Esempio n. 1
0
sfh['t2'] = 10.**sfh['t2']
sfh['sfr'][0] *=  1 - (sfh['t1'][0]/sfh['t2'][0])
sfh[0]['t1'] = 0.
mtot = ((sfh['t2'] - sfh['t1']) * sfh['sfr']).sum()

# choose lookback times to generate
lookback_time = [0, 1e8]

# generate a high temporal resolution SFH, with bursts if f_burst > 0
lt, sfr, tb = bsp.burst_sfh(sfh=sfh, fwhm_burst=fwhm_burst, f_burst=f_burst, contrast=contrast)
# get the interpolation weights.  This does not have to be run in
# general (it is run interior to bursty_sps) unless you are
# debugging or for plotting purposes
aw = bsp.sfh_weights(lt, sfr, 10**sps.ssp_ages, lookback_time=lookback_time)
# get the intrinsic spectra at the lookback_times specified.
wave, spec, mstar, _ = bsp.bursty_sps(lt, sfr, sps, lookback_time=lookback_time)
# get reddened spectra, Calzetti foreground screen
wave, red_spec, _, lir = bsp.bursty_sps(lt, sfr, sps,
                                        lookback_time=lookback_time,
                                        dust_curve=attenuation.calzetti,
                                        av=1, dav=0)
# get reddened spectra, SexA differntial extinction plus SMC
dav = sexAmodel(davmax=1.0, ages=10**sps.ssp_ages)
wave, red_spec, _, lir = bsp.bursty_sps(lt, sfr, sps,
                                        lookback_time=lookback_time,
                                        dust_curve=attenuation.smc,
                                        av=1, dav=dav)

# Get intrinsic spectrum including an age metallicity relation
def amr(ages, **extras):
    """This should take an array of ages (linear years) and return an array
Esempio n. 2
0
sfh["t2"] = 10.0 ** sfh["t2"]
sfh["sfr"][0] *= 1 - (sfh["t1"][0] / sfh["t2"][0])
sfh[0]["t1"] = 0.0
mtot = ((sfh["t2"] - sfh["t1"]) * sfh["sfr"]).sum()

# choose lookback times to generate
lookback_time = [0, 1e8]

# generate a high temporal resolution SFH, with bursts if f_burst > 0
lt, sfr, tb = bsp.burst_sfh(sfh=sfh, fwhm_burst=fwhm_burst, f_burst=f_burst, contrast=contrast)
# get the interpolation weights.  This does not have to be run in
# general (it is run interior to bursty_sps) unless you are
# debugging or for plotting purposes
aw = bsp.sfh_weights(lt, sfr, 10 ** sps.ssp_ages, lookback_time=lookback_time)
# get the intrinsic spectra at the lookback_times specified.
wave, spec, mstar, _ = bsp.bursty_sps(lt, sfr, sps, lookback_time=lookback_time)
# get reddened spectra, Calzetti foreground screen
wave, red_spec, _, lir = bsp.bursty_sps(
    lt, sfr, sps, lookback_time=lookback_time, dust_curve=attenuation.calzetti, av=1, dav=0
)
# get reddened spectra, SexA differntial extinction plus SMC
dav = sexAmodel(davmax=1.0, ages=10 ** sps.ssp_ages)
wave, red_spec, _, lir = bsp.bursty_sps(
    lt, sfr, sps, lookback_time=lookback_time, dust_curve=attenuation.smc, av=1, dav=dav
)

# Get intrinsic spectrum including an age metallicity relation
def amr(ages, **extras):
    """This should take an array of ages (linear years) and return an array
    of metallicities (units of log(Z/Z_sun)
    """
Esempio n. 3
0
    av, dav = 0.1, 0.1
    #read the binned sfh, put in linear units
    sfh = utils.load_angst_sfh(filen)
    sfh['t1'] = 10.**sfh['t1']
    sfh['t2'] = 10.**sfh['t2']
    sfh['sfr'][0] *=  1 - (sfh['t1'][0]/sfh['t2'][0])
    sfh[0]['t1'] = 0.
    mtot = ((sfh['t2'] - sfh['t1']) * sfh['sfr']).sum()

    #convert into a high resolution sfh, with *no* intrabin sfr variations
    lt, sfr, fb = bsp.burst_sfh(fwhm_burst=0.05, f_burst=0., contrast=1.,
                                sfh=sfh, bin_res=20.)
    
    # Get the attenuated spectra
    #  and IR luminosities
    wave, spec, mass, lir = bsp.bursty_sps(lt, sfr, sps, lookback_time=t_lookback,
                                           av=av, dav=dav, nsplit=30)
    for j, jt in enumerate(t_lookback):
        pl.plot(wave, spec[j,:] * wave * bsp.to_cgs,
                label = '{0} @ {1}'.format(objname[i], tl[j]))
        
    # Project onto filters to get
    #   absolute magnitudes
    mags = observate.getSED(wave, spec * bsp.to_cgs, filterlist = filterlist)
    
    # Get the intrinsic spectrum and project onto filters
    wave, spec, mass, _ = bsp.bursty_sps(lt, sfr, sps, lookback_times=t_lookback,
                                         av=None, dav=None)
    mags_int = observate.getSED(wave, spec * bsp.to_cgs, filterlist = filterlist)


pl.xlim(1e3, 1e4)
Esempio n. 4
0
    sfh[0]['t1'] = 0.
    mtot = ((sfh['t2'] - sfh['t1']) * sfh['sfr']).sum()

    #convert into a high resolution sfh, with *no* intrabin sfr variations
    lt, sfr, fb = bsp.burst_sfh(fwhm_burst=0.05,
                                f_burst=0.,
                                contrast=1.,
                                sfh=sfh,
                                bin_res=20.)

    # Get the attenuated spectra
    #  and IR luminosities
    wave, spec, mass, lir = bsp.bursty_sps(lt,
                                           sfr,
                                           sps,
                                           lookback_time=t_lookback,
                                           av=av,
                                           dav=dav,
                                           nsplit=30)
    for j, jt in enumerate(t_lookback):
        pl.plot(wave,
                spec[j, :] * wave * bsp.to_cgs,
                label='{0} @ {1}'.format(objname[i], tl[j]))

    # Project onto filters to get
    #   absolute magnitudes
    mags = observate.getSED(wave, spec * bsp.to_cgs, filterlist=filterlist)

    # Get the intrinsic spectrum and project onto filters
    wave, spec, mass, _ = bsp.bursty_sps(lt,
                                         sfr,