267, 3.5445494165048013,
        1.0058616277307482, 4.232126563022536, 5.144050304879019,
        3.5369877391028433, 3.096569282327231, 2.8433497727678416,
        0.5666508873501074, 1.9719884560263852, 10.127938512870841,
        1.7824474672209123, 4.724527776009507, 3.9087766384313976,
        6.6956845513767265, 0.6830967285296601, 4.935588195925854,
        0.5748537866060414, 1.6844746497921799, 9.263139681830246,
        7.47129442196606, 4.762894221668351, 0.3223925047950684,
        0.5826957996969294, 0.10068673474008037
    ])

    rfreq = flex.double(0.01 * e for e in (range(1, 51)))
    assert approx_equal(pgram.spec, rspec)
    assert approx_equal(pgram.freq, rfreq)

    # odd-length
    dat2 = dat[0:99]
    pgram = Periodogram(dat2)
    rspec = flex.double([
        27.378734487215517, 8.300597643964354, 18.601570728645616,
        4.401309169508969, 9.81615913184789, 1.2198000269161602,
        5.2778352616536175, 8.22707610023193, 0.8865216983472878,
        2.8232693965537834, 20.1615730381271, 0.11712370567046958,
        8.88090348832551, 0.5966571692115259, 1.9402032941479643,
        7.389059053524231, 1.8478623100240048, 2.087060370495997,
        1.4918451091166665, 0.29469653682276337, 3.3114401807871734,
        0.34065845307496007, 1.2416790352786125, 2.162525614248078,
        11.588418669622571, 7.736166858429692, 1.9797555750271172,
        2.179422742788905, 7.124078571174135, 1.7626318917205566,
        4.097247214701129, 3.484527330303516, 1.2144485874993167,
        1.085059335676423, 8.41344396898852, 3.7261271115507744,
        0.3362106092460046, 5.5128561313938516, 3.212041963064243,
        5.261688734349363, 2.32174787318873, 4.50066920034715,
        0.4679419198572981, 2.9281768538056987, 8.883073168591967,
        8.952596303235458, 1.2239788162354133, 0.3633295633047963,
        0.24463991145416633
    ])
    rfreq = flex.double(1 / 99 * e for e in (range(1, 50)))
    assert approx_equal(pgram.spec, rspec)
    assert approx_equal(pgram.freq, rfreq)

    print "OK"
Esempio n. 2
0
def test2():
    # compare plots
    dat = flex.random_double(50)
    a = Periodogram(dat)
    b = rpgram(dat)

    from matplotlib.pyplot import ion
    ion()
    a.plot()
    b.plot()
Esempio n. 3
0
def test2():
  # compare plots
  dat = flex.random_double(50)
  a = Periodogram(dat)
  b = rpgram(dat)

  from matplotlib.pyplot import ion
  ion()
  a.plot()
  b.plot()
Esempio n. 4
0
def test_smoothed_even_and_odd_length():
    """Test smoothed periodogram of even and odd length sequences versus results
  obtained using R's spec.pgram function"""

    # single kernel smoother, even length
    pgram = Periodogram(dat, spans=4)
    rspec = flex.double([
        22.60966340315627, 18.195262628604752, 12.801658008106513,
        9.533830316034159, 6.842177109002613, 5.718913361175838,
        5.016220391389688, 4.145220428761756, 6.187449533598165,
        6.766923476486281, 6.909821176923462, 7.649546371537703,
        5.17230337090994, 3.9639665387034815, 3.5977579212052033,
        2.709855572127937, 2.971326160175313, 2.0596273980998854,
        1.350969309569581, 1.3614783358645521, 1.1957180543273982,
        1.371929975931356, 2.582821697871905, 4.389998004175942,
        5.470564984068996, 5.702837024958528, 4.936416830929916,
        3.8579727997111832, 3.4807017683590322, 3.7410950155083493,
        3.82883637355107, 3.0830643475781216, 2.3152645100024487,
        2.998560753435843, 3.7448691190604286, 4.131990941949487,
        4.893824075832538, 4.706890853446401, 4.14044026592323,
        4.029403976076368, 3.639046172087742, 2.595904577911505,
        3.042008709376008, 4.431477356793608, 5.271945689431424,
        5.625190475689571, 4.369874722298269, 2.363493276128358,
        0.9196425124786836, 0.39711770973225585
    ])
    assert approx_equal(pgram.spec, rspec)

    # three kernel smoothers with differing lengths, odd length sequence
    dat2 = dat[0:99]
    pgram = Periodogram(dat2, spans=[4, 6, 4])
    rspec = flex.double([
        17.314055274775985, 15.746715010053997, 13.51918957394817,
        11.096669833901974, 8.94488071864728, 7.357033921545414,
        6.4291723412721415, 6.06483632171929, 6.0180027558874265,
        6.0556124717493125, 6.000976488762685, 5.756178307862047,
        5.315663331116168, 4.716140919888478, 4.055823092903159,
        3.4305933136199633, 2.8881959432238777, 2.4700815936067313,
        2.2043629196392005, 2.1371110039637147, 2.318359384971553,
        2.737953359136525, 3.3119078691830612, 3.8971755852383345,
        4.358224117959523, 4.610902643634579, 4.617256999182198,
        4.404925734628821, 4.07304004821836, 3.742088947852017,
        3.4988298970826084, 3.377951237167512, 3.3623755402288427,
        3.4107737746104503, 3.493901696666407, 3.5886989978152486,
        3.6571955223055133, 3.6669320372957337, 3.6399826234621893,
        3.6368323534539106, 3.701389530366984, 3.8389251460239517,
        3.9895437773918845, 4.046699282044061, 3.92426466711323,
        3.5960187967975505, 3.122909791584781, 2.6492847490141163,
        2.349620740074152
    ])

    assert approx_equal(pgram.spec, rspec)
    print "OK"
Esempio n. 5
0
def test1():
    # Compare over a range of lengths from 2 to 200 with random data
    for i in range(2, 201):
        dat = flex.random_double(i)
        a = Periodogram(dat)
        b = rpgram(dat)

        assert approx_equal(a.freq, b.freq)
        assert approx_equal(a.spec, b.spec)
    print "OK"
Esempio n. 6
0
def test3():
    # compare smoothed pgrams with even and odd length sequences
    for i in range(2):
        dat = flex.random_double(50 + i)
        a = Periodogram(dat, spans=4)
        b = rpgram(dat, spans=4)

        #from matplotlib.pyplot import ion
        #ion()
        #a.plot()
        #b.plot()

        assert approx_equal(a.freq, b.freq)
        assert approx_equal(a.spec, b.spec)

        print "OK"
Esempio n. 7
0
def test5():
    # compare smoothed pgrams with convolved kernel, even and odd length sequences
    for i in range(2):
        dat = flex.random_double(50 + i)

        a = Periodogram(dat, spans=[4, 4])
        b = rpgram(dat, spans=robjects.FloatVector(list([4, 4])))

        #from matplotlib.pyplot import ion
        #ion()
        #a.plot()
        #b.plot()

        assert approx_equal(a.freq, b.freq)
        assert approx_equal(a.spec, b.spec)

        print "OK"
    def __call__(self,
                 calc_average_residuals=True,
                 calc_periodograms=True,
                 spans=(4, 4)):
        """Perform analysis and return the results as a list of dictionaries (one
        for each experiment)"""

        # if not doing further analysis, return the basic data
        if not calc_average_residuals and not calc_periodograms:
            return self._results

        # if we don't have average residuals already, calculate them
        if not self._average_residuals:
            for iexp in range(self._nexp):
                results_this_exp = self._results[iexp]
                block_size = results_this_exp.get("block_size")
                if block_size is None:
                    continue
                phi_range = results_this_exp["phi_range"]
                nblocks = results_this_exp["nblocks"]
                ref_this_exp = self._reflections.select(
                    self._reflections["id"] == iexp)
                x_resid = ref_this_exp["x_resid"]
                y_resid = ref_this_exp["y_resid"]
                phi_resid = ref_this_exp["phi_resid"]
                phi_obs_deg = ref_this_exp["xyzobs.mm.value"].parts(
                )[2] * RAD2DEG
                xr_per_blk = flex.double()
                yr_per_blk = flex.double()
                pr_per_blk = flex.double()
                for i in range(nblocks - 1):
                    blk_start = phi_range[0] + i * block_size
                    blk_end = blk_start + block_size
                    sel = (phi_obs_deg >= blk_start) & (phi_obs_deg < blk_end)
                    xr_per_blk.append(self._av_callback(x_resid.select(sel)))
                    yr_per_blk.append(self._av_callback(y_resid.select(sel)))
                    pr_per_blk.append(self._av_callback(phi_resid.select(sel)))
                # include max phi in the final block
                blk_start = phi_range[0] + (nblocks - 1) * block_size
                blk_end = phi_range[1]
                sel = (phi_obs_deg >= blk_start) & (phi_obs_deg <= blk_end)
                xr_per_blk.append(self._av_callback(x_resid.select(sel)))
                yr_per_blk.append(self._av_callback(y_resid.select(sel)))
                pr_per_blk.append(self._av_callback(phi_resid.select(sel)))
                # the first and last block of average residuals (especially those in
                # phi) are usually bad because rocking curves are truncated at the
                # edges of the scan. When we have enough blocks and they are narrow,
                # just replace the extreme values with their neighbours
                if nblocks > 2 and block_size < 3.0:
                    xr_per_blk[0] = xr_per_blk[1]
                    xr_per_blk[-1] = xr_per_blk[-2]
                    yr_per_blk[0] = yr_per_blk[1]
                    yr_per_blk[-1] = yr_per_blk[-2]
                    pr_per_blk[0] = pr_per_blk[1]
                    pr_per_blk[-1] = pr_per_blk[-2]

                results_this_exp["av_x_resid_per_block"] = xr_per_blk
                results_this_exp["av_y_resid_per_block"] = yr_per_blk
                results_this_exp["av_phi_resid_per_block"] = pr_per_blk
            self._average_residuals = True

        # Perform power spectrum analysis on the residuals, converted to microns
        # and mrad to avoid tiny numbers
        if calc_periodograms:
            if self._spectral_analysis:
                return self._results

            for exp_data in self._results:
                exp_data["x_periodogram"] = None
                exp_data["y_periodogram"] = None
                exp_data["phi_periodogram"] = None
                if exp_data["nblocks"] < 5:
                    continue

                for pname, data in zip(
                    ["x_periodogram", "y_periodogram", "phi_periodogram"],
                    [
                        exp_data["av_x_resid_per_block"],
                        exp_data["av_y_resid_per_block"],
                        exp_data["av_phi_resid_per_block"],
                    ],
                ):
                    if (flex.max(data) - flex.min(data)) > 1.0e-8:
                        exp_data[pname] = Periodogram(1000.0 * data,
                                                      spans=spans)
            self._spectral_analysis = True

            # extract further information from the power spectrum
            for exp_data in self._results:
                exp_data["x_interval"] = self._analyse_periodogram(
                    exp_data["x_periodogram"])
                exp_data["y_interval"] = self._analyse_periodogram(
                    exp_data["y_periodogram"])
                exp_data["phi_interval"] = self._analyse_periodogram(
                    exp_data["phi_periodogram"])

        return self._results