Esempio n. 1
0
def main():
    # Initialization
    path_data = ''
    xmin = '50'
    xsize = '100'
    ymin = '0'
    ysize = '-1'
    zmin = '0'
    zsize = '-1'
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI

    # Parameters for debug mode
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        path_data = '/Volumes/folder_shared/template/t2'
        path_out = '/Volumes/folder_shared/template/t2_crop'
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'hi:o:')
        except getopt.GetoptError:
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ("-i"):
                path_data = arg
            elif opt in ("-o"):
                path_out = arg

    # check input folder
    sct.check_folder_exist(path_data)

    # add slash
    path_data = sct.slash_at_the_end(path_data, 1)
    path_out = sct.slash_at_the_end(path_out, 1)

    # create output folder
    if os.path.exists(path_out):
        sct.printv('WARNING: Output folder exists. Deleting it.', 1, 'warning')
        # remove dir
        shutil.rmtree(path_out)
    # create dir
    os.makedirs(path_out)

    # list all files in folder
    files = [f for f in glob.glob(path_data + '*.nii.gz')]
    # for files in glob.glob(path_data+'*.nii.gz'):
    #     print files

    # crop files one by one (to inform user)
    for f in files:
        path_f, file_f, ext_f = sct.extract_fname(f)
        sct.run('fslroi ' + f + ' ' + path_out + file_f + ' ' + xmin + ' ' +
                xsize + ' ' + ymin + ' ' + ysize + ' ' + zmin + ' ' + zsize)

    # to view results
    print '\nDone!'
def main():
    # Initialization
    path_data = ''
    xmin = '50'
    xsize = '100'
    ymin = '0'
    ysize = '-1'
    zmin = '0'
    zsize = '-1'
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; ' # for faster processing, all outputs are in NIFTI

    # Parameters for debug mode
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        path_data = '/Volumes/folder_shared/template/t2'
        path_out = '/Volumes/folder_shared/template/t2_crop'
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'hi:o:')
        except getopt.GetoptError:
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ("-i"):
                path_data = arg
            elif opt in ("-o"):
                path_out = arg

    # check input folder
    sct.check_folder_exist(path_data)

    # add slash
    path_data = sct.slash_at_the_end(path_data, 1)
    path_out = sct.slash_at_the_end(path_out, 1)

    # create output folder
    if os.path.exists(path_out):
        sct.printv('WARNING: Output folder exists. Deleting it.', 1, 'warning')
        # remove dir
        shutil.rmtree(path_out)
    # create dir
    os.makedirs(path_out)

    # list all files in folder
    files = [f for f in glob.glob(path_data+'*.nii.gz')]
    # for files in glob.glob(path_data+'*.nii.gz'):
    #     print files

    # crop files one by one (to inform user)
    for f in files:
        path_f, file_f, ext_f = sct.extract_fname(f)
        sct.run('fslroi '+f+' '+path_out+file_f+' '+xmin+' '+xsize+' '+ymin+' '+ysize+' '+zmin+' '+zsize)

    # to view results
    print '\nDone!'
def test_function(script_name):
    if script_name == 'test_debug':
        return test_debug()  # JULIEN
    else:
        # Using the retest variable to recheck if we can perform tests after we downloaded the data
        retest = 1
        # while condition values are arbitrary and are present to prevent infinite loop
        while 0 < retest < 3:
            # build script name
            fname_log = script_name + ".log"
            tmp_script_name = script_name
            result_folder = "results_"+script_name
            script_name = "test_"+script_name

            if retest == 1:
                # create folder and go in it
                sct.create_folder(result_folder)

            os.chdir(result_folder)

            # display script name
            print_line('Checking '+script_name)
            # import function as a module
            script_tested = importlib.import_module(script_name)
            # test function
            status, output = script_tested.test(param.path_data)
            # returning script_name to its original name
            script_name = tmp_script_name
            # manage status
            if status == 0:
                print_ok()
                retest = 0
            else:
                print_fail()
                print output
                print "\nTest files missing, downloading them now \n"

                os.chdir('../..')
                downloaddata()

                param.path_data = sct.slash_at_the_end(os.path.abspath(param.path_data), 1)

                # check existence of testing data folder
                sct.check_folder_exist(param.path_data)
                os.chdir(param.path_tmp + result_folder)

                retest += 1

            # log file
            write_to_log_file(fname_log, output, 'w')

            # go back to parent folder
            os.chdir('..')
            # end while loop

        # return
        return status
 def checkFolder(self, param):
     # check if the folder exist. If not, create it.
     sct.printv("Check folder existence...")
     sct.check_folder_exist(param, 0)
     return param
def main():
    path_data = param.path_data
    function_to_test = param.function_to_test
    # function_to_avoid = param.function_to_avoid
    remove_tmp_file = param.remove_tmp_file

    # Check input parameters
    try:
        opts, args = getopt.getopt(sys.argv[1:],'h:d:p:f:r:a:')
    except getopt.GetoptError:
        usage()
    for opt, arg in opts:
        if opt == '-h':
            usage()
            sys.exit(0)
        if opt == '-d':
            param.download = int(arg)
        if opt == '-p':
            param.path_data = arg
        if opt == '-f':
            function_to_test = arg
        # if opt == '-a':
        #     function_to_avoid = arg
        if opt == '-r':
            remove_tmp_file = int(arg)

    start_time = time.time()

    # if function_to_avoid:
    #     try:
    #         functions.remove(function_to_avoid)
    #     except ValueError:
    #         print 'The function you want to avoid does not figure in the functions to test list'

    # download data
    if param.download:
        downloaddata()

    param.path_data = 'sct_testing_data/data'
    # get absolute path and add slash at the end
    param.path_data = sct.slash_at_the_end(os.path.abspath(param.path_data), 1)

    # check existence of testing data folder
    if not sct.check_folder_exist(param.path_data, 0):
        downloaddata()

    # display path to data
    sct.printv('\nPath to testing data:\n.. '+param.path_data, param.verbose)

    # create temp folder that will have all results and go in it
    param.path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S"), 1)
    sct.create_folder(param.path_tmp)
    os.chdir(param.path_tmp)

    # get list of all scripts to test
    functions = fill_functions()

    # loop across all functions and test them
    status = []
    [status.append(test_function(f)) for f in functions if function_to_test == f]
    if not status:
        for f in functions:
            status.append(test_function(f))
    print 'status: '+str(status)

    # display elapsed time
    elapsed_time = time.time() - start_time
    print 'Finished! Elapsed time: '+str(int(round(elapsed_time)))+'s\n'

    # remove temp files
    if param.remove_tmp_file:
        sct.printv('\nRemove temporary files...', param.verbose)
        sct.run('rm -rf '+param.path_tmp, param.verbose)

    e = 0
    if sum(status) != 0:
        e = 1
    print e

    sys.exit(e)
def main():

    #Initialization
    directory = ""
    fname_template = ''
    n_l = 0
    verbose = param.verbose

    try:
        opts, args = getopt.getopt(sys.argv[1:], 'hi:t:n:v:')
    except getopt.GetoptError:
        usage()
    for opt, arg in opts:
        if opt == '-h':
            usage()
        elif opt in ("-i"):
            directory = arg
        elif opt in ("-t"):
            fname_template = arg
        elif opt in ('-n'):
            n_l = int(arg)
        elif opt in ('-v'):
            verbose = int(arg)

    # display usage if a mandatory argument is not provided
    if fname_template == '' or directory == '':
        usage()

    # check existence of input files
    print '\nCheck if file exists ...\n'
    sct.check_file_exist(fname_template)
    sct.check_folder_exist(directory)

    path_template, file_template, ext_template = sct.extract_fname(
        fname_template)
    template_absolute_path = sct.get_absolute_path(fname_template)

    os.chdir(directory)

    n_i = len([
        name for name in os.listdir('.')
        if (os.path.isfile(name) and name.endswith(".nii.gz")
            and name != 'template_landmarks.nii.gz')
    ])  # number of landmark images

    average = zeros((n_i, n_l))
    compteur = 0

    for file in os.listdir('.'):
        if file.endswith(".nii.gz") and file != 'template_landmarks.nii.gz':
            print file
            img = nibabel.load(file)
            data = img.get_data()
            X, Y, Z = (data > 0).nonzero()
            Z = [Z[i] for i in Z.argsort()]
            Z.reverse()

            for i in xrange(n_l):
                if i < len(Z):
                    average[compteur][i] = Z[i]

            compteur = compteur + 1

    average = array([
        int(round(mean([average[average[:, i] > 0, i]]))) for i in xrange(n_l)
    ])

    #print average

    print template_absolute_path
    print '\nGet dimensions of template...'
    nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(template_absolute_path)
    print '.. matrix size: ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz)
    print '.. voxel size:  ' + str(px) + 'mm x ' + str(py) + 'mm x ' + str(
        pz) + 'mm'

    img = nibabel.load(template_absolute_path)
    data = img.get_data()
    hdr = img.get_header()
    data[:, :, :] = 0
    compteur = 1
    for i in average:
        print int(round(nx / 2.0)), int(round(ny / 2.0)), int(round(i)), int(
            round(compteur))
        data[int(round(nx / 2.0)),
             int(round(ny / 2.0)),
             int(round(i))] = int(round(compteur))
        compteur = compteur + 1

    print '\nSave volume ...'
    #hdr.set_data_dtype('float32') # set imagetype to uint8
    # save volume
    #data = data.astype(float32, copy =False)
    img = nibabel.Nifti1Image(data, None, hdr)
    file_name = 'template_landmarks.nii.gz'
    nibabel.save(img, file_name)
    print '\nFile created : ' + file_name
def main():
    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter"#"C:/cygwin64/home/Simon_2/data_methods_comparison"
        path_sct = '/Users/slevy_local/spinalcordtoolbox' #'C:/cygwin64/home/Simon_2/spinalcordtoolbox'
        methods_to_display = 'bin,wa,wath,ml,map'
    else:
        status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    # Append path that contains scripts, to be able to load modules
    sys.path.append(path_sct + '/scripts')
    import sct_utils as sct

    sct.printv("Working directory: " + os.getcwd())

    results_folder_noise = results_folder + '/noise'
    results_folder_tracts = results_folder + '/tracts'

    sct.printv('\n\nData will be extracted from folder ' + results_folder_noise + ' and ' + results_folder_tracts + '.', 'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(results_folder_noise)
    sct.check_folder_exist(results_folder_tracts)


    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    # Extract file names of the results files
    fname_results_noise = glob.glob(results_folder_noise + '/*.txt')
    fname_results_tracts = glob.glob(results_folder_tracts + '/*.txt')
    fname_results = fname_results_noise + fname_results_tracts
    # Remove doublons (due to the two folders)
    # for i_fname in range(0, len(fname_results)):
    #     for j_fname in range(0, len(fname_results)):
    #         if (i_fname != j_fname) & (os.path.basename(fname_results[i_fname]) == os.path.basename(fname_results[j_fname])):
    #             fname_results.remove(fname_results[j_fname])
    file_results = []
    for fname in fname_results:
        file_results.append(os.path.basename(fname))
    for file in file_results:
        if file_results.count(file) > 1:
            ind = file_results.index(file)
            fname_results.remove(fname_results[ind])
            file_results.remove(file)

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # CSF value
    csf_values = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = []  #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 5))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 5))
    # min
    min_results = numpy.zeros((nb_results_file, 5))
    # max
    max_results = numpy.zeros((nb_results_file, 5))

    #
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [lines.index(line_noise) for line_noise in lines if "sigma noise" in line_noise]
        if len(ind_line_noise) != 1:
            sct.printv("ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [lines.index(line_tract_std) for line_tract_std in lines if
                              "range tracts" in line_tract_std]
        if len(ind_line_tract_std) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))

        # extract CSF value
        ind_line_csf_value = [lines.index(line_csf_value) for line_csf_value in lines if
                              "# value CSF" in line_csf_value]
        if len(ind_line_csf_value) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            csf_values[i_file] = int(''.join(c for c in lines[ind_line_csf_value[0]].split(':')[1] if c.isdigit()))


        # extract method name
        ind_line_label = [lines.index(line_label) for line_label in lines if "Label" in line_label]
        if len(ind_line_label) != 1:
            sct.printv("ERROR: number of lines including \"Label\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(' ', '').split(',')[1:])

        # extract median
        ind_line_median = [lines.index(line_median) for line_median in lines if "median" in line_median]
        if len(ind_line_median) != 1:
            sct.printv("WARNING: number of lines including \"median\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array([float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [lines.index(line_min) for line_min in lines if "min," in line_min]
        if len(ind_line_min) != 1:
            sct.printv("WARNING: number of lines including \"min\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [lines.index(line_max) for line_max in lines if "max" in line_max]
        if len(ind_line_max) != 1:
            sct.printv("WARNING: number of lines including \"max\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines) + 1]
        for i_line in range(ind_line_label[0] + 1, ind_line_median[0] - 1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([float(error.strip().split('(')[0]) for error in line_label_i[1:]])
            std_per_label_for_file_i.append([float(error.strip().split('(')[1][:-1]) for error in line_label_i[1:]])
            labels_id_for_file_i.append(line_label_i[0])
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder + ' have not been generated with the same number of methods. Exit program.',
            'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder + ' have not been generated with the same labels. Exit program.',
            'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)

    nb_method = len(methods_to_display)

    sct.printv('Noise std of the ' + str(nb_results_file) + ' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the ' + str(nb_results_file) + ' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('CSF value of the ' + str(nb_results_file) + ' generated files:')
    print csf_values
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the ' + str(nb_results_file) + ' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv(
        'Median obtained with each method (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the ' + str(
        nb_results_file) + ' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the ' + str(
        nb_results_file) + ' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv(
        'Errors obtained with each method (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print error_per_label


    # *********************************************** START PLOTTING HERE **********************************************

    # # plot A (NOT GOOD)
    # fig0 = plt.figure(0)
    # fig0.suptitle('Absolute error within all tracts as a function of noise std')
    #
    # fig0_ax = fig0.add_subplot(111)
    # fig0_ax.grid(True)
    # fig0_ax.set_xlabel('Noise std')
    # fig0_ax.set_ylabel('Absolute error')
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    #
    # for meth, color in zip(methods_name[0], colors):
    #     if meth != 'mlwa':
    #         i_meth = methods_name[0].index(meth)
    #
    #         # median
    #         plt.plot(snr[ind_tracts_std_10], median_results[ind_tracts_std_10, i_meth][0], label='median '+meth, color=color, marker='o', linestyle='None', markersize=5.0, linewidth=2.0)
    #         # min
    #         plt.plot(snr[ind_tracts_std_10], min_results[ind_tracts_std_10, i_meth][0], label='min '+meth, color=color, marker='_', linestyle='None', markersize=10.0, linewidth=20.0)
    #         # max
    #         plt.plot(snr[ind_tracts_std_10], max_results[ind_tracts_std_10, i_meth][0], label='max '+meth, color=color, marker='+', linestyle='None', markersize=10.0, linewidth=20.0)
    #
    # handles, labels = fig0_ax.get_legend_handles_labels()
    # fig0_ax.legend(handles, labels, loc='best', handler_map={Line2D: HandlerLine2D(numpoints=1)}, fontsize=16)
    #
    #
    # # plot B (NOT GOOD)
    # fig1 = plt.figure(1)
    # fig1.suptitle('Absolute error within all tracts as a function of tract std')
    #
    # fig1_ax = fig1.add_subplot(111)
    # fig1_ax.grid(True)
    # fig1_ax.set_xlabel('Tract std (percentage of the true value in tract)')
    # fig1_ax.set_ylabel('Absolute error')
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    #
    # for meth, color in zip(methods_name[0], colors):
    #     if meth != 'mlwa':
    #         i_meth = methods_name[0].index(meth)
    #
    #         # median
    #         plt.plot(tracts_std[ind_snr_10], median_results[ind_snr_10, i_meth][0], label='median '+meth, color=color, marker='o', linestyle='None', markersize=5.0, linewidth=2.0)
    #         # min
    #         plt.plot(tracts_std[ind_snr_10], min_results[ind_snr_10, i_meth][0], label='min '+meth, color=color, marker='_', linestyle='None', markersize=10.0, linewidth=20.0)
    #         # max
    #         plt.plot(tracts_std[ind_snr_10], max_results[ind_snr_10, i_meth][0], label='max '+meth, color=color, marker='+', linestyle='None', markersize=10.0, linewidth=20.0)
    #
    # handles, labels = fig1_ax.get_legend_handles_labels()
    # fig1_ax.legend(handles, labels, loc='best', handler_map={Line2D: HandlerLine2D(numpoints=1)}, fontsize=16)

    # Plot A
    ind_tracts_std_10 = numpy.where((tracts_std == 10) & (snr != 50))  # indexes where TRACTS STD=10
    ind_ind_snr_sort_tracts_std_10 = numpy.argsort(snr[ind_tracts_std_10])  # indexes of indexes where TRACTS STD=10 sorted according to SNR values (in ascending order)
    ind_snr_sort_tracts_std_10 = ind_tracts_std_10[0][ind_ind_snr_sort_tracts_std_10]  # indexes where TRACTS STD=10 sorted according to SNR values (in ascending order)

    # fig2 = plt.figure(2)
    # ind_fig2 = numpy.arange(len(snr[ind_snr_sort_tracts_std_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Error (%)')
    # plt.xlabel('Noise std')
    # plt.title('Error within all tracts as a function of noise std')
    # plt.xticks(ind_fig2 + 0.5, snr[ind_snr_sort_tracts_std_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig2) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig2 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_results[ind_snr_sort_tracts_std_10, i_meth] - min_results[
    #                          ind_snr_sort_tracts_std_10, i_meth], width,
    #                      min_results[ind_snr_sort_tracts_std_10, i_meth], edgecolor=color, color='white', linewidth=3)
    #     plt.plot(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #              median_results[ind_snr_sort_tracts_std_10, i_meth], color=color, marker='_', linestyle='None',
    #              markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)

    # Plot B
    ind_snr_10 = numpy.where((snr == 10) & (tracts_std != 50))  # indexes where SNR=10
    ind_ind_tracts_std_sort_snr_10 = numpy.argsort(tracts_std[
        ind_snr_10])  # indexes of indexes where SNR=10 sorted according to tracts_std values (in ascending order)
    ind_tracts_std_sort_snr_10 = ind_snr_10[0][
        ind_ind_tracts_std_sort_snr_10]  # indexes where SNR=10 sorted according to tracts_std values (in ascending order)

    # fig3 = plt.figure(3)
    # ind_fig3 = numpy.arange(len(tracts_std[ind_tracts_std_sort_snr_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Error (%)')
    # plt.xlabel('Tracts std (in percentage of the mean value of the tracts)')
    # plt.title('Error within all tracts as a function of tracts std')
    # plt.xticks(ind_fig3 + 0.5, tracts_std[ind_tracts_std_sort_snr_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig3) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig3 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_results[ind_tracts_std_sort_snr_10, i_meth] - min_results[
    #                          ind_tracts_std_sort_snr_10, i_meth], width,
    #                      min_results[ind_tracts_std_sort_snr_10, i_meth], edgecolor=color, color='white', linewidth=3)
    #     plt.plot(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #              median_results[ind_tracts_std_sort_snr_10, i_meth], color=color, marker='_', linestyle='None',
    #              markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)


    # # Plot A -- v2: Absolute error (min, max, mean)
    #
    # fig4 = plt.figure(4)
    # ind_fig4 = numpy.arange(len(snr[ind_snr_sort_tracts_std_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Absolute error (%)')
    # plt.xlabel('Noise std')
    # plt.title('Absolute error within all tracts as a function of noise std')
    # plt.xticks(ind_fig4 + 0.5, snr[ind_snr_sort_tracts_std_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig4) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig4 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth] - min_abs_error_per_meth[
    #                          ind_snr_sort_tracts_std_10, i_meth], width,
    #                      min_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], edgecolor=color, color='white',
    #                      linewidth=3)
    #     plt.errorbar(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #                  mean_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth],
    #                  std_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], color=color, marker='_',
    #                  linestyle='None', markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    #
    # # Plot B -- v2: Absolute error (min, max, mean)
    # fig5 = plt.figure(5)
    # ind_fig5 = numpy.arange(len(tracts_std[ind_tracts_std_sort_snr_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Absolute error (%)')
    # plt.xlabel('Tracts std (in percentage of the mean value of the tracts)')
    # plt.title('Absolute error within all tracts as a function of tracts std')
    # plt.xticks(ind_fig5 + 0.5, tracts_std[ind_tracts_std_sort_snr_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig5) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig5 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth] - min_abs_error_per_meth[
    #                          ind_tracts_std_sort_snr_10, i_meth], width,
    #                      min_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], edgecolor=color, color='white',
    #                      linewidth=3)
    #     plt.errorbar(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #                  mean_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth],
    #                  std_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], color=color, marker='_',
    #                  linestyle='None', markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)

    matplotlib.rcParams.update({'font.size': 45, 'font.family': 'trebuchet'})
    plt.rcParams['xtick.major.pad'] = '9'
    plt.rcParams['ytick.major.pad'] = '15'

    # Plot A -- v3: Box plots absolute error
    fig6 = plt.figure(6, figsize=(30, 16))
    width = 1.0 / (nb_method + 1)
    ind_fig6 = numpy.arange(len(snr[ind_snr_sort_tracts_std_10])) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=55)
    plt.xlabel('Noise STD (% of true WM value)', fontsize=55)
    plt.title('Absolute error within all tracts as a function of noise std\n', fontsize=65)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    box_plots = []
    for meth, color in zip(methods_to_display, colors):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        boxprops = dict(linewidth=4, color=color)
        flierprops = dict(color=color, markeredgewidth=0.7, markersize=15, marker='.')
        whiskerprops = dict(color=color, linewidth=3)
        capprops = dict(color=color, linewidth=3)
        medianprops = dict(linewidth=4, color=color)
        meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick')
        meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple')
        plot_i = plt.boxplot(numpy.transpose(abs_error_per_labels[ind_snr_sort_tracts_std_10, :, i_meth]),
                             positions=ind_fig6 + i_meth_to_display * width + (float(i_meth_to_display) * width) / (
                                 nb_method + 1), widths=width, boxprops=boxprops, medianprops=medianprops,
                             flierprops=flierprops, whiskerprops=whiskerprops, capprops=capprops)
        # plt.errorbar(ind_fig2+i_meth*width+width/2+(float(i_meth)*width)/(nb_method+1), mean_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], std_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], color=color, marker='_', linestyle='None', markersize=200*width, markeredgewidth=3)
        box_plots.append(plot_i['boxes'][0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig6), 2):
        plt.axvspan(ind_fig6[i_xtick] - width - width / 4, ind_fig6[i_xtick] + (nb_method + 1) * width - width / 4, facecolor='grey', alpha=0.1)

    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    # plt.legend(box_plots, methods_to_display, loc='best')
    # convert xtick labels into integers
    xtick_labels = [int(xtick) for xtick in snr[ind_snr_sort_tracts_std_10]]
    plt.xticks(ind_fig6 + (numpy.floor(nb_method / 2)) * width * (1.0 + 1.0 / (nb_method + 1)), xtick_labels)
    plt.gca().set_xlim([-width, numpy.max(ind_fig6) + (nb_method + 0.5) * width])
    plt.gca().set_ylim([0, 18])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both', alpha=0.5)
    plt.subplots_adjust(left=0.1)


    plt.savefig(param_default.fname_folder_to_save_fig+'/absolute_error_vs_noise_std_Tracts_std_fixed_to_10.pdf', format='PDF')


    # Plot B -- v3: Box plots absolute error
    fig7 = plt.figure(7, figsize=(30, 16))
    width = 1.0 / (nb_method + 1)
    ind_fig7 = numpy.arange(len(tracts_std[ind_tracts_std_sort_snr_10])) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=55)
    plt.xlabel('Tracts STD (% of true WM value)', fontsize=55)
    plt.title('Absolute error within all tracts as a function of tracts std\n', fontsize=65)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    box_plots = []
    for meth, color in zip(methods_to_display, colors):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        boxprops = dict(linewidth=4, color=color)
        flierprops = dict(color=color, markeredgewidth=0.7, markersize=15, marker='.')
        whiskerprops = dict(color=color, linewidth=3)
        capprops = dict(color=color, linewidth=3)
        medianprops = dict(linewidth=4, color=color)
        meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick')
        meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple')
        plot_i = plt.boxplot(numpy.transpose(abs_error_per_labels[ind_tracts_std_sort_snr_10, :, i_meth]),
                             positions=ind_fig7 + i_meth_to_display * width + (float(i_meth_to_display) * width) / (
                                 nb_method + 1), widths=width, boxprops=boxprops, medianprops=medianprops,
                             flierprops=flierprops, whiskerprops=whiskerprops, capprops=capprops)
        # plt.errorbar(ind_fig2+i_meth*width+width/2+(float(i_meth)*width)/(nb_method+1), mean_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], std_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], color=color, marker='_', linestyle='None', markersize=200*width, markeredgewidth=3)
        box_plots.append(plot_i['boxes'][0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig7), 2):
        plt.axvspan(ind_fig7[i_xtick] - width - width / 4, ind_fig7[i_xtick] + (nb_method + 1) * width - width / 4, facecolor='grey', alpha=0.1)


    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    # plt.legend(box_plots, methods_to_display, loc='best')
    # convert xtick labels into integers
    xtick_labels = [int(xtick) for xtick in tracts_std[ind_tracts_std_sort_snr_10]]
    plt.xticks(ind_fig7 + (numpy.floor(nb_method / 2)) * width * (1.0 + 1.0 / (nb_method + 1)), xtick_labels)
    plt.gca().set_xlim([-width, numpy.max(ind_fig7) + (nb_method + 0.5) * width])
    plt.gca().set_ylim([0, 18])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both', alpha=0.5)
    plt.subplots_adjust(left=0.1)

    plt.savefig(param_default.fname_folder_to_save_fig+'/absolute_error_vs_tracts_std_Noise_std_fixed_to_10.pdf', format='PDF')


    plt.show(block=False)
def main():
    # Initialization to defaults parameters
    fname_data = ''  # data is empty by default
    path_label = ''  # empty by default
    method = param.method  # extraction mode by default
    labels_of_interest = param.labels_of_interest
    slices_of_interest = param.slices_of_interest
    vertebral_levels = param.vertebral_levels
    average_all_labels = param.average_all_labels
    fname_output = param.fname_output
    fname_vertebral_labeling = param.fname_vertebral_labeling
    fname_normalizing_label = ''  # optional then default is empty
    normalization_method = ''  # optional then default is empty
    actual_vert_levels = None  # variable used in case the vertebral levels asked by the user don't correspond exactly to the vertebral levels available in the metric data
    warning_vert_levels = None  # variable used to warn the user in case the vertebral levels he asked don't correspond exactly to the vertebral levels available in the metric data
    verbose = param.verbose
    flag_h = 0
    ml_clusters = param.ml_clusters
    adv_param = param.adv_param
    adv_param_user = ''

    # Parameters for debug mode
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        status, path_sct_data = commands.getstatusoutput(
            'echo $SCT_TESTING_DATA_DIR')
        fname_data = '/Users/julien/data/temp/sct_example_data/mt/mtr.nii.gz'
        path_label = '/Users/julien/data/temp/sct_example_data/mt/label/atlas/'
        method = 'map'
        ml_clusters = '0:29,30,31'
        labels_of_interest = '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29'
        slices_of_interest = ''
        vertebral_levels = ''
        average_all_labels = 1
        fname_normalizing_label = ''  #path_sct+'/testing/data/errsm_23/mt/label/template/MNI-Poly-AMU_CSF.nii.gz'
        normalization_method = ''  #'whole'
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(
                sys.argv[1:], 'haf:i:l:m:n:o:p:v:w:z:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            usage()  # display usage
        if not opts:
            usage()
        for opt, arg in opts:  # explore flags
            if opt in '-a':
                average_all_labels = 1
            elif opt in '-f':
                path_label = os.path.abspath(arg)  # save path of labels folder
            elif opt == '-h':  # help option
                flag_h = 1
            elif opt in '-i':
                fname_data = arg
            elif opt in '-l':
                labels_of_interest = arg
            elif opt in '-m':  # method for metric extraction
                method = arg
            elif opt in '-n':  # filename of the label by which the user wants to normalize
                fname_normalizing_label = arg
            elif opt in '-o':  # output option
                fname_output = arg  # fname of output file
            elif opt in '-p':
                adv_param_user = arg
            elif opt in '-v':
                # vertebral levels option, if the user wants to average the metric across specific vertebral levels
                vertebral_levels = arg
            elif opt in '-w':
                # method used for the normalization by the metric estimation into the normalizing label (see flag -n): 'sbs' for slice-by-slice or 'whole' for normalization after estimation in the whole labels
                normalization_method = arg
            elif opt in '-z':  # slices numbers option
                slices_of_interest = arg  # save labels numbers

    # Display usage with tract parameters by default in case files aren't chosen in arguments inputs
    if fname_data == '' or path_label == '' or flag_h:
        param.path_label = path_label
        usage()

    # Check existence of data file
    sct.printv('\ncheck existence of input files...', verbose)
    sct.check_file_exist(fname_data)
    sct.check_folder_exist(path_label)
    if fname_normalizing_label:
        sct.check_folder_exist(fname_normalizing_label)

    # add slash at the end
    path_label = sct.slash_at_the_end(path_label, 1)

    # Find path to the vertebral labeling file if vertebral levels were specified by the user
    if vertebral_levels:
        if slices_of_interest:  # impossible to select BOTH specific slices and specific vertebral levels
            print '\nERROR: You cannot select BOTH vertebral levels AND slice numbers.'
            usage()
        else:
            fname_vertebral_labeling_list = sct.find_file_within_folder(
                fname_vertebral_labeling, path_label + '..')
            if len(fname_vertebral_labeling_list) > 1:
                print color.red + 'ERROR: More than one file named \'' + fname_vertebral_labeling + ' were found in ' + path_label + '. Exit program.' + color.end
                sys.exit(2)
            elif len(fname_vertebral_labeling_list) == 0:
                print color.red + 'ERROR: No file named \'' + fname_vertebral_labeling + ' were found in ' + path_label + '. Exit program.' + color.end
                sys.exit(2)
            else:
                fname_vertebral_labeling = os.path.abspath(
                    fname_vertebral_labeling_list[0])

    # Check input parameters
    check_method(method, fname_normalizing_label, normalization_method)

    # parse argument for param
    if not adv_param_user == '':
        adv_param = adv_param_user.replace(' ', '').split(
            ',')  # remove spaces and parse with comma
        del adv_param_user  # clean variable
        # TODO: check integrity of input

    # Extract label info
    label_id, label_name, label_file = read_label_file(path_label,
                                                       param.file_info_label)
    nb_labels_total = len(label_id)

    # check consistency of label input parameter.
    label_id_user, average_all_labels = check_labels(
        labels_of_interest, nb_labels_total, average_all_labels,
        method)  # If 'labels_of_interest' is empty, then
    # 'label_id_user' contains the index of all labels in the file info_label.txt

    # print parameters
    print '\nChecked parameters:'
    print '  data ...................... ' + fname_data
    print '  folder label .............. ' + path_label
    print '  selected labels ........... ' + str(label_id_user)
    print '  estimation method ......... ' + method
    print '  slices of interest ........ ' + slices_of_interest
    print '  vertebral levels .......... ' + vertebral_levels
    print '  vertebral labeling file.... ' + fname_vertebral_labeling
    print '  advanced parameters ....... ' + str(adv_param)

    # Check if the orientation of the data is RPI
    orientation_data = get_orientation(fname_data)

    # If orientation is not RPI, change to RPI
    if orientation_data != 'RPI':
        sct.printv(
            '\nCreate temporary folder to change the orientation of the NIFTI files into RPI...',
            verbose)
        path_tmp = sct.slash_at_the_end('tmp.' + time.strftime("%y%m%d%H%M%S"),
                                        1)
        sct.create_folder(path_tmp)
        # change orientation and load data
        sct.printv('\nChange image orientation and load it...', verbose)
        data = nib.load(
            set_orientation(fname_data, 'RPI',
                            path_tmp + 'orient_data.nii')).get_data()
        # Do the same for labels
        sct.printv('\nChange labels orientation and load them...', verbose)
        labels = np.empty([nb_labels_total],
                          dtype=object)  # labels(nb_labels_total, x, y, z)
        for i_label in range(0, nb_labels_total):
            labels[i_label] = nib.load(
                set_orientation(path_label + label_file[i_label], 'RPI',
                                path_tmp + 'orient_' +
                                label_file[i_label])).get_data()
        if fname_normalizing_label:  # if the "normalization" option is wanted,
            normalizing_label = np.empty(
                [1], dtype=object
            )  # choose this kind of structure so as to keep easily the
            # compatibility with the rest of the code (dimensions: (1, x, y, z))
            normalizing_label[0] = nib.load(
                set_orientation(fname_normalizing_label, 'RPI', path_tmp +
                                'orient_normalizing_volume.nii')).get_data()
        if vertebral_levels:  # if vertebral levels were selected,
            data_vertebral_labeling = nib.load(
                set_orientation(
                    fname_vertebral_labeling, 'RPI',
                    path_tmp + 'orient_vertebral_labeling.nii.gz')).get_data()
        # Remove the temporary folder used to change the NIFTI files orientation into RPI
        sct.printv('\nRemove the temporary folder...', verbose)
        status, output = commands.getstatusoutput('rm -rf ' + path_tmp)
    else:
        # Load image
        sct.printv('\nLoad image...', verbose)
        data = nib.load(fname_data).get_data()

        # Load labels
        sct.printv('\nLoad labels...', verbose)
        labels = np.empty([nb_labels_total],
                          dtype=object)  # labels(nb_labels_total, x, y, z)
        for i_label in range(0, nb_labels_total):
            labels[i_label] = nib.load(path_label +
                                       label_file[i_label]).get_data()
        if fname_normalizing_label:  # if the "normalization" option is wanted,
            normalizing_label = np.empty(
                [1], dtype=object
            )  # choose this kind of structure so as to keep easily the
            # compatibility with the rest of the code (dimensions: (1, x, y, z))
            normalizing_label[0] = nib.load(fname_normalizing_label).get_data(
            )  # load the data of the normalizing label
        if vertebral_levels:  # if vertebral levels were selected,
            data_vertebral_labeling = nib.load(
                fname_vertebral_labeling).get_data()

    # Change metric data type into floats for future manipulations (normalization)
    data = np.float64(data)

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', verbose)
    nx, ny, nz = data.shape
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose)

    # Get dimensions of labels
    sct.printv('\nGet dimensions of label...', verbose)
    nx_atlas, ny_atlas, nz_atlas = labels[0].shape
    sct.printv(
        '.. ' + str(nx_atlas) + ' x ' + str(ny_atlas) + ' x ' + str(nz_atlas) +
        ' x ' + str(nb_labels_total), verbose)

    # Check dimensions consistency between atlas and data
    if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas):
        print '\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.'
        sys.exit(2)

    # Update the flag "slices_of_interest" according to the vertebral levels selected by user (if it's the case)
    if vertebral_levels:
        slices_of_interest, actual_vert_levels, warning_vert_levels = \
            get_slices_matching_with_vertebral_levels(data, vertebral_levels, data_vertebral_labeling)

    # select slice of interest by cropping data and labels
    if slices_of_interest:
        data = remove_slices(data, slices_of_interest)
        for i_label in range(0, nb_labels_total):
            labels[i_label] = remove_slices(labels[i_label],
                                            slices_of_interest)
        if fname_normalizing_label:  # if the "normalization" option was selected,
            normalizing_label[0] = remove_slices(normalizing_label[0],
                                                 slices_of_interest)

    # if user wants to get unique value across labels, then combine all labels together
    if average_all_labels == 1:
        sum_labels_user = np.sum(
            labels[label_id_user])  # sum the labels selected by user
        if method == 'ml' or method == 'map':  # in case the maximum likelihood and the average across different labels are wanted
            labels_tmp = np.empty([nb_labels_total - len(label_id_user) + 1],
                                  dtype=object)
            labels = np.delete(
                labels, label_id_user)  # remove the labels selected by user
            labels_tmp[
                0] = sum_labels_user  # put the sum of the labels selected by user in first position of the tmp
            # variable
            for i_label in range(1, len(labels_tmp)):
                labels_tmp[i_label] = labels[
                    i_label -
                    1]  # fill the temporary array with the values of the non-selected labels
            labels = labels_tmp  # replace the initial labels value by the updated ones (with the summed labels)
            del labels_tmp  # delete the temporary labels
        else:  # in other cases than the maximum likelihood, we can remove other labels (not needed for estimation)
            labels = np.empty(1, dtype=object)
            labels[
                0] = sum_labels_user  # we create a new label array that includes only the summed labels

    if fname_normalizing_label:  # if the "normalization" option is wanted
        sct.printv('\nExtract normalization values...', verbose)
        if normalization_method == 'sbs':  # case: the user wants to normalize slice-by-slice
            for z in range(0, data.shape[-1]):
                normalizing_label_slice = np.empty(
                    [1], dtype=object
                )  # in order to keep compatibility with the function
                # 'extract_metric_within_tract', define a new array for the slice z of the normalizing labels
                normalizing_label_slice[0] = normalizing_label[0][..., z]
                metric_normalizing_label = extract_metric_within_tract(
                    data[..., z], normalizing_label_slice, method, 0)
                # estimate the metric mean in the normalizing label for the slice z
                if metric_normalizing_label[0][0] != 0:
                    data[..., z] = data[..., z] / metric_normalizing_label[0][
                        0]  # divide all the slice z by this value

        elif normalization_method == 'whole':  # case: the user wants to normalize after estimations in the whole labels
            metric_mean_norm_label, metric_std_norm_label = extract_metric_within_tract(
                data, normalizing_label, method,
                param.verbose)  # mean and std are lists

    # identify cluster for each tract (for use with robust ML)
    ml_clusters_array = get_clusters(ml_clusters, labels)

    # extract metrics within labels
    sct.printv('\nExtract metric within labels...', verbose)
    metric_mean, metric_std = extract_metric_within_tract(
        data, labels, method, verbose, ml_clusters_array,
        adv_param)  # mean and std are lists

    if fname_normalizing_label and normalization_method == 'whole':  # case: user wants to normalize after estimations in the whole labels
        metric_mean, metric_std = np.divide(metric_mean,
                                            metric_mean_norm_label), np.divide(
                                                metric_std,
                                                metric_std_norm_label)

    # update label name if average
    if average_all_labels == 1:
        label_name[0] = 'AVERAGED' + ' -'.join(
            label_name[i]
            for i in label_id_user)  # concatenate the names of the
        # labels selected by the user if the average tag was asked
        label_id_user = [
            0
        ]  # update "label_id_user" to select the "averaged" label (which is in first position)

    metric_mean = metric_mean[label_id_user]
    metric_std = metric_std[label_id_user]

    # display metrics
    sct.printv('\nEstimation results:', 1)
    for i in range(0, metric_mean.size):
        sct.printv(
            str(label_id_user[i]) + ', ' + str(label_name[label_id_user[i]]) +
            ':    ' + str(metric_mean[i]) + ' +/- ' + str(metric_std[i]), 1,
            'info')

    # save and display metrics
    save_metrics(label_id_user, label_name, slices_of_interest, metric_mean,
                 metric_std, fname_output, fname_data, method,
                 fname_normalizing_label, actual_vert_levels,
                 warning_vert_levels)
def main():
    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter"  #"C:/cygwin64/home/Simon_2/data_methods_comparison"
        path_sct = '/Users/slevy_local/spinalcordtoolbox'  #'C:/cygwin64/home/Simon_2/spinalcordtoolbox'
        methods_to_display = 'bin,wa,wath,ml,map'
    else:
        path_sct = os.environ.get("SCT_DIR",
                                  os.path.dirname(os.path.dirname(__file__)))

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    # Append path that contains scripts, to be able to load modules
    sys.path.append(os.path.join(path_sct, "scripts"))
    import sct_utils as sct

    sct.printv("Working directory: " + os.getcwd())

    results_folder_noise = results_folder + '/noise'
    results_folder_tracts = results_folder + '/tracts'

    sct.printv(
        '\n\nData will be extracted from folder ' + results_folder_noise +
        ' and ' + results_folder_tracts, 'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(results_folder_noise)
    sct.check_folder_exist(results_folder_tracts)

    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    # Extract file names of the results files
    fname_results_noise = glob.glob(os.path.join(results_folder_noise,
                                                 "*.txt"))
    fname_results_tracts = glob.glob(
        os.path.join(results_folder_tracts, "*.txt"))
    fname_results = fname_results_noise + fname_results_tracts
    # Remove doublons (due to the two folders)
    # for i_fname in range(0, len(fname_results)):
    #     for j_fname in range(0, len(fname_results)):
    #         if (i_fname != j_fname) & (os.path.basename(fname_results[i_fname]) == os.path.basename(fname_results[j_fname])):
    #             fname_results.remove(fname_results[j_fname])
    file_results = []
    for fname in fname_results:
        file_results.append(os.path.basename(fname))
    for file in file_results:
        if file_results.count(file) > 1:
            ind = file_results.index(file)
            fname_results.remove(fname_results[ind])
            file_results.remove(file)

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # CSF value
    csf_values = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = []  #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 5))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 5))
    # min
    min_results = numpy.zeros((nb_results_file, 5))
    # max
    max_results = numpy.zeros((nb_results_file, 5))

    #
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [
            lines.index(line_noise) for line_noise in lines
            if "sigma noise" in line_noise
        ]
        if len(ind_line_noise) != 1:
            sct.printv(
                "ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]]
                                      if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [
            lines.index(line_tract_std) for line_tract_std in lines
            if "range tracts" in line_tract_std
        ]
        if len(ind_line_tract_std) != 1:
            sct.printv(
                "ERROR: number of lines including \"range tracts\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(
                c for c in lines[ind_line_tract_std[0]].split(':')[1]
                if c.isdigit()))

        # extract CSF value
        ind_line_csf_value = [
            lines.index(line_csf_value) for line_csf_value in lines
            if "# value CSF" in line_csf_value
        ]
        if len(ind_line_csf_value) != 1:
            sct.printv(
                "ERROR: number of lines including \"range tracts\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            csf_values[i_file] = int(''.join(
                c for c in lines[ind_line_csf_value[0]].split(':')[1]
                if c.isdigit()))

        # extract method name
        ind_line_label = [
            lines.index(line_label) for line_label in lines
            if "Label" in line_label
        ]
        if len(ind_line_label) != 1:
            sct.printv(
                "ERROR: number of lines including \"Label\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(
                ' ', '').split(',')[1:])

        # extract median
        ind_line_median = [
            lines.index(line_median) for line_median in lines
            if "median" in line_median
        ]
        if len(ind_line_median) != 1:
            sct.printv(
                "WARNING: number of lines including \"median\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array(
                [float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [
            lines.index(line_min) for line_min in lines if "min," in line_min
        ]
        if len(ind_line_min) != 1:
            sct.printv(
                "WARNING: number of lines including \"min\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [
            lines.index(line_max) for line_max in lines if "max" in line_max
        ]
        if len(ind_line_max) != 1:
            sct.printv(
                "WARNING: number of lines including \"max\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines) + 1]
        for i_line in range(ind_line_label[0] + 1, ind_line_median[0] - 1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([
                float(error.strip().split('(')[0])
                for error in line_label_i[1:]
            ])
            std_per_label_for_file_i.append([
                float(error.strip().split('(')[1][:-1])
                for error in line_label_i[1:]
            ])
            labels_id_for_file_i.append(line_label_i[0])
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder +
            ' have not been generated with the same number of methods. Exit program.',
            'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder +
            ' have not been generated with the same labels. Exit program.',
            'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)

    nb_method = len(methods_to_display)

    sct.printv('Noise std of the ' + str(nb_results_file) +
               ' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the ' + str(nb_results_file) +
               ' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('CSF value of the ' + str(nb_results_file) +
               ' generated files:')
    print csf_values
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the ' +
               str(nb_results_file) + ' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Median obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the ' + str(nb_results_file) +
               ' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Errors obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print error_per_label

    # *********************************************** START PLOTTING HERE **********************************************

    # # plot A (NOT GOOD)
    # fig0 = plt.figure(0)
    # fig0.suptitle('Absolute error within all tracts as a function of noise std')
    #
    # fig0_ax = fig0.add_subplot(111)
    # fig0_ax.grid(True)
    # fig0_ax.set_xlabel('Noise std')
    # fig0_ax.set_ylabel('Absolute error')
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    #
    # for meth, color in zip(methods_name[0], colors):
    #     if meth != 'mlwa':
    #         i_meth = methods_name[0].index(meth)
    #
    #         # median
    #         plt.plot(snr[ind_tracts_std_10], median_results[ind_tracts_std_10, i_meth][0], label='median '+meth, color=color, marker='o', linestyle='None', markersize=5.0, linewidth=2.0)
    #         # min
    #         plt.plot(snr[ind_tracts_std_10], min_results[ind_tracts_std_10, i_meth][0], label='min '+meth, color=color, marker='_', linestyle='None', markersize=10.0, linewidth=20.0)
    #         # max
    #         plt.plot(snr[ind_tracts_std_10], max_results[ind_tracts_std_10, i_meth][0], label='max '+meth, color=color, marker='+', linestyle='None', markersize=10.0, linewidth=20.0)
    #
    # handles, labels = fig0_ax.get_legend_handles_labels()
    # fig0_ax.legend(handles, labels, loc='best', handler_map={Line2D: HandlerLine2D(numpoints=1)}, fontsize=16)
    #
    #
    # # plot B (NOT GOOD)
    # fig1 = plt.figure(1)
    # fig1.suptitle('Absolute error within all tracts as a function of tract std')
    #
    # fig1_ax = fig1.add_subplot(111)
    # fig1_ax.grid(True)
    # fig1_ax.set_xlabel('Tract std (percentage of the true value in tract)')
    # fig1_ax.set_ylabel('Absolute error')
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    #
    # for meth, color in zip(methods_name[0], colors):
    #     if meth != 'mlwa':
    #         i_meth = methods_name[0].index(meth)
    #
    #         # median
    #         plt.plot(tracts_std[ind_snr_10], median_results[ind_snr_10, i_meth][0], label='median '+meth, color=color, marker='o', linestyle='None', markersize=5.0, linewidth=2.0)
    #         # min
    #         plt.plot(tracts_std[ind_snr_10], min_results[ind_snr_10, i_meth][0], label='min '+meth, color=color, marker='_', linestyle='None', markersize=10.0, linewidth=20.0)
    #         # max
    #         plt.plot(tracts_std[ind_snr_10], max_results[ind_snr_10, i_meth][0], label='max '+meth, color=color, marker='+', linestyle='None', markersize=10.0, linewidth=20.0)
    #
    # handles, labels = fig1_ax.get_legend_handles_labels()
    # fig1_ax.legend(handles, labels, loc='best', handler_map={Line2D: HandlerLine2D(numpoints=1)}, fontsize=16)

    # Plot A
    ind_tracts_std_10 = numpy.where(
        (tracts_std == 10) & (snr != 50))  # indexes where TRACTS STD=10
    ind_ind_snr_sort_tracts_std_10 = numpy.argsort(
        snr[ind_tracts_std_10]
    )  # indexes of indexes where TRACTS STD=10 sorted according to SNR values (in ascending order)
    ind_snr_sort_tracts_std_10 = ind_tracts_std_10[0][
        ind_ind_snr_sort_tracts_std_10]  # indexes where TRACTS STD=10 sorted according to SNR values (in ascending order)

    # fig2 = plt.figure(2)
    # ind_fig2 = numpy.arange(len(snr[ind_snr_sort_tracts_std_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Error (%)')
    # plt.xlabel('Noise std')
    # plt.title('Error within all tracts as a function of noise std')
    # plt.xticks(ind_fig2 + 0.5, snr[ind_snr_sort_tracts_std_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig2) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig2 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_results[ind_snr_sort_tracts_std_10, i_meth] - min_results[
    #                          ind_snr_sort_tracts_std_10, i_meth], width,
    #                      min_results[ind_snr_sort_tracts_std_10, i_meth], edgecolor=color, color='white', linewidth=3)
    #     plt.plot(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #              median_results[ind_snr_sort_tracts_std_10, i_meth], color=color, marker='_', linestyle='None',
    #              markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)

    # Plot B
    ind_snr_10 = numpy.where(
        (snr == 10) & (tracts_std != 50))  # indexes where SNR=10
    ind_ind_tracts_std_sort_snr_10 = numpy.argsort(
        tracts_std[ind_snr_10]
    )  # indexes of indexes where SNR=10 sorted according to tracts_std values (in ascending order)
    ind_tracts_std_sort_snr_10 = ind_snr_10[0][
        ind_ind_tracts_std_sort_snr_10]  # indexes where SNR=10 sorted according to tracts_std values (in ascending order)

    # fig3 = plt.figure(3)
    # ind_fig3 = numpy.arange(len(tracts_std[ind_tracts_std_sort_snr_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Error (%)')
    # plt.xlabel('Tracts std (in percentage of the mean value of the tracts)')
    # plt.title('Error within all tracts as a function of tracts std')
    # plt.xticks(ind_fig3 + 0.5, tracts_std[ind_tracts_std_sort_snr_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig3) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig3 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_results[ind_tracts_std_sort_snr_10, i_meth] - min_results[
    #                          ind_tracts_std_sort_snr_10, i_meth], width,
    #                      min_results[ind_tracts_std_sort_snr_10, i_meth], edgecolor=color, color='white', linewidth=3)
    #     plt.plot(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #              median_results[ind_tracts_std_sort_snr_10, i_meth], color=color, marker='_', linestyle='None',
    #              markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)

    # # Plot A -- v2: Absolute error (min, max, mean)
    #
    # fig4 = plt.figure(4)
    # ind_fig4 = numpy.arange(len(snr[ind_snr_sort_tracts_std_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Absolute error (%)')
    # plt.xlabel('Noise std')
    # plt.title('Absolute error within all tracts as a function of noise std')
    # plt.xticks(ind_fig4 + 0.5, snr[ind_snr_sort_tracts_std_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig4) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig4 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth] - min_abs_error_per_meth[
    #                          ind_snr_sort_tracts_std_10, i_meth], width,
    #                      min_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], edgecolor=color, color='white',
    #                      linewidth=3)
    #     plt.errorbar(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #                  mean_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth],
    #                  std_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], color=color, marker='_',
    #                  linestyle='None', markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    #
    # # Plot B -- v2: Absolute error (min, max, mean)
    # fig5 = plt.figure(5)
    # ind_fig5 = numpy.arange(len(tracts_std[ind_tracts_std_sort_snr_10])) * 1.2
    # width = 1.0 / (nb_method + 1)
    # plt.ylabel('Absolute error (%)')
    # plt.xlabel('Tracts std (in percentage of the mean value of the tracts)')
    # plt.title('Absolute error within all tracts as a function of tracts std')
    # plt.xticks(ind_fig5 + 0.5, tracts_std[ind_tracts_std_sort_snr_10])
    # plt.gca().set_xlim([-width / (nb_method + 1), numpy.max(ind_fig5) + 1])
    # plt.gca().yaxis.grid(True)
    #
    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    # bar_plots = []
    # for meth, color in zip(methods_name[0], colors):
    #     i_meth = methods_name[0].index(meth)
    #
    #     plot_i = plt.bar(ind_fig5 + i_meth * width + (float(i_meth) * width) / (nb_method + 1),
    #                      max_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth] - min_abs_error_per_meth[
    #                          ind_tracts_std_sort_snr_10, i_meth], width,
    #                      min_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], edgecolor=color, color='white',
    #                      linewidth=3)
    #     plt.errorbar(ind_fig2 + i_meth * width + width / 2 + (float(i_meth) * width) / (nb_method + 1),
    #                  mean_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth],
    #                  std_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], color=color, marker='_',
    #                  linestyle='None', markersize=200 * width, markeredgewidth=3)
    #     bar_plots.append(plot_i[0])
    #
    # plt.legend(bar_plots, methods_name[0], bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)

    matplotlib.rcParams.update({'font.size': 45, 'font.family': 'trebuchet'})
    plt.rcParams['xtick.major.pad'] = '9'
    plt.rcParams['ytick.major.pad'] = '15'

    # Plot A -- v3: Box plots absolute error
    fig6 = plt.figure(6, figsize=(30, 16))
    width = 1.0 / (nb_method + 1)
    ind_fig6 = numpy.arange(len(
        snr[ind_snr_sort_tracts_std_10])) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=55)
    plt.xlabel('Noise STD (% of true WM value)', fontsize=55)
    plt.title('Absolute error within all tracts as a function of noise std\n',
              fontsize=65)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    box_plots = []
    for meth, color in zip(methods_to_display, colors):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        boxprops = dict(linewidth=4, color=color)
        flierprops = dict(color=color,
                          markeredgewidth=0.7,
                          markersize=15,
                          marker='.')
        whiskerprops = dict(color=color, linewidth=3)
        capprops = dict(color=color, linewidth=3)
        medianprops = dict(linewidth=4, color=color)
        meanpointprops = dict(marker='D',
                              markeredgecolor='black',
                              markerfacecolor='firebrick')
        meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple')
        plot_i = plt.boxplot(
            numpy.transpose(abs_error_per_labels[ind_snr_sort_tracts_std_10, :,
                                                 i_meth]),
            positions=ind_fig6 + i_meth_to_display * width +
            (float(i_meth_to_display) * width) / (nb_method + 1),
            widths=width,
            boxprops=boxprops,
            medianprops=medianprops,
            flierprops=flierprops,
            whiskerprops=whiskerprops,
            capprops=capprops)
        # plt.errorbar(ind_fig2+i_meth*width+width/2+(float(i_meth)*width)/(nb_method+1), mean_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], std_abs_error_per_meth[ind_snr_sort_tracts_std_10, i_meth], color=color, marker='_', linestyle='None', markersize=200*width, markeredgewidth=3)
        box_plots.append(plot_i['boxes'][0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig6), 2):
        plt.axvspan(ind_fig6[i_xtick] - width - width / 4,
                    ind_fig6[i_xtick] + (nb_method + 1) * width - width / 4,
                    facecolor='grey',
                    alpha=0.1)

    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    # plt.legend(box_plots, methods_to_display, loc='best')
    # convert xtick labels into integers
    xtick_labels = [int(xtick) for xtick in snr[ind_snr_sort_tracts_std_10]]
    plt.xticks(
        ind_fig6 + (numpy.floor(nb_method / 2)) * width *
        (1.0 + 1.0 / (nb_method + 1)), xtick_labels)
    plt.gca().set_xlim(
        [-width, numpy.max(ind_fig6) + (nb_method + 0.5) * width])
    plt.gca().set_ylim([0, 18])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both', alpha=0.5)
    plt.subplots_adjust(left=0.1)

    plt.savefig(os.path.join(
        param_default.fname_folder_to_save_fig,
        'absolute_error_vs_noise_std_Tracts_std_fixed_to_10.pdf'),
                format='PDF')

    # Plot B -- v3: Box plots absolute error
    fig7 = plt.figure(7, figsize=(30, 16))
    width = 1.0 / (nb_method + 1)
    ind_fig7 = numpy.arange(len(
        tracts_std[ind_tracts_std_sort_snr_10])) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=55)
    plt.xlabel('Tracts STD (% of true WM value)', fontsize=55)
    plt.title('Absolute error within all tracts as a function of tracts std\n',
              fontsize=65)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    box_plots = []
    for meth, color in zip(methods_to_display, colors):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        boxprops = dict(linewidth=4, color=color)
        flierprops = dict(color=color,
                          markeredgewidth=0.7,
                          markersize=15,
                          marker='.')
        whiskerprops = dict(color=color, linewidth=3)
        capprops = dict(color=color, linewidth=3)
        medianprops = dict(linewidth=4, color=color)
        meanpointprops = dict(marker='D',
                              markeredgecolor='black',
                              markerfacecolor='firebrick')
        meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple')
        plot_i = plt.boxplot(
            numpy.transpose(abs_error_per_labels[ind_tracts_std_sort_snr_10, :,
                                                 i_meth]),
            positions=ind_fig7 + i_meth_to_display * width +
            (float(i_meth_to_display) * width) / (nb_method + 1),
            widths=width,
            boxprops=boxprops,
            medianprops=medianprops,
            flierprops=flierprops,
            whiskerprops=whiskerprops,
            capprops=capprops)
        # plt.errorbar(ind_fig2+i_meth*width+width/2+(float(i_meth)*width)/(nb_method+1), mean_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], std_abs_error_per_meth[ind_tracts_std_sort_snr_10, i_meth], color=color, marker='_', linestyle='None', markersize=200*width, markeredgewidth=3)
        box_plots.append(plot_i['boxes'][0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig7), 2):
        plt.axvspan(ind_fig7[i_xtick] - width - width / 4,
                    ind_fig7[i_xtick] + (nb_method + 1) * width - width / 4,
                    facecolor='grey',
                    alpha=0.1)

    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    # plt.legend(box_plots, methods_to_display, loc='best')
    # convert xtick labels into integers
    xtick_labels = [
        int(xtick) for xtick in tracts_std[ind_tracts_std_sort_snr_10]
    ]
    plt.xticks(
        ind_fig7 + (numpy.floor(nb_method / 2)) * width *
        (1.0 + 1.0 / (nb_method + 1)), xtick_labels)
    plt.gca().set_xlim(
        [-width, numpy.max(ind_fig7) + (nb_method + 0.5) * width])
    plt.gca().set_ylim([0, 18])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both', alpha=0.5)
    plt.subplots_adjust(left=0.1)

    plt.savefig(os.path.join(
        param_default.fname_folder_to_save_fig,
        'absolute_error_vs_tracts_std_Noise_std_fixed_to_10.pdf'),
                format='PDF')

    plt.show(block=False)
def main():
    
    # Initialization
    path_atlas = ''
    
    # Parameters for debug mode
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'hi:s:m:g:t:v:')
        except getopt.GetoptError:
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ('-i'):
                path_atlas = arg
            elif opt in ('-s'):
                param.fname_seg = arg
            elif opt in ('-m'):
                param.fname_GM = arg
            elif opt in ('-t'):
                param.threshold_atlas = float(arg)
            elif opt in ('-g'):
                param.threshold_GM = float(arg)
            elif opt in ('-v'):
                param.verbose = int(arg)
    
    # display usage if a mandatory argument is not provided
    if path_atlas == '' and not param.debug:
        # get path of the toolbox
        status, path_sct = commands.getstatusoutput('echo $SCT_DIR')
        path_atlas = path_sct+'/data/atlas/'
        param.fname_seg = path_sct+'/data/template/MNI-Poly-AMU_cord.nii.gz'
        param.fname_GM = path_sct+'/data/template/MNI-Poly-AMU_GM.nii.gz'

    # print arguments
    if param.verbose:
        print 'Check input parameters...'
        print '.. Atlas folder path:                '+path_atlas
        print '.. Spinal cord segmentation path:    '+param.fname_seg
        print '.. Spinal cord gray matter path:     '+param.fname_GM
        print '.. Atlas threshold=                  '+str(param.threshold_atlas)

    # Check for end-caracter of folder path
    if path_atlas[-1] != "/": path_atlas=path_atlas+"/";

    # Check folder existence
    sct.printv('\nCheck atlas existence...', param.verbose)
    sct.check_folder_exist(path_atlas)
    
    # Extract atlas info
    atlas_id, atlas_name, atlas_file = read_label_file(path_atlas)
    nb_tracts_total = len(atlas_id)

    # Load atlas
    sct.printv('\nLoad atlas...', param.verbose)
    atlas = np.empty([nb_tracts_total], dtype=object)  # labels(nb_labels_total, x, y, z)
    for i_atlas in range(0, nb_tracts_total):
        atlas[i_atlas] = nib.load(path_atlas+atlas_file[i_atlas]).get_data()

    # Check integrity
    sct.printv('\nCheck atlas integrity...', param.verbose)
    check_integrity(atlas, atlas_id, atlas_name)
        example=["0", "1", "2"],
        default_value="1",
    )

    return parser


if __name__ == "__main__":
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])
    ml_param = Param()

    fname_gm = arguments["-gm"]
    fname_wm = arguments["-wm"]
    path_template = arguments["-t"]
    if not sct.check_folder_exist(path_template):
        sct.printv(
            parser.usage.generate(
                error="ERROR: label/ folder does not exist. Please specify the path to the template using flag -t"
            )
        )
    fname_warp_template = arguments["-w"]

    fname_warp_target2template = None
    fname_manual_gmseg = None
    fname_sc_seg = None

    if "-param" in arguments:
        ml_param.param_reg = arguments["-param"]
    if "-manual-gm" in arguments:
        fname_manual_gmseg = arguments["-manual-gm"]
Esempio n. 12
0
def main():
    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display
    noise_std_to_display = param_default.noise_std_to_display
    tracts_std_to_display = param_default.tracts_std_to_display
    csf_value_to_display = param_default.csf_value_to_display
    nb_RL_labels = param_default.nb_RL_labels

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter"  #"C:/cygwin64/home/Simon_2/data_methods_comparison"
        path_sct = '/Users/slevy_local/spinalcordtoolbox'  #'C:/cygwin64/home/Simon_2/spinalcordtoolbox'
    else:
        status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    # Append path that contains scripts, to be able to load modules
    sys.path.append(path_sct + '/scripts')
    import sct_utils as sct
    import isct_get_fractional_volume

    sct.printv("Working directory: " + os.getcwd())

    results_folder_noise = results_folder + '/noise'
    results_folder_tracts = results_folder + '/tracts'
    results_folder_csf = results_folder + '/csf'

    sct.printv(
        '\n\nData will be extracted from folder ' + results_folder_noise +
        ' , ' + results_folder_tracts + ' and ' + results_folder_csf + '.',
        'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(results_folder_noise)
    sct.check_folder_exist(results_folder_tracts)
    sct.check_folder_exist(results_folder_csf)

    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    # Extract file names of the results files
    fname_results_noise = glob.glob(results_folder_noise + '/*.txt')
    fname_results_tracts = glob.glob(results_folder_tracts + '/*.txt')
    fname_results_csf = glob.glob(results_folder_csf + '/*.txt')
    fname_results = fname_results_noise + fname_results_tracts + fname_results_csf
    # Remove doublons (due to the two folders)
    # for i_fname in range(0, len(fname_results)):
    #     for j_fname in range(0, len(fname_results)):
    #         if (i_fname != j_fname) & (os.path.basename(fname_results[i_fname]) == os.path.basename(fname_results[j_fname])):
    #             fname_results.remove(fname_results[j_fname])
    file_results = []
    for fname in fname_results:
        file_results.append(os.path.basename(fname))
    for file in file_results:
        if file_results.count(file) > 1:
            ind = file_results.index(file)
            fname_results.remove(fname_results[ind])
            file_results.remove(file)

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # CSF value
    csf_values = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = []  #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 5))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 5))
    # min
    min_results = numpy.zeros((nb_results_file, 5))
    # max
    max_results = numpy.zeros((nb_results_file, 5))

    #
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [
            lines.index(line_noise) for line_noise in lines
            if "sigma noise" in line_noise
        ]
        if len(ind_line_noise) != 1:
            sct.printv(
                "ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]]
                                      if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [
            lines.index(line_tract_std) for line_tract_std in lines
            if "range tracts" in line_tract_std
        ]
        if len(ind_line_tract_std) != 1:
            sct.printv(
                "ERROR: number of lines including \"range tracts\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(
                c for c in lines[ind_line_tract_std[0]].split(':')[1]
                if c.isdigit()))

        # extract CSF value
        ind_line_csf_value = [
            lines.index(line_csf_value) for line_csf_value in lines
            if "# value CSF" in line_csf_value
        ]
        if len(ind_line_csf_value) != 1:
            sct.printv(
                "ERROR: number of lines including \"range tracts\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            csf_values[i_file] = int(''.join(
                c for c in lines[ind_line_csf_value[0]].split(':')[1]
                if c.isdigit()))

        # extract method name
        ind_line_label = [
            lines.index(line_label) for line_label in lines
            if "Label" in line_label
        ]
        if len(ind_line_label) != 1:
            sct.printv(
                "ERROR: number of lines including \"Label\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(
                ' ', '').split(',')[1:])

        # extract median
        ind_line_median = [
            lines.index(line_median) for line_median in lines
            if "median" in line_median
        ]
        if len(ind_line_median) != 1:
            sct.printv(
                "WARNING: number of lines including \"median\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array(
                [float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [
            lines.index(line_min) for line_min in lines if "min," in line_min
        ]
        if len(ind_line_min) != 1:
            sct.printv(
                "WARNING: number of lines including \"min\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [
            lines.index(line_max) for line_max in lines if "max" in line_max
        ]
        if len(ind_line_max) != 1:
            sct.printv(
                "WARNING: number of lines including \"max\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines) + 1]
        for i_line in range(ind_line_label[0] + 1, ind_line_median[0] - 1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([
                float(error.strip().split('(')[0])
                for error in line_label_i[1:]
            ])
            std_per_label_for_file_i.append([
                float(error.strip().split('(')[1][:-1])
                for error in line_label_i[1:]
            ])
            labels_id_for_file_i.append(int(line_label_i[0]))
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder +
            ' have not been generated with the same number of methods. Exit program.',
            'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder +
            ' have not been generated with the same labels. Exit program.',
            'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)

    # average error and std across sides
    meanRL_abs_error_per_labels = numpy.zeros(
        (error_per_label.shape[0], nb_RL_labels, error_per_label.shape[2]))
    meanRL_std_abs_error_per_labels = numpy.zeros(
        (std_per_label.shape[0], nb_RL_labels, std_per_label.shape[2]))
    for i_file in range(0, nb_results_file):
        for i_meth in range(0, len(methods_name[i_file])):
            for i_label in range(0, nb_RL_labels):
                # find indexes of corresponding labels
                ind_ID_first_side = labels_id[i_file].index(i_label)
                ind_ID_other_side = labels_id[i_file].index(i_label +
                                                            nb_RL_labels)
                # compute mean across 2 sides
                meanRL_abs_error_per_labels[i_file, i_label, i_meth] = float(
                    error_per_label[i_file, ind_ID_first_side, i_meth] +
                    error_per_label[i_file, ind_ID_other_side, i_meth]) / 2
                meanRL_std_abs_error_per_labels[
                    i_file, i_label, i_meth] = float(
                        std_per_label[i_file, ind_ID_first_side, i_meth] +
                        std_per_label[i_file, ind_ID_other_side, i_meth]) / 2

    nb_method = len(methods_to_display)

    sct.printv('Noise std of the ' + str(nb_results_file) +
               ' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the ' + str(nb_results_file) +
               ' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('CSF value of the ' + str(nb_results_file) +
               ' generated files:')
    print csf_values
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the ' +
               str(nb_results_file) + ' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Median obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the ' + str(nb_results_file) +
               ' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Errors obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print error_per_label
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv(
        'Mean errors across both sides obtained with each method (in colons) for the '
        + str(nb_results_file) + ' generated files (in lines):')
    print meanRL_abs_error_per_labels

    # Compute fractional volume per label
    labels_id_FV, labels_name_FV, fract_vol_per_lab, labels_name_FV_RL_gathered, fract_vol_per_lab_RL_gathered = isct_get_fractional_volume.get_fractional_volume_per_label(
        './cropped_atlas/', 'info_label.txt')
    # # Get the number of voxels including at least one tract
    # nb_voxels_in_WM = isct_get_fractional_volume.get_nb_voxel_in_WM('./cropped_atlas/', 'info_label.txt')
    # normalize by the number of voxels in WM and express it as a percentage
    fract_vol_norm = numpy.divide(
        fract_vol_per_lab_RL_gathered,
        numpy.sum(fract_vol_per_lab_RL_gathered) / 100)

    # NOT NECESSARY NOW WE AVERAGE ACROSS BOTH SIDES (which orders the labels)
    # # check if the order of the labels returned by the function computing the fractional volumes is the same (which should be the case)
    # if labels_id_FV != labels_id[0]:
    #     sct.printv('\n\nERROR: the labels IDs returned by the function \'i_sct_get_fractional_volume\' are different from the labels IDs of the results files\n\n', 'error')

    # # Remove labels #30 and #31
    # labels_id_FV_29, labels_name_FV_29, fract_vol_per_lab_29 = labels_id_FV[:-2], labels_name_FV[:-2], fract_vol_per_lab[:-2]

    # indexes of labels sort according to the fractional volume
    ind_labels_sort = numpy.argsort(fract_vol_norm)

    # Find index of the file generated with noise variance = 10 and tracts std = 10
    ind_file_to_display = numpy.where((snr == noise_std_to_display)
                                      & (tracts_std == tracts_std_to_display)
                                      & (csf_values == csf_value_to_display))

    # sort arrays in this order
    meanRL_abs_error_per_labels_sort = meanRL_abs_error_per_labels[
        ind_file_to_display[0], ind_labels_sort, :]
    meanRL_std_abs_error_per_labels_sort = meanRL_std_abs_error_per_labels[
        ind_file_to_display[0], ind_labels_sort, :]
    labels_name_sort = numpy.array(labels_name_FV_RL_gathered)[ind_labels_sort]

    # *********************************************** START PLOTTING HERE **********************************************

    # stringColor = Color()
    matplotlib.rcParams.update({'font.size': 50, 'font.family': 'trebuchet'})
    # plt.rcParams['xtick.major.pad'] = '11'
    plt.rcParams['ytick.major.pad'] = '15'

    fig = plt.figure(figsize=(60, 37))
    width = 1.0 / (nb_method + 1)
    ind_fig = numpy.arange(len(labels_name_sort)) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=65)
    plt.xlabel('Fractional volume (% of the total number of voxels in WM)',
               fontsize=65)
    plt.title(
        'Absolute error per tract as a function of their fractional volume\n\n',
        fontsize=30)
    plt.suptitle('(Noise std=' + str(snr[ind_file_to_display[0]][0]) +
                 ', Tracts std=' + str(tracts_std[ind_file_to_display[0]][0]) +
                 ', CSF value=' + str(csf_values[ind_file_to_display[0]][0]) +
                 ')',
                 fontsize=30)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    markers = ['o', 's', '^', 'D']
    errorbar_plots = []
    for meth, color, marker in zip(methods_to_display, colors, markers):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        plot_i = plt.errorbar(ind_fig + i_meth_to_display * width,
                              meanRL_abs_error_per_labels_sort[:, i_meth],
                              meanRL_std_abs_error_per_labels_sort[:, i_meth],
                              color=color,
                              marker=marker,
                              markersize=35,
                              lw=7,
                              elinewidth=1,
                              capthick=5,
                              capsize=10)
        # plot_i = plt.boxplot(numpy.transpose(abs_error_per_labels[ind_files_csf_sort, :, i_meth]), positions=ind_fig + i_meth_to_display * width + (float(i_meth_to_display) * width) / (nb_method + 1), widths=width, boxprops=boxprops, medianprops=medianprops, flierprops=flierprops, whiskerprops=whiskerprops, capprops=capprops)
        errorbar_plots.append(plot_i)

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig), 2):
        plt.axvspan(ind_fig[i_xtick] - width - width / 2,
                    ind_fig[i_xtick] + (nb_method + 1) * width - width / 2,
                    facecolor='grey',
                    alpha=0.1)

    # concatenate value of fractional volume to labels'name
    xtick_labels = [
        labels_name_sort[i_lab] + '\n' + r'$\bf{[' +
        str(round(fract_vol_norm[ind_labels_sort][i_lab], 2)) + ']}$'
        for i_lab in range(0, len(labels_name_sort))
    ]
    ind_lemniscus = numpy.where(
        labels_name_sort ==
        'spinal lemniscus (spinothalamic and spinoreticular tracts)')[0][0]
    xtick_labels[ind_lemniscus] = 'spinal lemniscus\n' + r'$\bf{[' + str(
        round(fract_vol_norm[ind_labels_sort][ind_lemniscus], 2)) + ']}$'

    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    plt.legend(errorbar_plots,
               methods_to_display,
               loc=1,
               fontsize=50,
               numpoints=1)
    plt.xticks(ind_fig + (numpy.floor(float(nb_method - 1) / 2)) * width,
               xtick_labels,
               fontsize=45)
    # Tweak spacing to prevent clipping of tick-labels
    plt.subplots_adjust(bottom=0, top=0.95, right=0.96)
    plt.gca().set_xlim(
        [-width, numpy.max(ind_fig) + (nb_method + 0.5) * width])
    plt.gca().set_ylim([0, 17])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(1.0))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both')
    fig.autofmt_xdate()

    plt.savefig(param_default.fname_folder_to_save_fig +
                '/absolute_error_vs_fractional_volume.pdf',
                format='PDF')

    plt.show(block=False)
Esempio n. 13
0
 def checkFolder(self, param):
     # check if the folder exist. If not, create it.
     sct.printv("Check folder existence...")
     sct.check_folder_exist(param, 0)
     return param
def main():
    # Initialization to defaults parameters
    fname_data = ''  # data is empty by default
    path_label = ''  # empty by default
    method = param.method # extraction mode by default
    labels_of_interest = param.labels_of_interest
    slices_of_interest = param.slices_of_interest
    vertebral_levels = param.vertebral_levels
    average_all_labels = param.average_all_labels
    fname_output = param.fname_output
    fname_vertebral_labeling = param.fname_vertebral_labeling
    fname_normalizing_label = ''  # optional then default is empty
    normalization_method = ''  # optional then default is empty
    actual_vert_levels = None  # variable used in case the vertebral levels asked by the user don't correspond exactly to the vertebral levels available in the metric data
    warning_vert_levels = None  # variable used to warn the user in case the vertebral levels he asked don't correspond exactly to the vertebral levels available in the metric data
    verbose = param.verbose
    flag_h = 0
    ml_clusters = param.ml_clusters
    adv_param = param.adv_param
    adv_param_user = ''

    # Parameters for debug mode
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        status, path_sct_data = commands.getstatusoutput('echo $SCT_TESTING_DATA_DIR')
        fname_data = '/Users/julien/data/temp/sct_example_data/mt/mtr.nii.gz'
        path_label = '/Users/julien/data/temp/sct_example_data/mt/label/atlas/'
        method = 'map'
        ml_clusters = '0:29,30,31'
        labels_of_interest = '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29'
        slices_of_interest = ''
        vertebral_levels = ''
        average_all_labels = 1
        fname_normalizing_label = ''  #path_sct+'/testing/data/errsm_23/mt/label/template/MNI-Poly-AMU_CSF.nii.gz'
        normalization_method = ''  #'whole'
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'haf:i:l:m:n:o:p:v:w:z:') # define flags
        except getopt.GetoptError as err: # check if the arguments are defined
            print str(err) # error
            usage() # display usage
        if not opts:
            usage()
        for opt, arg in opts: # explore flags
            if opt in '-a':
                average_all_labels = 1
            elif opt in '-f':
                path_label = os.path.abspath(arg)  # save path of labels folder
            elif opt == '-h':  # help option
                flag_h = 1
            elif opt in '-i':
                fname_data = arg
            elif opt in '-l':
                labels_of_interest = arg
            elif opt in '-m':  # method for metric extraction
                method = arg
            elif opt in '-n':  # filename of the label by which the user wants to normalize
                fname_normalizing_label = arg
            elif opt in '-o': # output option
                fname_output = arg  # fname of output file
            elif opt in '-p':
                adv_param_user = arg
            elif opt in '-v':
                # vertebral levels option, if the user wants to average the metric across specific vertebral levels
                 vertebral_levels = arg
            elif opt in '-w':
                # method used for the normalization by the metric estimation into the normalizing label (see flag -n): 'sbs' for slice-by-slice or 'whole' for normalization after estimation in the whole labels
                normalization_method = arg
            elif opt in '-z':  # slices numbers option
                slices_of_interest = arg # save labels numbers

    # Display usage with tract parameters by default in case files aren't chosen in arguments inputs
    if fname_data == '' or path_label == '' or flag_h:
        param.path_label = path_label
        usage()

    # Check existence of data file
    sct.printv('\ncheck existence of input files...', verbose)
    sct.check_file_exist(fname_data)
    sct.check_folder_exist(path_label)
    if fname_normalizing_label:
        sct.check_folder_exist(fname_normalizing_label)

    # add slash at the end
    path_label = sct.slash_at_the_end(path_label, 1)

    # Find path to the vertebral labeling file if vertebral levels were specified by the user
    if vertebral_levels:
        if slices_of_interest:  # impossible to select BOTH specific slices and specific vertebral levels
            print '\nERROR: You cannot select BOTH vertebral levels AND slice numbers.'
            usage()
        else:
            fname_vertebral_labeling_list = sct.find_file_within_folder(fname_vertebral_labeling, path_label + '..')
            if len(fname_vertebral_labeling_list) > 1:
                print color.red + 'ERROR: More than one file named \'' + fname_vertebral_labeling + ' were found in ' + path_label + '. Exit program.' + color.end
                sys.exit(2)
            elif len(fname_vertebral_labeling_list) == 0:
                print color.red + 'ERROR: No file named \'' + fname_vertebral_labeling + ' were found in ' + path_label + '. Exit program.' + color.end
                sys.exit(2)
            else:
                fname_vertebral_labeling = os.path.abspath(fname_vertebral_labeling_list[0])

    # Check input parameters
    check_method(method, fname_normalizing_label, normalization_method)

    # parse argument for param
    if not adv_param_user == '':
        adv_param = adv_param_user.replace(' ', '').split(',')  # remove spaces and parse with comma
        del adv_param_user  # clean variable
        # TODO: check integrity of input

    # Extract label info
    label_id, label_name, label_file = read_label_file(path_label, param.file_info_label)
    nb_labels_total = len(label_id)

    # check consistency of label input parameter.
    label_id_user, average_all_labels = check_labels(labels_of_interest, nb_labels_total, average_all_labels, method)  # If 'labels_of_interest' is empty, then
    # 'label_id_user' contains the index of all labels in the file info_label.txt

    # print parameters
    print '\nChecked parameters:'
    print '  data ...................... '+fname_data
    print '  folder label .............. '+path_label
    print '  selected labels ........... '+str(label_id_user)
    print '  estimation method ......... '+method
    print '  slices of interest ........ '+slices_of_interest
    print '  vertebral levels .......... '+vertebral_levels
    print '  vertebral labeling file.... '+fname_vertebral_labeling
    print '  advanced parameters ....... '+str(adv_param)

    # Check if the orientation of the data is RPI
    orientation_data = get_orientation(fname_data)

    # If orientation is not RPI, change to RPI
    if orientation_data != 'RPI':
        sct.printv('\nCreate temporary folder to change the orientation of the NIFTI files into RPI...', verbose)
        path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S"), 1)
        sct.create_folder(path_tmp)
        # change orientation and load data
        sct.printv('\nChange image orientation and load it...', verbose)
        data = nib.load(set_orientation(fname_data, 'RPI', path_tmp+'orient_data.nii')).get_data()
        # Do the same for labels
        sct.printv('\nChange labels orientation and load them...', verbose)
        labels = np.empty([nb_labels_total], dtype=object)  # labels(nb_labels_total, x, y, z)
        for i_label in range(0, nb_labels_total):
            labels[i_label] = nib.load(set_orientation(path_label+label_file[i_label], 'RPI', path_tmp+'orient_'+label_file[i_label])).get_data()
        if fname_normalizing_label:  # if the "normalization" option is wanted,
            normalizing_label = np.empty([1], dtype=object)  # choose this kind of structure so as to keep easily the
            # compatibility with the rest of the code (dimensions: (1, x, y, z))
            normalizing_label[0] = nib.load(set_orientation(fname_normalizing_label, 'RPI', path_tmp+'orient_normalizing_volume.nii')).get_data()
        if vertebral_levels:  # if vertebral levels were selected,
            data_vertebral_labeling = nib.load(set_orientation(fname_vertebral_labeling, 'RPI', path_tmp+'orient_vertebral_labeling.nii.gz')).get_data()
        # Remove the temporary folder used to change the NIFTI files orientation into RPI
        sct.printv('\nRemove the temporary folder...', verbose)
        status, output = commands.getstatusoutput('rm -rf ' + path_tmp)
    else:
        # Load image
        sct.printv('\nLoad image...', verbose)
        data = nib.load(fname_data).get_data()

        # Load labels
        sct.printv('\nLoad labels...', verbose)
        labels = np.empty([nb_labels_total], dtype=object)  # labels(nb_labels_total, x, y, z)
        for i_label in range(0, nb_labels_total):
            labels[i_label] = nib.load(path_label+label_file[i_label]).get_data()
        if fname_normalizing_label:  # if the "normalization" option is wanted,
            normalizing_label = np.empty([1], dtype=object)  # choose this kind of structure so as to keep easily the
            # compatibility with the rest of the code (dimensions: (1, x, y, z))
            normalizing_label[0] = nib.load(fname_normalizing_label).get_data()  # load the data of the normalizing label
        if vertebral_levels:  # if vertebral levels were selected,
            data_vertebral_labeling = nib.load(fname_vertebral_labeling).get_data()

    # Change metric data type into floats for future manipulations (normalization)
    data = np.float64(data)

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', verbose)
    nx, ny, nz = data.shape
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose)

    # Get dimensions of labels
    sct.printv('\nGet dimensions of label...', verbose)
    nx_atlas, ny_atlas, nz_atlas = labels[0].shape
    sct.printv('.. '+str(nx_atlas)+' x '+str(ny_atlas)+' x '+str(nz_atlas)+' x '+str(nb_labels_total), verbose)

    # Check dimensions consistency between atlas and data
    if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas):
        print '\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.'
        sys.exit(2)

    # Update the flag "slices_of_interest" according to the vertebral levels selected by user (if it's the case)
    if vertebral_levels:
        slices_of_interest, actual_vert_levels, warning_vert_levels = \
            get_slices_matching_with_vertebral_levels(data, vertebral_levels, data_vertebral_labeling)

    # select slice of interest by cropping data and labels
    if slices_of_interest:
        data = remove_slices(data, slices_of_interest)
        for i_label in range(0, nb_labels_total):
            labels[i_label] = remove_slices(labels[i_label], slices_of_interest)
        if fname_normalizing_label:  # if the "normalization" option was selected,
            normalizing_label[0] = remove_slices(normalizing_label[0], slices_of_interest)

    # if user wants to get unique value across labels, then combine all labels together
    if average_all_labels == 1:
        sum_labels_user = np.sum(labels[label_id_user])  # sum the labels selected by user
        if method == 'ml' or method == 'map':  # in case the maximum likelihood and the average across different labels are wanted
            labels_tmp = np.empty([nb_labels_total - len(label_id_user) + 1], dtype=object)
            labels = np.delete(labels, label_id_user)  # remove the labels selected by user
            labels_tmp[0] = sum_labels_user  # put the sum of the labels selected by user in first position of the tmp
            # variable
            for i_label in range(1, len(labels_tmp)):
                labels_tmp[i_label] = labels[i_label-1]  # fill the temporary array with the values of the non-selected labels
            labels = labels_tmp  # replace the initial labels value by the updated ones (with the summed labels)
            del labels_tmp  # delete the temporary labels
        else:  # in other cases than the maximum likelihood, we can remove other labels (not needed for estimation)
            labels = np.empty(1, dtype=object)
            labels[0] = sum_labels_user  # we create a new label array that includes only the summed labels

    if fname_normalizing_label:  # if the "normalization" option is wanted
        sct.printv('\nExtract normalization values...', verbose)
        if normalization_method == 'sbs':  # case: the user wants to normalize slice-by-slice
            for z in range(0, data.shape[-1]):
                normalizing_label_slice = np.empty([1], dtype=object)  # in order to keep compatibility with the function
                # 'extract_metric_within_tract', define a new array for the slice z of the normalizing labels
                normalizing_label_slice[0] = normalizing_label[0][..., z]
                metric_normalizing_label = extract_metric_within_tract(data[..., z], normalizing_label_slice, method, 0)
                # estimate the metric mean in the normalizing label for the slice z
                if metric_normalizing_label[0][0] != 0:
                    data[..., z] = data[..., z]/metric_normalizing_label[0][0]  # divide all the slice z by this value

        elif normalization_method == 'whole':  # case: the user wants to normalize after estimations in the whole labels
            metric_mean_norm_label, metric_std_norm_label = extract_metric_within_tract(data, normalizing_label, method, param.verbose)  # mean and std are lists

    # identify cluster for each tract (for use with robust ML)
    ml_clusters_array = get_clusters(ml_clusters, labels)

    # extract metrics within labels
    sct.printv('\nExtract metric within labels...', verbose)
    metric_mean, metric_std = extract_metric_within_tract(data, labels, method, verbose, ml_clusters_array, adv_param)  # mean and std are lists

    if fname_normalizing_label and normalization_method == 'whole':  # case: user wants to normalize after estimations in the whole labels
        metric_mean, metric_std = np.divide(metric_mean, metric_mean_norm_label), np.divide(metric_std, metric_std_norm_label)

    # update label name if average
    if average_all_labels == 1:
        label_name[0] = 'AVERAGED'+' -'.join(label_name[i] for i in label_id_user)  # concatenate the names of the
        # labels selected by the user if the average tag was asked
        label_id_user = [0]  # update "label_id_user" to select the "averaged" label (which is in first position)

    metric_mean = metric_mean[label_id_user]
    metric_std = metric_std[label_id_user]

    # display metrics
    sct.printv('\nEstimation results:', 1)
    for i in range(0, metric_mean.size):
        sct.printv(str(label_id_user[i])+', '+str(label_name[label_id_user[i]])+':    '+str(metric_mean[i])+' +/- '+str(metric_std[i]), 1, 'info')

    # save and display metrics
    save_metrics(label_id_user, label_name, slices_of_interest, metric_mean, metric_std, fname_output, fname_data,
                 method, fname_normalizing_label, actual_vert_levels, warning_vert_levels)
Esempio n. 15
0
def main():
    path_data = param.path_data
    function_to_test = param.function_to_test
    # function_to_avoid = param.function_to_avoid
    remove_tmp_file = param.remove_tmp_file

    # Check input parameters
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'h:d:p:f:r:a:')
    except getopt.GetoptError:
        usage()
    for opt, arg in opts:
        if opt == '-h':
            usage()
            sys.exit(0)
        if opt == '-d':
            param.download = int(arg)
        if opt == '-p':
            param.path_data = arg
        if opt == '-f':
            function_to_test = arg
        # if opt == '-a':
        #     function_to_avoid = arg
        if opt == '-r':
            remove_tmp_file = int(arg)

    start_time = time.time()

    # if function_to_avoid:
    #     try:
    #         functions.remove(function_to_avoid)
    #     except ValueError:
    #         print 'The function you want to avoid does not figure in the functions to test list'

    # download data
    if param.download:
        downloaddata()

    param.path_data = 'sct_testing_data/data'
    # get absolute path and add slash at the end
    param.path_data = sct.slash_at_the_end(os.path.abspath(param.path_data), 1)

    # check existence of testing data folder
    if not sct.check_folder_exist(param.path_data, 0):
        downloaddata()

    # display path to data
    sct.printv('\nPath to testing data:\n.. ' + param.path_data, param.verbose)

    # create temp folder that will have all results and go in it
    param.path_tmp = sct.slash_at_the_end(
        'tmp.' + time.strftime("%y%m%d%H%M%S"), 1)
    sct.create_folder(param.path_tmp)
    os.chdir(param.path_tmp)

    # get list of all scripts to test
    functions = fill_functions()

    # loop across all functions and test them
    status = []
    [
        status.append(test_function(f)) for f in functions
        if function_to_test == f
    ]
    if not status:
        for f in functions:
            status.append(test_function(f))
    print 'status: ' + str(status)

    # display elapsed time
    elapsed_time = time.time() - start_time
    print 'Finished! Elapsed time: ' + str(int(round(elapsed_time))) + 's\n'

    # remove temp files
    if param.remove_tmp_file:
        sct.printv('\nRemove temporary files...', param.verbose)
        sct.run('rm -rf ' + param.path_tmp, param.verbose)

    e = 0
    if sum(status) != 0:
        e = 1
    print e

    sys.exit(e)
        example=['0', '1', '2'],
        default_value='1')

    return parser


if __name__ == "__main__":
    sct.start_stream_logger()
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])
    ml_param = Param()

    fname_gm = arguments['-gm']
    fname_wm = arguments['-wm']
    path_template = arguments['-t']
    if not sct.check_folder_exist(path_template):
        sct.printv(
            parser.usage.generate(
                error=
                'ERROR: label/ folder does not exist. Please specify the path to the template using flag -t'
            ))
    fname_warp_template = arguments['-w']

    fname_warp_target2template = None
    fname_manual_gmseg = None
    fname_sc_seg = None
    fname_template_dest = None

    if '-param' in arguments:
        ml_param.param_reg = arguments['-param']
    if '-manual-gm' in arguments:
Esempio n. 17
0
 def checkFolder(self, param):
     # check if the folder exist. If not, create it.
     if self.parser.check_file_exist:
         sct.check_folder_exist(param, 0)
     return param
def main():
    
    #Initialization
    directory = ""
    fname_template = ''
    n_l = 0 
    verbose = param.verbose
         
    try:
         opts, args = getopt.getopt(sys.argv[1:],'hi:t:n:v:')
    except getopt.GetoptError:
        usage()
    for opt, arg in opts :
        if opt == '-h':
            usage()
        elif opt in ("-i"):
            directory = arg 
        elif opt in ("-t"):
            fname_template = arg  
        elif opt in ('-n'):
            n_l = int(arg)                
        elif opt in ('-v'):
            verbose = int(arg)
    
    # display usage if a mandatory argument is not provided
    if fname_template == '' or directory == '':
        usage()
        
    # check existence of input files
    print'\nCheck if file exists ...\n'
    sct.check_file_exist(fname_template)
    sct.check_folder_exist(directory)

    path_template, file_template, ext_template = sct.extract_fname(fname_template)
    template_absolute_path = sct.get_absolute_path(fname_template)
   
    os.chdir(directory)
   
    n_i = len([name for name in os.listdir('.') if (os.path.isfile(name) and name.endswith(".nii.gz") and name!='template_landmarks.nii.gz')])  # number of landmark images

    average = zeros((n_i,n_l))
    compteur = 0
    
    for file in os.listdir('.'):
        if file.endswith(".nii.gz") and file != 'template_landmarks.nii.gz':
            print file
            img = nibabel.load(file)
            data = img.get_data()
            X,Y,Z = (data>0).nonzero()
            Z = [Z[i] for i in Z.argsort()]
            Z.reverse()
            
            for i in xrange(n_l):
                if i < len(Z):
                    average[compteur][i] = Z[i]
            
            compteur = compteur + 1

    average = array([int(round(mean([average[average[:,i]>0,i]]))) for i in xrange(n_l)]) 
      
    #print average     
    
    print template_absolute_path
    print '\nGet dimensions of template...'
    nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(template_absolute_path)
    print '.. matrix size: '+str(nx)+' x '+str(ny)+' x '+str(nz)
    print '.. voxel size:  '+str(px)+'mm x '+str(py)+'mm x '+str(pz)+'mm'
    
    img = nibabel.load(template_absolute_path)
    data = img.get_data()
    hdr = img.get_header()
    data[:,:,:] = 0
    compteur = 1
    for i in average:
        print int(round(nx/2.0)),int(round(ny/2.0)),int(round(i)),int(round(compteur))
        data[int(round(nx/2.0)),int(round(ny/2.0)),int(round(i))] = int(round(compteur))
        compteur = compteur + 1
        
    
    print '\nSave volume ...'
    #hdr.set_data_dtype('float32') # set imagetype to uint8
    # save volume
    #data = data.astype(float32, copy =False)
    img = nibabel.Nifti1Image(data, None, hdr)
    file_name = 'template_landmarks.nii.gz'
    nibabel.save(img,file_name)
    print '\nFile created : ' + file_name
Esempio n. 19
0
def main():

    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter"  #"C:/cygwin64/home/Simon_2/data_auto_vs_manual"
        path_sct = '/Users/slevy_local/spinalcordtoolbox'  #'C:/cygwin64/home/Simon_2/spinalcordtoolbox'
        methods_to_display = 'bin,man0,man1,man2,man3'
    else:
        status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    # Append path that contains scripts, to be able to load modules
    sys.path.append(path_sct + '/scripts')
    import sct_utils as sct

    sct.printv("Working directory: " + os.getcwd())

    # Folder including data "automatic vs manual"
    folder_auto_vs_manual = results_folder + '/manual_mask/sub'

    sct.printv(
        '\n\nData will be extracted from folder ' + folder_auto_vs_manual +
        ' .', 'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(folder_auto_vs_manual)

    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    fname_results = glob.glob(folder_auto_vs_manual + '/*.txt')

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # CSF value
    csf_values = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = []  #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 6))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 6))
    # min
    min_results = numpy.zeros((nb_results_file, 6))
    # max
    max_results = numpy.zeros((nb_results_file, 6))

    #
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [
            lines.index(line_noise) for line_noise in lines
            if "sigma noise" in line_noise
        ]
        if len(ind_line_noise) != 1:
            sct.printv(
                "ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]]
                                      if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [
            lines.index(line_tract_std) for line_tract_std in lines
            if "range tracts" in line_tract_std
        ]
        if len(ind_line_tract_std) != 1:
            sct.printv(
                "ERROR: number of lines including \"range tracts\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(
                c for c in lines[ind_line_tract_std[0]].split(':')[1]
                if c.isdigit()))

        # extract CSF value
        ind_line_csf_value = [
            lines.index(line_csf_value) for line_csf_value in lines
            if "# value CSF" in line_csf_value
        ]
        if len(ind_line_csf_value) != 1:
            sct.printv(
                "ERROR: number of lines including \"range tracts\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            csf_values[i_file] = int(''.join(
                c for c in lines[ind_line_csf_value[0]].split(':')[1]
                if c.isdigit()))

        # extract method name
        ind_line_label = [
            lines.index(line_label) for line_label in lines
            if "Label" in line_label
        ]
        if len(ind_line_label) != 1:
            sct.printv(
                "ERROR: number of lines including \"Label\" is different from 1. Exit program.",
                'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(
                ' ', '').split(',')[1:])

        # extract median
        ind_line_median = [
            lines.index(line_median) for line_median in lines
            if "median" in line_median
        ]
        if len(ind_line_median) != 1:
            sct.printv(
                "WARNING: number of lines including \"median\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array(
                [float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [
            lines.index(line_min) for line_min in lines if "min," in line_min
        ]
        if len(ind_line_min) != 1:
            sct.printv(
                "WARNING: number of lines including \"min\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [
            lines.index(line_max) for line_max in lines if "max" in line_max
        ]
        if len(ind_line_max) != 1:
            sct.printv(
                "WARNING: number of lines including \"max\" is different from 1. Exit program.",
                'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array(
                [float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines) + 1]
        for i_line in range(ind_line_label[0] + 1, ind_line_median[0] - 1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([
                float(error.strip().split('(')[0])
                for error in line_label_i[1:]
            ])
            std_per_label_for_file_i.append([
                float(error.strip().split('(')[1][:-1])
                for error in line_label_i[1:]
            ])
            labels_id_for_file_i.append(line_label_i[0])
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder +
            ' have not been generated with the same number of methods. Exit program.',
            'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder +
            ' have not been generated with the same labels. Exit program.',
            'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)

    nb_method = len(methods_to_display)

    sct.printv('Noise std of the ' + str(nb_results_file) +
               ' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the ' + str(nb_results_file) +
               ' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the ' +
               str(nb_results_file) + ' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Median obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the ' +
               str(nb_results_file) + ' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the ' + str(nb_results_file) +
               ' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv(
        'Mean errors (across bootstraps) obtained with each method (in colons) for the '
        + str(nb_results_file) + ' generated files (in lines):')
    print error_per_label
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv(
        'Errors std (across bootstraps) obtained with each method (in colons) for the '
        + str(nb_results_file) + ' generated files (in lines):')
    print std_per_label

    # ********************************** START PLOTTING HERE ***********************************************************

    # find index of the file generated with sigma noise = 10 and range tracts = -10:+10
    ind_file_noise10_tracts_std10 = numpy.where((snr == 10)
                                                & (tracts_std == 10))[0][0]

    matplotlib.rcParams.update({'font.size': 45, 'font.family': 'trebuchet'})
    plt.rcParams['xtick.major.pad'] = '9'
    plt.rcParams['ytick.major.pad'] = '15'

    fig0 = plt.figure(0, figsize=(34, 17))
    width = 0.5 / (nb_method + 1)
    ind_fig0 = numpy.arange(len(labels_id[0]))
    plt.ylabel('Absolute error (%)', fontsize=55)
    plt.xlabel('Labels', fontsize=55)
    plt.suptitle('Automatic estimation vs. manual estimation', fontsize=65)
    plt.title('(Noise std=' + str(snr[0]) + ', Tracts std=' +
              str(tracts_std[0]) + ', CSF value=' + str(csf_values[0]) + ')\n',
              fontsize=65)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    plots = []

    marker_size = 30
    line_width = 3.0
    cap_size = 15
    eline_width = 7.0
    cap_thick = 5.0
    for meth, color in zip(methods_to_display, colors):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        plot = plt.errorbar(
            ind_fig0 + i_meth_to_display * width +
            (float(i_meth_to_display) * width) / (nb_method + 1),
            error_per_label[ind_file_noise10_tracts_std10, :, i_meth],
            std_per_label[ind_file_noise10_tracts_std10, :, i_meth],
            color=color,
            linestyle='None',
            marker='o',
            ms=marker_size,
            lw=line_width,
            capsize=cap_size,
            capthick=cap_thick,
            elinewidth=eline_width)
        plots.append(plot[0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig0), 2):
        plt.axvspan(ind_fig0[i_xtick] - 3 * width,
                    ind_fig0[i_xtick] + (nb_method + 1) * width + 2 * width,
                    facecolor='grey',
                    alpha=0.1)

    # plt.legend(plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0., handler_map={Line2D: HandlerLine2D(numpoints=1)})
    plt.legend(plots,
               methods_to_display,
               loc='best',
               handler_map={Line2D: HandlerLine2D(numpoints=1)})
    # plt.xticks(ind_fig0 + (numpy.floor(nb_method/2))*width*(1.0+1.0/(nb_method+1)), labels_id[0], fontsize=45)
    plt.xticks(ind_fig0 + (numpy.floor(nb_method / 2)) * width *
               (1.0 + 1.0 / (nb_method + 1)), ['l-cst', 'r-cst', 'dc'],
               fontsize=45)
    plt.gca().set_xlim(
        [-3 * width, numpy.max(ind_fig0) + (nb_method + 3) * width])
    # plt.gca().set_ylim([0, 2])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2.5))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both')
    # adjust the size of the frame
    # plt.subplots_adjust(bottom=0.15, top=0.86, right=0.7, left=0.2)

    plt.savefig(param_default.fname_folder_to_save_fig +
                '/automatic_method_vs_manual_methods.pdf',
                format='PDF')

    plt.show(block=False)
def main():
    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display
    noise_std_to_display = param_default.noise_std_to_display
    tracts_std_to_display = param_default.tracts_std_to_display
    csf_value_to_display = param_default.csf_value_to_display
    nb_RL_labels = param_default.nb_RL_labels

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter"#"C:/cygwin64/home/Simon_2/data_methods_comparison"
        path_sct = '/Users/slevy_local/spinalcordtoolbox' #'C:/cygwin64/home/Simon_2/spinalcordtoolbox'
    else:
        status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    # Append path that contains scripts, to be able to load modules
    sys.path.append(path_sct + '/scripts')
    import sct_utils as sct
    import isct_get_fractional_volume

    sct.printv("Working directory: " + os.getcwd())

    results_folder_noise = results_folder + '/noise'
    results_folder_tracts = results_folder + '/tracts'
    results_folder_csf = results_folder + '/csf'

    sct.printv('\n\nData will be extracted from folder ' + results_folder_noise + ' , ' + results_folder_tracts + ' and ' + results_folder_csf + '.', 'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(results_folder_noise)
    sct.check_folder_exist(results_folder_tracts)
    sct.check_folder_exist(results_folder_csf)

    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    # Extract file names of the results files
    fname_results_noise = glob.glob(results_folder_noise + '/*.txt')
    fname_results_tracts = glob.glob(results_folder_tracts + '/*.txt')
    fname_results_csf = glob.glob(results_folder_csf + '/*.txt')
    fname_results = fname_results_noise + fname_results_tracts + fname_results_csf
    # Remove doublons (due to the two folders)
    # for i_fname in range(0, len(fname_results)):
    #     for j_fname in range(0, len(fname_results)):
    #         if (i_fname != j_fname) & (os.path.basename(fname_results[i_fname]) == os.path.basename(fname_results[j_fname])):
    #             fname_results.remove(fname_results[j_fname])
    file_results = []
    for fname in fname_results:
        file_results.append(os.path.basename(fname))
    for file in file_results:
        if file_results.count(file) > 1:
            ind = file_results.index(file)
            fname_results.remove(fname_results[ind])
            file_results.remove(file)

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # CSF value
    csf_values = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = []  #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 5))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 5))
    # min
    min_results = numpy.zeros((nb_results_file, 5))
    # max
    max_results = numpy.zeros((nb_results_file, 5))

    #
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [lines.index(line_noise) for line_noise in lines if "sigma noise" in line_noise]
        if len(ind_line_noise) != 1:
            sct.printv("ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [lines.index(line_tract_std) for line_tract_std in lines if
                              "range tracts" in line_tract_std]
        if len(ind_line_tract_std) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))

        # extract CSF value
        ind_line_csf_value = [lines.index(line_csf_value) for line_csf_value in lines if
                              "# value CSF" in line_csf_value]
        if len(ind_line_csf_value) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            csf_values[i_file] = int(''.join(c for c in lines[ind_line_csf_value[0]].split(':')[1] if c.isdigit()))


        # extract method name
        ind_line_label = [lines.index(line_label) for line_label in lines if "Label" in line_label]
        if len(ind_line_label) != 1:
            sct.printv("ERROR: number of lines including \"Label\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(' ', '').split(',')[1:])

        # extract median
        ind_line_median = [lines.index(line_median) for line_median in lines if "median" in line_median]
        if len(ind_line_median) != 1:
            sct.printv("WARNING: number of lines including \"median\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array([float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [lines.index(line_min) for line_min in lines if "min," in line_min]
        if len(ind_line_min) != 1:
            sct.printv("WARNING: number of lines including \"min\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [lines.index(line_max) for line_max in lines if "max" in line_max]
        if len(ind_line_max) != 1:
            sct.printv("WARNING: number of lines including \"max\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines) + 1]
        for i_line in range(ind_line_label[0] + 1, ind_line_median[0] - 1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([float(error.strip().split('(')[0]) for error in line_label_i[1:]])
            std_per_label_for_file_i.append([float(error.strip().split('(')[1][:-1]) for error in line_label_i[1:]])
            labels_id_for_file_i.append(int(line_label_i[0]))
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder + ' have not been generated with the same number of methods. Exit program.',
            'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv(
            'ERROR: All the generated files in folder ' + results_folder + ' have not been generated with the same labels. Exit program.',
            'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)

    # average error and std across sides
    meanRL_abs_error_per_labels = numpy.zeros((error_per_label.shape[0], nb_RL_labels, error_per_label.shape[2]))
    meanRL_std_abs_error_per_labels = numpy.zeros((std_per_label.shape[0], nb_RL_labels, std_per_label.shape[2]))
    for i_file in range(0, nb_results_file):
        for i_meth in range(0, len(methods_name[i_file])):
            for i_label in range(0, nb_RL_labels):
                # find indexes of corresponding labels
                ind_ID_first_side = labels_id[i_file].index(i_label)
                ind_ID_other_side = labels_id[i_file].index(i_label + nb_RL_labels)
                # compute mean across 2 sides
                meanRL_abs_error_per_labels[i_file, i_label, i_meth] = float(error_per_label[i_file, ind_ID_first_side, i_meth] + error_per_label[i_file, ind_ID_other_side, i_meth]) / 2
                meanRL_std_abs_error_per_labels[i_file, i_label, i_meth] = float(std_per_label[i_file, ind_ID_first_side, i_meth] + std_per_label[i_file, ind_ID_other_side, i_meth]) / 2

    nb_method = len(methods_to_display)

    sct.printv('Noise std of the ' + str(nb_results_file) + ' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the ' + str(nb_results_file) + ' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('CSF value of the ' + str(nb_results_file) + ' generated files:')
    print csf_values
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the ' + str(nb_results_file) + ' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Median obtained with each method (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the ' + str(
        nb_results_file) + ' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the ' + str(
        nb_results_file) + ' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Errors obtained with each method (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print error_per_label
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Mean errors across both sides obtained with each method (in colons) for the ' + str(nb_results_file) + ' generated files (in lines):')
    print meanRL_abs_error_per_labels


    # Compute fractional volume per label
    labels_id_FV, labels_name_FV, fract_vol_per_lab, labels_name_FV_RL_gathered, fract_vol_per_lab_RL_gathered = isct_get_fractional_volume.get_fractional_volume_per_label('./cropped_atlas/', 'info_label.txt')
    # # Get the number of voxels including at least one tract
    # nb_voxels_in_WM = isct_get_fractional_volume.get_nb_voxel_in_WM('./cropped_atlas/', 'info_label.txt')
    # normalize by the number of voxels in WM and express it as a percentage
    fract_vol_norm = numpy.divide(fract_vol_per_lab_RL_gathered, numpy.sum(fract_vol_per_lab_RL_gathered)/100)

    # NOT NECESSARY NOW WE AVERAGE ACROSS BOTH SIDES (which orders the labels)
    # # check if the order of the labels returned by the function computing the fractional volumes is the same (which should be the case)
    # if labels_id_FV != labels_id[0]:
    #     sct.printv('\n\nERROR: the labels IDs returned by the function \'i_sct_get_fractional_volume\' are different from the labels IDs of the results files\n\n', 'error')

    # # Remove labels #30 and #31
    # labels_id_FV_29, labels_name_FV_29, fract_vol_per_lab_29 = labels_id_FV[:-2], labels_name_FV[:-2], fract_vol_per_lab[:-2]

    # indexes of labels sort according to the fractional volume
    ind_labels_sort = numpy.argsort(fract_vol_norm)

    # Find index of the file generated with noise variance = 10 and tracts std = 10
    ind_file_to_display = numpy.where((snr == noise_std_to_display) & (tracts_std == tracts_std_to_display) & (csf_values == csf_value_to_display))

    # sort arrays in this order
    meanRL_abs_error_per_labels_sort = meanRL_abs_error_per_labels[ind_file_to_display[0], ind_labels_sort, :]
    meanRL_std_abs_error_per_labels_sort = meanRL_std_abs_error_per_labels[ind_file_to_display[0], ind_labels_sort, :]
    labels_name_sort = numpy.array(labels_name_FV_RL_gathered)[ind_labels_sort]

    # *********************************************** START PLOTTING HERE **********************************************

    # stringColor = Color()
    matplotlib.rcParams.update({'font.size': 50, 'font.family': 'trebuchet'})
    # plt.rcParams['xtick.major.pad'] = '11'
    plt.rcParams['ytick.major.pad'] = '15'

    fig = plt.figure(figsize=(60, 37))
    width = 1.0 / (nb_method + 1)
    ind_fig = numpy.arange(len(labels_name_sort)) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=65)
    plt.xlabel('Fractional volume (% of the total number of voxels in WM)', fontsize=65)
    plt.title('Absolute error per tract as a function of their fractional volume\n\n', fontsize=30)
    plt.suptitle('(Noise std='+str(snr[ind_file_to_display[0]][0])+', Tracts std='+str(tracts_std[ind_file_to_display[0]][0])+', CSF value='+str(csf_values[ind_file_to_display[0]][0])+')', fontsize=30)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    markers = ['o', 's', '^', 'D']
    errorbar_plots = []
    for meth, color, marker in zip(methods_to_display, colors, markers):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        plot_i = plt.errorbar(ind_fig + i_meth_to_display * width, meanRL_abs_error_per_labels_sort[:, i_meth], meanRL_std_abs_error_per_labels_sort[:, i_meth], color=color, marker=marker, markersize=35, lw=7, elinewidth=1, capthick=5, capsize=10)
        # plot_i = plt.boxplot(numpy.transpose(abs_error_per_labels[ind_files_csf_sort, :, i_meth]), positions=ind_fig + i_meth_to_display * width + (float(i_meth_to_display) * width) / (nb_method + 1), widths=width, boxprops=boxprops, medianprops=medianprops, flierprops=flierprops, whiskerprops=whiskerprops, capprops=capprops)
        errorbar_plots.append(plot_i)

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig), 2):
        plt.axvspan(ind_fig[i_xtick] - width - width / 2, ind_fig[i_xtick] + (nb_method + 1) * width - width / 2, facecolor='grey', alpha=0.1)

    # concatenate value of fractional volume to labels'name
    xtick_labels = [labels_name_sort[i_lab]+'\n'+r'$\bf{['+str(round(fract_vol_norm[ind_labels_sort][i_lab], 2))+']}$' for i_lab in range(0, len(labels_name_sort))]
    ind_lemniscus = numpy.where(labels_name_sort == 'spinal lemniscus (spinothalamic and spinoreticular tracts)')[0][0]
    xtick_labels[ind_lemniscus] = 'spinal lemniscus\n'+r'$\bf{['+str(round(fract_vol_norm[ind_labels_sort][ind_lemniscus], 2))+']}$'

    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    plt.legend(errorbar_plots, methods_to_display, loc=1, fontsize=50, numpoints=1)
    plt.xticks(ind_fig + (numpy.floor(float(nb_method-1)/2)) * width, xtick_labels, fontsize=45)
    # Tweak spacing to prevent clipping of tick-labels
    plt.subplots_adjust(bottom=0, top=0.95, right=0.96)
    plt.gca().set_xlim([-width, numpy.max(ind_fig) + (nb_method + 0.5) * width])
    plt.gca().set_ylim([0, 17])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(1.0))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both')
    fig.autofmt_xdate()

    plt.savefig(param_default.fname_folder_to_save_fig+'/absolute_error_vs_fractional_volume.pdf', format='PDF')

    plt.show(block=False)
Esempio n. 21
0
def main():

    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter/map" #"C:/cygwin64/home/Simon_2/data_map"
        methods_to_display = 'map'
    else:

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    sct.printv("Working directory: "+os.getcwd())

    sct.printv('\n\nData will be extracted from folder '+results_folder+' .', 'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(results_folder)

    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    fname_results = glob.glob(results_folder + '/*.txt')

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = [] #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 6))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 6))
    # min
    min_results = numpy.zeros((nb_results_file, 6))
    # max
    max_results = numpy.zeros((nb_results_file, 6))

    # Extract variance within labels and variance of noise
    map_var_params = numpy.zeros((nb_results_file, 2))
    for i_file in range(0, nb_results_file):

        fname = fname_results[i_file].strip()
        ind_start, ind_end = fname.index('results_map')+11, fname.index('_all.txt')
        var = fname[ind_start:ind_end]
        map_var_params[i_file, 0] = float(var.split(",")[0])
        map_var_params[i_file, 1] = float(var.split(",")[1])


    # Read each file and extract data
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [lines.index(line_noise) for line_noise in lines if "sigma noise" in line_noise]
        if len(ind_line_noise) != 1:
            sct.printv("ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [lines.index(line_tract_std) for line_tract_std in lines if "range tracts" in line_tract_std]
        if len(ind_line_tract_std) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))


        # extract method name
        ind_line_label = [lines.index(line_label) for line_label in lines if "Label" in line_label]
        if len(ind_line_label) != 1:
            sct.printv("ERROR: number of lines including \"Label\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(' ', '').split(',')[1:])

        # extract median
        ind_line_median = [lines.index(line_median) for line_median in lines if "median" in line_median]
        if len(ind_line_median) != 1:
            sct.printv("WARNING: number of lines including \"median\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array([float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [lines.index(line_min) for line_min in lines if "min," in line_min]
        if len(ind_line_min) != 1:
            sct.printv("WARNING: number of lines including \"min\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [lines.index(line_max) for line_max in lines if "max" in line_max]
        if len(ind_line_max) != 1:
            sct.printv("WARNING: number of lines including \"max\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines)+1]
        for i_line in range(ind_line_label[0]+1, ind_line_median[0]-1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([float(error.strip().split('(')[0]) for error in line_label_i[1:]])
            std_per_label_for_file_i.append([float(error.strip().split('(')[1][:-1]) for error in line_label_i[1:]])
            labels_id_for_file_i.append(line_label_i[0])
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv('ERROR: All the generated files in folder '+results_folder+' have not been generated with the same number of methods. Exit program.', 'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv('ERROR: All the generated files in folder '+results_folder+' have not been generated with the same labels. Exit program.', 'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)


    sct.printv('Noise std of the '+str(nb_results_file)+' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the '+str(nb_results_file)+' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the '+str(nb_results_file)+' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Median obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Errors obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print error_per_label


    # ********************************** START PLOTTING HERE ***********************************************************
    matplotlib.rcParams.update({'font.size': 45, 'font.family': 'Trebuchet'})
    plt.rcParams['xtick.major.pad'] = '9'
    plt.rcParams['ytick.major.pad'] = '15'
    # matplotlib.rcParams['legend.handlelength'] = 0


    # find indexes of files to be plotted
    ind_var_noise20 = numpy.where(map_var_params[:, 1] == 20)  # indexes where noise variance = 20
    ind_ind_var_label_sort_var_noise20 = numpy.argsort(map_var_params[ind_var_noise20, 0])  # indexes of indexes where noise variance=20 sorted according to values of variance within labels (in ascending order)
    ind_var_label_sort_var_noise20 = ind_var_noise20[0][ind_ind_var_label_sort_var_noise20][0]  # indexes where noise variance=20 sorted according to values of variance within labels (in ascending order)


    ind_var_label20 = numpy.where(map_var_params[:, 0] == 20)  # indexes where variance within labels = 20
    ind_ind_var_noise_sort_var_label20 = numpy.argsort(map_var_params[ind_var_label20, 1])  # indexes of indexes where label variance=20 sorted according to values of noise variance (in ascending order)
    ind_var_noise_sort_var_label20 = ind_var_label20[0][ind_ind_var_noise_sort_var_label20][0]  # indexes where noise variance=20 sorted according to values of variance within labels (in ascending order)

    plt.close('all')

    # Errorbar plot
    plt.figure()
    plt.ylabel('Mean absolute error (%)', fontsize=55)
    plt.xlabel('Variance within labels (in percentage of the mean)', fontsize=55)
    plt.title('Sensitivity of the method \"MAP\" to the variance within labels and to the SNR\n', fontsize=65)

    plt.errorbar(map_var_params[ind_var_label_sort_var_noise20, 0], mean_abs_error_per_meth[ind_var_label_sort_var_noise20, 0], std_abs_error_per_meth[ind_var_label_sort_var_noise20, 0], color='blue', marker='o', linestyle='--', markersize=8, elinewidth=2, capthick=2, capsize=10)
    plt.errorbar(map_var_params[ind_var_noise_sort_var_label20, 1], mean_abs_error_per_meth[ind_var_noise_sort_var_label20, 0], std_abs_error_per_meth[ind_var_noise_sort_var_label20, 0], color='red', marker='o', linestyle='--', markersize=8, elinewidth=2, capthick=2, capsize=10)

    # plt.legend(plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0., handler_map={Line2D: HandlerLine2D(numpoints=1)})
    plt.legend(['noise variance = 20', 'variance within labels = 20% of the mean'], loc='best', handler_map={Line2D: HandlerLine2D(numpoints=1)})
    plt.gca().set_xlim([numpy.min(map_var_params[ind_var_label_sort_var_noise20, 0]) - 1, numpy.max(map_var_params[ind_var_label_sort_var_noise20, 0]) + 1])
    plt.grid(b=True, axis='both')
    # plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2.5))


    # Box-and-whisker plots
    nb_box = 2
    plt.figure(figsize=(30, 15))
    width = 1.0 / (nb_box + 1)
    ind_fig = numpy.arange(len(map_var_params[ind_var_label_sort_var_noise20, 0])) * (1.0 + width)
    plt.ylabel('Absolute error (%)\n', fontsize=55)
    plt.xlabel('Variance', fontsize=55)
    plt.title('Sensitivity of the method \"MAP\" to the variance within labels and to the SNR\n', fontsize=65)

    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_box))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    box_plots = []


    boxprops = dict(linewidth=6, color='b')
    flierprops = dict(markeredgewidth=0.7, markersize=15, marker='.', color='b')
    whiskerprops = dict(linewidth=5, color='b')
    capprops = dict(linewidth=5, color='b')
    medianprops = dict(linewidth=6, color='b')
    meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick')
    meanlineprops = dict(linestyle='--', linewidth=2.5)
    plot_constant_noise_var = plt.boxplot(numpy.transpose(abs_error_per_labels[ind_var_label_sort_var_noise20, :, 0]), positions=ind_fig, widths=width, boxprops=boxprops, medianprops=medianprops, flierprops=flierprops, whiskerprops=whiskerprops, capprops=capprops)
    box_plots.append(plot_constant_noise_var['boxes'][0])

    boxprops = dict(linewidth=6, color='r')
    flierprops = dict(markeredgewidth=0.7, markersize=15, marker='.', color='r')
    whiskerprops = dict(linewidth=5, color='r')
    capprops = dict(linewidth=5, color='r')
    medianprops = dict(linewidth=6, color='r')
    meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick')
    meanlineprops = dict(linestyle='--', linewidth=2.5)
    plot_constant_label_var = plt.boxplot(numpy.transpose(abs_error_per_labels[ind_var_noise_sort_var_label20, :, 0]), positions=ind_fig + width + width / (nb_box + 1), widths=width, boxprops=boxprops, medianprops=medianprops, flierprops=flierprops, whiskerprops=whiskerprops, capprops=capprops)
    box_plots.append(plot_constant_label_var['boxes'][0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig), 2):
        plt.axvspan(ind_fig[i_xtick] - width - width / 4, ind_fig[i_xtick] + (nb_box+1) * width - width / 4, facecolor='grey', alpha=0.1)


    # plt.legend(box_plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
    # leg = plt.legend(box_plots, [r'$\mathrm{\mathsf{noise\ variance\ =\ 20\ voxels^2}}$', r'$\mathrm{\mathsf{variance\ within\ labels\ =\ 20\%\ of\ the\ mean\ value}}$'], loc=1, handletextpad=-2)
    # color_legend_texts(leg)
    # convert xtick labels into int
    xtick_labels = [int(xtick) for xtick in map_var_params[ind_var_label_sort_var_noise20, 0]]
    plt.xticks(ind_fig + (numpy.floor(nb_box / 2)) * (width/2) * (1.0 + 1.0 / (nb_box + 1)), xtick_labels)
    plt.gca().set_xlim([-width, numpy.max(ind_fig) + (nb_box + 0.5) * width])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(1.0))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.25))
    plt.grid(b=True, axis='y', which='both')

    plt.savefig(os.path.join(param_default.fname_folder_to_save_fig, 'absolute_error_as_a_function_of_MAP_parameters.pdf'), format='PDF')


    plt.show(block=False)
def main():

    results_folder = param_default.results_folder
    methods_to_display = param_default.methods_to_display

    # Parameters for debug mode
    if param_default.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        results_folder = "/Users/slevy_local/spinalcordtoolbox/dev/atlas/validate_atlas/results_20150210_200iter"#"C:/cygwin64/home/Simon_2/data_auto_vs_manual"
        path_sct = '/Users/slevy_local/spinalcordtoolbox' #'C:/cygwin64/home/Simon_2/spinalcordtoolbox'
        methods_to_display = 'bin,man0,man1,man2,man3'
    else:
        status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'i:m:')  # define flags
        except getopt.GetoptError as err:  # check if the arguments are defined
            print str(err)  # error
            # usage() # display usage
        # if not opts:
        #     print 'Please enter the path to the result folder. Exit program.'
        #     sys.exit(1)
        #     # usage()
        for opt, arg in opts:  # explore flags
            if opt in '-i':
                results_folder = arg
            if opt in '-m':
                methods_to_display = arg

    # Append path that contains scripts, to be able to load modules
    sys.path.append(path_sct + '/scripts')
    import sct_utils as sct

    sct.printv("Working directory: "+os.getcwd())

    # Folder including data "automatic vs manual"
    folder_auto_vs_manual = results_folder+'/manual_mask/sub'

    sct.printv('\n\nData will be extracted from folder '+folder_auto_vs_manual+' .', 'warning')
    sct.printv('\t\tCheck existence...')
    sct.check_folder_exist(folder_auto_vs_manual)

    # Extract methods to display
    methods_to_display = methods_to_display.strip().split(',')

    fname_results = glob.glob(folder_auto_vs_manual + '/*.txt')

    nb_results_file = len(fname_results)

    # 1st dim: SNR, 2nd dim: tract std, 3rd dim: mean abs error, 4th dim: std abs error
    # result_array = numpy.empty((nb_results_file, nb_results_file, 3), dtype=object)
    # SNR
    snr = numpy.zeros((nb_results_file))
    # Tracts std
    tracts_std = numpy.zeros((nb_results_file))
    # CSF value
    csf_values = numpy.zeros((nb_results_file))
    # methods' name
    methods_name = [] #numpy.empty((nb_results_file, nb_method), dtype=object)
    # labels
    error_per_label = []
    std_per_label = []
    labels_id = []
    # median
    median_results = numpy.zeros((nb_results_file, 6))
    # median std across bootstraps
    median_std = numpy.zeros((nb_results_file, 6))
    # min
    min_results = numpy.zeros((nb_results_file, 6))
    # max
    max_results = numpy.zeros((nb_results_file, 6))

    #
    for i_file in range(0, nb_results_file):

        # Open file
        f = open(fname_results[i_file])  # open file
        # Extract all lines in .txt file
        lines = [line for line in f.readlines() if line.strip()]

        # extract SNR
        # find all index of lines containing the string "sigma noise"
        ind_line_noise = [lines.index(line_noise) for line_noise in lines if "sigma noise" in line_noise]
        if len(ind_line_noise) != 1:
            sct.printv("ERROR: number of lines including \"sigma noise\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[:, i_file, i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))
            snr[i_file] = int(''.join(c for c in lines[ind_line_noise[0]] if c.isdigit()))

        # extract tract std
        ind_line_tract_std = [lines.index(line_tract_std) for line_tract_std in lines if "range tracts" in line_tract_std]
        if len(ind_line_tract_std) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # result_array[i_file, i_file, :] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))
            # regex = re.compile(''('(.*)':)  # re.I permet d'ignorer la case (majuscule/minuscule)
            # match = regex.search(lines[ind_line_tract_std[0]])
            # result_array[:, i_file, :, :] = match.group(1)  # le groupe 1 correspond a '.*'
            tracts_std[i_file] = int(''.join(c for c in lines[ind_line_tract_std[0]].split(':')[1] if c.isdigit()))

        # extract CSF value
        ind_line_csf_value = [lines.index(line_csf_value) for line_csf_value in lines if
                              "# value CSF" in line_csf_value]
        if len(ind_line_csf_value) != 1:
            sct.printv("ERROR: number of lines including \"range tracts\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            csf_values[i_file] = int(''.join(c for c in lines[ind_line_csf_value[0]].split(':')[1] if c.isdigit()))


        # extract method name
        ind_line_label = [lines.index(line_label) for line_label in lines if "Label" in line_label]
        if len(ind_line_label) != 1:
            sct.printv("ERROR: number of lines including \"Label\" is different from 1. Exit program.", 'error')
            sys.exit(1)
        else:
            # methods_name[i_file, :] = numpy.array(lines[ind_line_label[0]].strip().split(',')[1:])
            methods_name.append(lines[ind_line_label[0]].strip().replace(' ', '').split(',')[1:])

        # extract median
        ind_line_median = [lines.index(line_median) for line_median in lines if "median" in line_median]
        if len(ind_line_median) != 1:
            sct.printv("WARNING: number of lines including \"median\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            median = lines[ind_line_median[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 0] = [float(m.split('(')[0]) for m in median]
            median_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in median])
            median_std[i_file, :] = numpy.array([float(m.split('(')[1][:-1]) for m in median])

        # extract min
        ind_line_min = [lines.index(line_min) for line_min in lines if "min," in line_min]
        if len(ind_line_min) != 1:
            sct.printv("WARNING: number of lines including \"min\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            min = lines[ind_line_min[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in min]
            min_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in min])

        # extract max
        ind_line_max = [lines.index(line_max) for line_max in lines if "max" in line_max]
        if len(ind_line_max) != 1:
            sct.printv("WARNING: number of lines including \"max\" is different from 1. Exit program.", 'warning')
            # sys.exit(1)
        else:
            max = lines[ind_line_max[0]].strip().split(',')[1:]
            # result_array[i_file, i_file, 1] = [float(m.split('(')[0]) for m in max]
            max_results[i_file, :] = numpy.array([float(m.split('(')[0]) for m in max])

        # extract error for each label
        error_per_label_for_file_i = []
        std_per_label_for_file_i = []
        labels_id_for_file_i = []
        # Due to 2 different kind of file structure, the number of the last label line must be adapted
        if not ind_line_median:
            ind_line_median = [len(lines)+1]
        for i_line in range(ind_line_label[0]+1, ind_line_median[0]-1):
            line_label_i = lines[i_line].strip().split(',')
            error_per_label_for_file_i.append([float(error.strip().split('(')[0]) for error in line_label_i[1:]])
            std_per_label_for_file_i.append([float(error.strip().split('(')[1][:-1]) for error in line_label_i[1:]])
            labels_id_for_file_i.append(line_label_i[0])
        error_per_label.append(error_per_label_for_file_i)
        std_per_label.append(std_per_label_for_file_i)
        labels_id.append(labels_id_for_file_i)

        # close file
        f.close()

    # check if all the files in the result folder were generated with the same number of methods
    if not all(x == methods_name[0] for x in methods_name):
        sct.printv('ERROR: All the generated files in folder '+results_folder+' have not been generated with the same number of methods. Exit program.', 'error')
        sys.exit(1)
    # check if all the files in the result folder were generated with the same labels
    if not all(x == labels_id[0] for x in labels_id):
        sct.printv('ERROR: All the generated files in folder '+results_folder+' have not been generated with the same labels. Exit program.', 'error')
        sys.exit(1)

    # convert the list "error_per_label" into a numpy array to ease further manipulations
    error_per_label = numpy.array(error_per_label)
    std_per_label = numpy.array(std_per_label)
    # compute different stats
    abs_error_per_labels = numpy.absolute(error_per_label)
    max_abs_error_per_meth = numpy.amax(abs_error_per_labels, axis=1)
    min_abs_error_per_meth = numpy.amin(abs_error_per_labels, axis=1)
    mean_abs_error_per_meth = numpy.mean(abs_error_per_labels, axis=1)
    std_abs_error_per_meth = numpy.std(abs_error_per_labels, axis=1)

    nb_method = len(methods_to_display)

    sct.printv('Noise std of the '+str(nb_results_file)+' generated files:')
    print snr
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Tracts std of the '+str(nb_results_file)+' generated files:')
    print tracts_std
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Methods used to generate results for the '+str(nb_results_file)+' generated files:')
    print methods_name
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Median obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print median_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Minimum obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print min_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Maximum obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print max_results
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Labels\' ID (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print labels_id
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Mean errors (across bootstraps) obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print error_per_label
    print '----------------------------------------------------------------------------------------------------------------'
    sct.printv('Errors std (across bootstraps) obtained with each method (in colons) for the '+str(nb_results_file)+' generated files (in lines):')
    print std_per_label

    # ********************************** START PLOTTING HERE ***********************************************************

    # find index of the file generated with sigma noise = 10 and range tracts = -10:+10
    ind_file_noise10_tracts_std10 = numpy.where((snr == 10) & (tracts_std == 10))[0][0]

    matplotlib.rcParams.update({'font.size': 45, 'font.family': 'trebuchet'})
    plt.rcParams['xtick.major.pad'] = '9'
    plt.rcParams['ytick.major.pad'] = '15'

    fig0 = plt.figure(0, figsize=(34, 17))
    width = 0.5/(nb_method+1)
    ind_fig0 = numpy.arange(len(labels_id[0]))
    plt.ylabel('Absolute error (%)', fontsize=55)
    plt.xlabel('Labels', fontsize=55)
    plt.suptitle('Automatic estimation vs. manual estimation', fontsize=65)
    plt.title('(Noise std='+str(snr[0])+', Tracts std='+str(tracts_std[0])+', CSF value='+str(csf_values[0])+')\n', fontsize=65)


    # colors = plt.get_cmap('jet')(np.linspace(0, 1.0, nb_method))
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    plots = []

    marker_size = 30
    line_width = 3.0
    cap_size = 15
    eline_width = 7.0
    cap_thick = 5.0
    for meth, color in zip(methods_to_display, colors):
        i_meth = methods_name[0].index(meth)
        i_meth_to_display = methods_to_display.index(meth)

        plot = plt.errorbar(ind_fig0+i_meth_to_display*width+(float(i_meth_to_display)*width)/(nb_method+1), error_per_label[ind_file_noise10_tracts_std10, :, i_meth], std_per_label[ind_file_noise10_tracts_std10, :, i_meth], color=color, linestyle='None', marker='o', ms=marker_size, lw=line_width, capsize=cap_size, capthick=cap_thick, elinewidth=eline_width)
        plots.append(plot[0])

    # add alternated vertical background colored bars
    for i_xtick in range(0, len(ind_fig0), 2):
        plt.axvspan(ind_fig0[i_xtick] - 3*width, ind_fig0[i_xtick] + (nb_method + 1) * width + 2*width, facecolor='grey', alpha=0.1)

    # plt.legend(plots, methods_to_display, bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0., handler_map={Line2D: HandlerLine2D(numpoints=1)})
    plt.legend(plots, methods_to_display, loc='best', handler_map={Line2D: HandlerLine2D(numpoints=1)})
    # plt.xticks(ind_fig0 + (numpy.floor(nb_method/2))*width*(1.0+1.0/(nb_method+1)), labels_id[0], fontsize=45)
    plt.xticks(ind_fig0 + (numpy.floor(nb_method/2))*width*(1.0+1.0/(nb_method+1)), ['l-cst', 'r-cst', 'dc'], fontsize=45)
    plt.gca().set_xlim([-3*width, numpy.max(ind_fig0)+(nb_method+3)*width])
    # plt.gca().set_ylim([0, 2])
    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(2.5))
    plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.5))
    plt.grid(b=True, axis='y', which='both')
    # adjust the size of the frame
    # plt.subplots_adjust(bottom=0.15, top=0.86, right=0.7, left=0.2)


    plt.savefig(param_default.fname_folder_to_save_fig +'/automatic_method_vs_manual_methods.pdf', format='PDF')


    plt.show(block=False)