Esempio n. 1
0
    def format_data(self, data):
        """
        This accepts data input in the form:
        ***** (observation) *****
        {"density": {"mean": "XX 1000/mm3", "std": "YY 1000/mm3"}}
        ***** (prediction) *****
        {"density": {"value": "ZZ 1000/mm3"}}

        It splits the values of mean, std, value to numeric quantities
        and their units (via quantities package).
        """
        for key, val in data["density"].items():
            try:
                quantity_parts = val.split(" ")
                number = float(quantity_parts[0])
                units_str = " ".join(quantity_parts[1:])
                assert (units_str == self.units.symbol)
                data["density"][key] = quantities.Quantity(number, self.units)
            except AssertionError:
                raise sciunit.Error(
                    "Values not in appropriate format. Required units: ",
                    self.units.symbol)
            except:
                raise sciunit.Error("Values not in appropriate format.")
        return data
Esempio n. 2
0
 def format_data(self, data):
     """
     This accepts data input in the form:
     ***** (observation) *****
     {'Layer 1': {'height': {'mean': 'X0 um', 'std': 'Y0 um'}},
      'Layer 2/3': {'height': {'mean': 'X1 um', 'std': 'Y1 um'}},
      ...                                                       }
     ***** (prediction) *****
     { 'Layer 1': {'height': {'value': 'X0 um'}},
       'Layer 2/3': {'height': {'value': 'X1 um'}},
       ...                                        }
     and splits the values of mean and std to numeric quantities
     and their units (via quantities package).
     """
     for key0 in data.keys():
         for key, val in data[key0]["height"].items():
             try:
                 quantity_parts = val.split(" ")
                 number = float(quantity_parts[0])
                 units_str = " ".join(quantity_parts[1:])
                 assert (units_str == self.units.symbol)
                 data[key0]["height"][key] = quantities.Quantity(
                     number, self.units)
             except AssertionError:
                 raise sciunit.Error(
                     "Values not in appropriate format. Required units: ",
                     self.units.symbol)
             except:
                 raise sciunit.Error("Values not in appropriate format.")
     return data
Esempio n. 3
0
 def format_data(self, data):
     """
     This accepts data input in the form:
     ***** (observation) *****
     list of Nunit neo.SpikeTrains with annotations 'exc', 'inh'
     ***** (prediction) *****
     list of Nunit neo.SpikeTrains with annotations 'exc', 'inh'
     """
     neu_types = []
     for st in data:
         try:  # neo SpikeTrains?
             assert type(st) is neo.core.spiketrain.SpikeTrain
         except:
             raise sciunit.Error("List elements are not " +
                                 "neo.core.spiketrain.SpikeTrains.")
         try:  # has neu_type annotations?
             assert 'neu_type' in st.annotations
         except:
             raise sciunit.Error("SpikeTrain has no neu_type annotation.")
         neu_types.append(st.annotations['neu_type'])
     neu_types = set(neu_types)
     try:
         assert any('exc' == s for s in neu_types)
     except:
         raise sciunit.Error("There are no exc units.")
     try:
         assert any('inh' == s for s in neu_types)
     except:
         raise sciunit.Error("There are no inh units.")
     pass
Esempio n. 4
0
    def format_data(self, data):
        """
        This accepts data input in the form:
        ***** (observation) *****
        {"cell_kind": { "cell_part_1": {'morph_feature_name_11': {'mean value': 'X11_mean units_str', 'std': 'X11_std units_str'},
                                        'morph_feature_name_12': {'mean value': 'X12_mean units_str', 'std': 'X12_std units_str'},
                                        ... },
                        "cell_part_2": {'morph_feature_name_21': {'mean value': 'X21_mean units_str', 'std': 'X21_std units_str'},
                                        'morph_feature_name_22': {'mean value': 'X22_mean units_str', 'std': 'X22_std units_str'},
                                        ... },
                        ... }
        }
        ***** (prediction) *****
        {"cell1_ID": { 'cell_part_1': {'morph_feature_name_11': {'value': 'X11 units_str'},
                                       'morph_feature_name_12': {'value': 'X12 units_str'},
                                        ... },
                       'cell_part_2': {'morph_feature_name_21': {'value': 'X21 units_str'},
                                       'morph_feature_name_22': {'value': 'X22 units_str'},
                                        ... },
                       ... }
         "cell2_ID": { 'cell_part_1': {'morph_feature_name_11': {'value': 'Y11 units_str'},
                                       'morph_feature_name_12': {'value': 'Y12 units_str'},
                                        ... },
                       'cell_part_2': {'morph_feature_name_21': {'value': 'Y21 units_str'},
                                       'morph_feature_name_22': {'value': 'Y22 units_str'},
                                        ... },
                       ... }
        ... }

        It splits the values of mean, std and value to numeric quantities
        and their units (via quantities package)
        """
        dim_non = ['order', 'number', 'asymmetry', 'rate']
        dim_um = ['radii', 'length', 'distance', 'extent']
        dim_umSq = ['area']
        dim_umCb = ['volume']
        dim_deg = ['angle']
        for dict1 in data.values(
        ):  # Dict. with cell's part-features dictionary pairs for each cell
            for dict2 in dict1.values(
            ):  # Dict. with feature name-value pairs for each cell part:
                # neuron, apical_dendrite, basal_dendrite or axon
                for dict3 in dict2.values(
                ):  # Dict. with 'value', 'mean' and 'std' values
                    for key, val in dict3.items():
                        quantity_parts = val.split()
                        number, units_str = float(quantity_parts[0]), " ".join(
                            quantity_parts[1:])
                        try:
                            if any(sub_str in key for sub_str in dim_um):
                                assert (units_str == quantities.um | units_str == quantities.mm), \
                                    sciunit.Error("Values not in appropriate format. Required units: mm or um")
                            elif any(sub_str in key for sub_str in dim_non):
                                assert (units_str == quantities.dimensionless), \
                                    sciunit.Error("Values not in appropriate format. Required units: ",
                                                  quantities.dimensionless)
                        finally:
                            dict3[key] = quantities.Quantity(number, units_str)

        return data
Esempio n. 5
0
    def validate_observation(self, observation):

        # Checking format of the observation data
        for dict1 in observation.values(
        ):  # Dict. with cell's part-features dictionary pairs for each cell
            for dict2 in dict1.values(
            ):  # Dict. with feature name-value pairs for each cell part:
                # neuron, apical_dendrite, basal_dendrite or axon
                for dict3 in dict2.values(
                ):  # Dict. with 'value' or 'mean' and 'std' values
                    for val in dict3.values():
                        assert type(val) is quantities.Quantity, \
                            sciunit.Error(("Observation must be of the form "
                                           "{'mean': 'XX units_str','std': 'YY units_str'}"))
    def format_data(self, data):
        """
        This accepts data input in the form:
        ***** (observation) *****
        {   "AA":{
                "SO": {"mean": "X0"},
                "SP": {"mean": "X1"},
                "SR": {"mean": "X2"},
                "SLM":{"mean": "X3"}
            },
            "BP": {...},
            "BS": {...},
            "CCKBC":{...},
            "Ivy":{...},
            "OLM":{...},
            "PC":{...},
            "PPA":{...},
            "SCA":{...},
            "Tri":{...}
        }
        ***** (prediction) *****
        {   "AA":{
                "SO": {"value": "X0"},
                "SP": {"value": "X1"},
                "SR": {"value": "X2"},
                "SLM":{"value": "X3"},
                "OUT":{"value": "X4"}
            },
            "BP": {...},
            "BS": {...},
            "CCKBC":{...},
            "Ivy":{...},
            "OLM":{...},
            "PC":{...},
            "PPA":{...},
            "SCA":{...},
            "Tri":{...}
        }
        Returns a new dictionary of the form
        { "AA":[X0, X1, X2, X3, X4], "BP":[...] , "BS":[...], "CCKBC":[...], "Ivy":[...], "OLM":[...],
        "PC":[...], "PPA":[...], "SCA":[...], "Tri":[...] }
        """

        data_new_dict = dict()
        for key0, dict0 in data.items(
        ):  # dict0: a dictionary containing the synapses fraction in each of the
            # Hippocampus CA1 layers (SO, SP, SR, SLM) and OUT (for prediction data only)
            # for each m-type cell (AA, BP, BS, CCKBC, Ivy, OLM, PC, PPA, SCA, Tri)
            data_list_1 = list()
            for dict1 in dict0.values():  # dict1: a dictionary of the form
                # {"mean": "X0"} (observation) or {"value": "X"} (prediction)
                try:
                    synapses_fraction = float(dict1.values()[0])
                    assert (synapses_fraction <= 1.0)
                    data_list_1.extend([synapses_fraction])
                except:
                    raise sciunit.Error(
                        "Values not in appropriate format. Synapses fraction of an m-type cell"
                        "must be dimensionless and not larger than 1.0")

            if "OUT" not in dict0.keys():
                data_list_1.extend([0.0])  # observation data
            data_list_1_q = quantities.Quantity(data_list_1, self.units)
            data_new_dict[key0] = data_list_1_q

        return data_new_dict