Esempio n. 1
0
def _test_vs_euler_angles_xyz_angles(phi1, phi2, phi3):

    from scitbx.math import euler_angles_xyz_angles

    # compose rotation matrix
    R1 = matrix.col((1, 0, 0)).axis_and_angle_as_r3_rotation_matrix(phi1,
                                                                    deg=False)
    R2 = matrix.col((0, 1, 0)).axis_and_angle_as_r3_rotation_matrix(phi2,
                                                                    deg=False)
    R3 = matrix.col((0, 0, 1)).axis_and_angle_as_r3_rotation_matrix(phi3,
                                                                    deg=False)
    R = R1 * R2 * R3

    # get two solution sets for the principal axes
    sol1 = solve_r3_rotation_for_angles_given_axes(R, (1, 0, 0), (0, 1, 0),
                                                   (0, 0, 1),
                                                   smaller_phi2_solution=False,
                                                   deg=True)
    sol2 = solve_r3_rotation_for_angles_given_axes(R, (1, 0, 0), (0, 1, 0),
                                                   (0, 0, 1),
                                                   smaller_phi2_solution=True,
                                                   deg=True)

    # get the solution set provided by euler_angles_xyz_angles
    tst = euler_angles_xyz_angles(R)

    # one of these must match
    assert approx_equal(sol1, tst, out=None) or approx_equal(
        sol2, tst, out=None)
def test_vs_euler_angles_xyz_angles(phi1, phi2, phi3):

  from scitbx.math import euler_angles_xyz_angles

  # compose rotation matrix
  R1 = matrix.col((1,0,0)).axis_and_angle_as_r3_rotation_matrix(phi1, deg=False)
  R2 = matrix.col((0,1,0)).axis_and_angle_as_r3_rotation_matrix(phi2, deg=False)
  R3 = matrix.col((0,0,1)).axis_and_angle_as_r3_rotation_matrix(phi3, deg=False)
  R = R1*R2*R3

  # get two solution sets for the principal axes
  sol1 = solve_r3_rotation_for_angles_given_axes(R, (1,0,0), (0,1,0), (0,0,1),
    smaller_phi2_solution=False, deg=True)
  sol2 = solve_r3_rotation_for_angles_given_axes(R, (1,0,0), (0,1,0), (0,0,1),
    smaller_phi2_solution=True, deg=True)

  # get the solution set provided by euler_angles_xyz_angles
  tst = euler_angles_xyz_angles(R)

  # one of these must match
  assert any([approx_equal(sol1, tst, out=None),
              approx_equal(sol2, tst, out=None)])
  return