def load_manual_gmseg(list_slices_target, list_fname_manual_gmseg, tmp_dir, im_sc_seg_rpi, new_res, square_size_size_mm, for_model=False, fname_mask=None): if isinstance(list_fname_manual_gmseg, str): # consider fname_manual_gmseg as a list of file names to allow multiple manual GM segmentation list_fname_manual_gmseg = [list_fname_manual_gmseg] curdir = os.getcwd() for fname_manual_gmseg in list_fname_manual_gmseg: sct.copy(fname_manual_gmseg, tmp_dir) # change fname level to only file name (path = tmp dir now) path_gm, file_gm, ext_gm = extract_fname(fname_manual_gmseg) fname_manual_gmseg = file_gm + ext_gm os.chdir(tmp_dir) im_manual_gmseg = Image(fname_manual_gmseg).change_orientation("RPI") if fname_mask is not None: fname_gmseg_crop = add_suffix(im_manual_gmseg.absolutepath, '_pre_crop') crop_im = ImageCropper(input_file=im_manual_gmseg.absolutepath, output_file=fname_gmseg_crop, mask=fname_mask) im_manual_gmseg_crop = crop_im.crop() im_manual_gmseg = im_manual_gmseg_crop # assert gmseg has the right number of slices assert im_manual_gmseg.data.shape[2] == len( list_slices_target ), 'ERROR: the manual GM segmentation has not the same number of slices than the image.' # interpolate gm to reference image nz_gmseg, nx_gmseg, ny_gmseg, nt_gmseg, pz_gmseg, px_gmseg, py_gmseg, pt_gmseg = im_manual_gmseg.dim list_im_gm = interpolate_im_to_ref(im_manual_gmseg, im_sc_seg_rpi, new_res=new_res, sq_size_size_mm=square_size_size_mm, interpolation_mode=0) # load gm seg in list of slices n_poped = 0 for im_gm, slice_im in zip(list_im_gm, list_slices_target): if im_gm.data.max() == 0 and for_model: list_slices_target.pop(slice_im.id - n_poped) n_poped += 1 else: slice_im.gm_seg.append(im_gm.data) wm_slice = (slice_im.im > 0) - im_gm.data slice_im.wm_seg.append(wm_slice) os.chdir(curdir) return list_slices_target
def ifolder2tmp(self): # copy input image if self.fname_mask is not None: sct.copy(self.fname_mask, self.tmp_dir) self.fname_mask = ''.join(extract_fname(self.fname_mask)[1:]) else: printv('ERROR: No input image', self.verbose, 'error') # copy seg image if self.fname_sc is not None: sct.copy(self.fname_sc, self.tmp_dir) self.fname_sc = ''.join(extract_fname(self.fname_sc)[1:]) # copy ref image if self.fname_ref is not None: sct.copy(self.fname_ref, self.tmp_dir) self.fname_ref = ''.join(extract_fname(self.fname_ref)[1:]) # copy registered template if self.path_template is not None: sct.copy(self.path_levels, self.tmp_dir) self.path_levels = ''.join(extract_fname(self.path_levels)[1:]) self.atlas_roi_lst = [] for fname_atlas_roi in os.listdir(self.path_atlas): if fname_atlas_roi.endswith('.nii.gz'): tract_id = int( fname_atlas_roi.split('_')[-1].split('.nii.gz')[0]) if tract_id < 36: # Not interested in CSF sct.copy( os.path.join(self.path_atlas, fname_atlas_roi), self.tmp_dir) self.atlas_roi_lst.append(fname_atlas_roi) os.chdir(self.tmp_dir) # go to tmp directory
def warp_label(path_label, folder_label, file_label, fname_src, fname_transfo, path_out): """ Warp label files according to info_label.txt file :param path_label: :param folder_label: :param file_label: :param fname_src: :param fname_transfo: :param path_out: :return: """ # read label file and check if file exists sct.printv('\nRead label file...', param.verbose) try: template_label_ids, template_label_names, template_label_file, combined_labels_ids, combined_labels_names, combined_labels_id_groups, clusters_apriori = spinalcordtoolbox.metadata.read_label_file(os.path.join(path_label, folder_label), file_label) except Exception as error: sct.printv('\nWARNING: Cannot warp label ' + folder_label + ': ' + str(error), 1, 'warning') raise else: # create output folder if not os.path.exists(os.path.join(path_out, folder_label)): os.makedirs(os.path.join(path_out, folder_label)) # Warp label for i in range(0, len(template_label_file)): fname_label = os.path.join(path_label, folder_label, template_label_file[i]) # check if file exists # sct.check_file_exist(fname_label) # apply transfo sct.run('sct_apply_transfo -i ' + fname_label + ' -o ' + os.path.join(path_out, folder_label, template_label_file[i]) + ' -d ' + fname_src + ' -w ' + fname_transfo + ' -x ' + get_interp(template_label_file[i]), param.verbose) # Copy list.txt sct.copy(os.path.join(path_label, folder_label, param.file_info_label), os.path.join(path_out, folder_label))
def create_line(param, fname, coord, nz): """ Create vertical line in 3D volume :param param: :param fname: :param coord: :param nz: :return: """ # duplicate volume (assumes input file is nifti) sct.copy(fname, 'line.nii', verbose=param.verbose) # set all voxels to zero sct.run(['sct_maths', '-i', 'line.nii', '-mul', '0', '-o', 'line.nii'], param.verbose) cmd = ['sct_label_utils', '-i', 'line.nii', '-o', 'line.nii', '-create-add'] for iz in range(nz): if iz == nz - 1: cmd += [str(int(coord[0])) + ',' + str(int(coord[1])) + ',' + str(iz) + ',1'] else: cmd += [str(int(coord[0])) + ',' + str(int(coord[1])) + ',' + str(iz) + ',1:'] sct.run(cmd, param.verbose) return 'line.nii'
def create_line(param, fname, coord, nz): """ Create vertical line in 3D volume :param param: :param fname: :param coord: :param nz: :return: """ # duplicate volume (assumes input file is nifti) sct.copy(fname, 'line.nii', verbose=param.verbose) # set all voxels to zero sct.run(['sct_maths', '-i', 'line.nii', '-mul', '0', '-o', 'line.nii'], param.verbose) cmd = [ 'sct_label_utils', '-i', 'line.nii', '-o', 'line.nii', '-create-add' ] for iz in range(nz): if iz == nz - 1: cmd += [ str(int(coord[0])) + ',' + str(int(coord[1])) + ',' + str(iz) + ',1' ] else: cmd += [ str(int(coord[0])) + ',' + str(int(coord[1])) + ',' + str(iz) + ',1:' ] sct.run(cmd, param.verbose) return 'line.nii'
def apply_transfo(im_src, im_dest, warp, interp='spline', rm_tmp=True): # create tmp dir and go in it tmp_dir = sct.tmp_create() # copy warping field to tmp dir sct.copy(warp, tmp_dir) warp = ''.join(extract_fname(warp)[1:]) # go to tmp dir curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) # apply warping field fname_src_reg = add_suffix(fname_src, '_reg') sct_apply_transfo.main(args=['-i', fname_src, '-d', fname_dest, '-w', warp, '-x', interp]) im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg
def ifolder2tmp(self): # copy input image if self.fname_mask is not None: sct.copy(self.fname_mask, self.tmp_dir) self.fname_mask = ''.join(extract_fname(self.fname_mask)[1:]) else: printv('ERROR: No input image', self.verbose, 'error') # copy seg image if self.fname_sc is not None: sct.copy(self.fname_sc, self.tmp_dir) self.fname_sc = ''.join(extract_fname(self.fname_sc)[1:]) # copy ref image if self.fname_ref is not None: sct.copy(self.fname_ref, self.tmp_dir) self.fname_ref = ''.join(extract_fname(self.fname_ref)[1:]) # copy registered template if self.path_template is not None: sct.copy(self.path_levels, self.tmp_dir) self.path_levels = ''.join(extract_fname(self.path_levels)[1:]) self.atlas_roi_lst = [] for fname_atlas_roi in os.listdir(self.path_atlas): if fname_atlas_roi.endswith('.nii.gz'): tract_id = int(fname_atlas_roi.split('_')[-1].split('.nii.gz')[0]) if tract_id < 36: # Not interested in CSF sct.copy(os.path.join(self.path_atlas, fname_atlas_roi), self.tmp_dir) self.atlas_roi_lst.append(fname_atlas_roi) os.chdir(self.tmp_dir) # go to tmp directory
def create_line(param, fname, coord, nz): """ Create vertical line in 3D volume :param param: :param fname: :param coord: :param nz: :return: """ # duplicate volume (assumes input file is nifti) sct.copy(fname, 'line.nii', verbose=param.verbose) # set all voxels to zero run_proc(['sct_maths', '-i', 'line.nii', '-mul', '0', '-o', 'line.nii'], param.verbose) labels = [] if isinstance(coord[0], Coordinate): for x, y, _, _ in coord: labels.extend([Coordinate([x, y, iz, 1]) for iz in range(nz)]) else: # backwards compat labels.extend( [Coordinate([coord[0], coord[1], iz, 1]) for iz in range(nz)]) create_labels(Image("line.nii"), labels).save(path="line.nii") return 'line.nii'
def apply_transfo(im_src, im_dest, warp, interp='spline', rm_tmp=True): # create tmp dir and go in it tmp_dir = sct.tmp_create() # copy warping field to tmp dir sct.copy(warp, tmp_dir) warp = ''.join(extract_fname(warp)[1:]) # go to tmp dir curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) # apply warping field fname_src_reg = add_suffix(fname_src, '_reg') sct_apply_transfo.main( args=['-i', fname_src, '-d', fname_dest, '-w', warp, '-x', interp]) im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg
def register_data(im_src, im_dest, param_reg, path_copy_warp=None, rm_tmp=True): ''' Parameters ---------- im_src: class Image: source image im_dest: class Image: destination image param_reg: str: registration parameter path_copy_warp: path: path to copy the warping fields Returns: im_src_reg: class Image: source image registered on destination image ------- ''' # im_src and im_dest are already preprocessed (in theory: im_dest = mean_image) # binarize images to get seg im_src_seg = binarize(im_src, thr_min=1, thr_max=1) im_dest_seg = binarize(im_dest) # create tmp dir and go in it tmp_dir = sct.tmp_create() curdir = os.getcwd() os.chdir(tmp_dir) # save image and seg fname_src = 'src.nii.gz' im_src.save(fname_src) fname_src_seg = 'src_seg.nii.gz' im_src_seg.save(fname_src_seg) fname_dest = 'dest.nii.gz' im_dest.save(fname_dest) fname_dest_seg = 'dest_seg.nii.gz' im_dest_seg.save(fname_dest_seg) # do registration using param_reg sct_register_multimodal.main(args=['-i', fname_src, '-d', fname_dest, '-iseg', fname_src_seg, '-dseg', fname_dest_seg, '-param', param_reg]) # get registration result fname_src_reg = add_suffix(fname_src, '_reg') im_src_reg = Image(fname_src_reg) # get out of tmp dir os.chdir(curdir) # copy warping fields if path_copy_warp is not None and os.path.isdir(os.path.abspath(path_copy_warp)): path_copy_warp = os.path.abspath(path_copy_warp) file_src = extract_fname(fname_src)[1] file_dest = extract_fname(fname_dest)[1] fname_src2dest = 'warp_' + file_src + '2' + file_dest + '.nii.gz' fname_dest2src = 'warp_' + file_dest + '2' + file_src + '.nii.gz' sct.copy(os.path.join(tmp_dir, fname_src2dest), path_copy_warp) sct.copy(os.path.join(tmp_dir, fname_dest2src), path_copy_warp) if rm_tmp: # remove tmp dir sct.rmtree(tmp_dir) # return res image return im_src_reg, fname_src2dest, fname_dest2src
def tmp2ofolder(self): os.chdir(self.wrk_dir) # go back to working directory printv('\nSave results files...', self.verbose, 'normal') printv('\n... measures saved in the files:', self.verbose, 'normal') for file_ in [self.fname_label, self.excel_name, self.pickle_name]: printv('\n - ' + os.path.join(self.path_ofolder, file_), self.verbose, 'normal') sct.copy(os.path.join(self.tmp_dir, file_), os.path.join(self.path_ofolder, file_))
def tmp2ofolder(self): os.chdir(self.curdir) # go back to original directory sct.printv('\nSave resulting files...', self.param.verbose, 'normal') for f in self.fname_metric_lst: # Copy from tmp folder to ofolder sct.copy(os.path.join(self.tmp_dir, self.fname_metric_lst[f]), os.path.join(self.param.path_results, self.fname_metric_lst[f]))
def tmp2ofolder(self): os.chdir(self.curdir) # go back to original directory printv('\nSave resulting files...', self.param.verbose, 'normal') for f in self.fname_metric_lst: # Copy from tmp folder to ofolder sct.copy(os.path.join(self.tmp_dir, self.fname_metric_lst[f]), os.path.join(self.param.path_results, self.fname_metric_lst[f]))
def tmp2ofolder(self): """Copy output files to the ofolder.""" os.chdir(self.curdir) # go back to original directory if self.pa_coord != -1: # If PMJ has been detected sct.printv('\nSave resulting file...', self.verbose, 'normal') sct.copy(os.path.abspath(os.path.join(self.tmp_dir, self.fname_out)), os.path.abspath(os.path.join(self.path_out, self.fname_out))) return os.path.join(self.path_out, self.fname_out) else: return None
def tmp2ofolder(self): """Copy output files to the ofolder.""" os.chdir(self.curdir) # go back to original directory if self.pa_coord != -1: # If PMJ has been detected sct.printv('\nSave resulting file...', self.verbose, 'normal') sct.copy( os.path.abspath(os.path.join(self.tmp_dir, self.fname_out)), os.path.abspath(os.path.join(self.path_out, self.fname_out))) return os.path.join(self.path_out, self.fname_out) else: return None
def register_slicewise(fname_src, fname_dest, fname_mask='', warp_forward_out='step0Warp.nii.gz', warp_inverse_out='step0InverseWarp.nii.gz', paramreg=None, ants_registration_params=None, path_qc='./', remove_temp_files=0, verbose=0): # create temporary folder path_tmp = sct.tmp_create(basename="register", verbose=verbose) # copy data to temp folder sct.printv('\nCopy input data to temp folder...', verbose) convert(fname_src, os.path.join(path_tmp, "src.nii")) convert(fname_dest, os.path.join(path_tmp, "dest.nii")) if fname_mask != '': convert(fname_mask, os.path.join(path_tmp, "mask.nii.gz")) # go to temporary folder curdir = os.getcwd() os.chdir(path_tmp) # Calculate displacement if paramreg.algo == 'centermass': # translation of center of mass between source and destination in voxel space register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=0, poly=int(paramreg.poly), path_qc=path_qc, verbose=verbose) elif paramreg.algo == 'centermassrot': # translation of center of mass and rotation based on source and destination first eigenvectors from PCA. register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=1, poly=int(paramreg.poly), path_qc=path_qc, verbose=verbose, pca_eigenratio_th=float(paramreg.pca_eigenratio_th)) elif paramreg.algo == 'columnwise': # scaling R-L, then column-wise center of mass alignment and scaling register2d_columnwise('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, verbose=verbose, path_qc=path_qc, smoothWarpXY=int(paramreg.smoothWarpXY)) else: # convert SCT flags into ANTs-compatible flags algo_dic = {'translation': 'Translation', 'rigid': 'Rigid', 'affine': 'Affine', 'syn': 'SyN', 'bsplinesyn': 'BSplineSyN', 'centermass': 'centermass'} paramreg.algo = algo_dic[paramreg.algo] # run slicewise registration register2d('src.nii', 'dest.nii', fname_mask=fname_mask, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, paramreg=paramreg, ants_registration_params=ants_registration_params, verbose=verbose) sct.printv('\nMove warping fields...', verbose) sct.copy(warp_forward_out, curdir) sct.copy(warp_inverse_out, curdir) # go back os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp, verbose=verbose)
def centerline2roi(fname_image, folder_output='./', verbose=0): """ Tis method converts a binary centerline image to a .roi centerline file :param fname_image: filename of the binary centerline image, in RPI orientation :param folder_output: path to output folder where to copy .roi centerline :param verbose: adjusts the verbosity of the logging. :returns: filename of the .roi centerline that has been created """ # TODO: change folder_output to fname_out path_data, file_data, ext_data = sct.extract_fname(fname_image) fname_output = file_data + '.roi' date_now = datetime.datetime.now() ROI_TEMPLATE = 'Begin Marker ROI\n' \ ' Build version="7.0_33"\n' \ ' Annotation=""\n' \ ' Colour=0\n' \ ' Image source="{fname_segmentation}"\n' \ ' Created "{creation_date}" by Operator ID="SCT"\n' \ ' Slice={slice_num}\n' \ ' Begin Shape\n' \ ' X={position_x}; Y={position_y}\n' \ ' End Shape\n' \ 'End Marker ROI\n' im = Image(fname_image) nx, ny, nz, nt, px, py, pz, pt = im.dim coordinates_centerline = im.getNonZeroCoordinates(sorting='z') f = open(fname_output, "w") sct.printv('\nWriting ROI file...', verbose) for coord in coordinates_centerline: coord_phys_center = im.transfo_pix2phys([[(nx - 1) / 2.0, (ny - 1) / 2.0, coord.z]])[0] coord_phys = im.transfo_pix2phys([[coord.x, coord.y, coord.z]])[0] f.write( ROI_TEMPLATE.format( fname_segmentation=fname_image, creation_date=date_now.strftime("%d %B %Y %H:%M:%S.%f %Z"), slice_num=coord.z + 1, position_x=coord_phys_center[0] - coord_phys[0], position_y=coord_phys_center[1] - coord_phys[1])) f.close() if os.path.abspath(folder_output) != os.getcwd(): sct.copy(fname_output, folder_output) return fname_output
def ifolder2tmp(self): """Copy data to tmp folder.""" if self.fname_im is not None: # copy input image sct.copy(self.fname_im, self.tmp_dir) self.fname_im = ''.join(sct.extract_fname(self.fname_im)[1:]) else: sct.printv('ERROR: No input image', self.verbose, 'error') if self.fname_seg is not None: # copy segmentation image sct.copy(self.fname_seg, self.tmp_dir) self.fname_seg = ''.join(sct.extract_fname(self.fname_seg)[1:]) self.curdir = os.getcwd() os.chdir(self.tmp_dir) # go to tmp directory
def copy_data_to_tmp(self): # copy input image if self.param_seg.fname_im is not None: sct.copy(self.param_seg.fname_im, self.tmp_dir) self.param_seg.fname_im = ''.join( extract_fname(self.param_seg.fname_im)[1:]) else: printv('ERROR: No input image', self.param.verbose, 'error') # copy sc seg image if self.param_seg.fname_seg is not None: sct.copy(self.param_seg.fname_seg, self.tmp_dir) self.param_seg.fname_seg = ''.join( extract_fname(self.param_seg.fname_seg)[1:]) else: printv('ERROR: No SC segmentation image', self.param.verbose, 'error') # copy level file if self.param_seg.fname_level is not None: sct.copy(self.param_seg.fname_level, self.tmp_dir) self.param_seg.fname_level = ''.join( extract_fname(self.param_seg.fname_level)[1:]) if self.param_seg.fname_manual_gmseg is not None: sct.copy(self.param_seg.fname_manual_gmseg, self.tmp_dir) self.param_seg.fname_manual_gmseg = ''.join( extract_fname(self.param_seg.fname_manual_gmseg)[1:])
def centerline2roi(fname_image, folder_output='./', verbose=0): """ Tis method converts a binary centerline image to a .roi centerline file :param fname_image: filename of the binary centerline image, in RPI orientation :param folder_output: path to output folder where to copy .roi centerline :param verbose: adjusts the verbosity of the logging. :returns: filename of the .roi centerline that has been created """ # TODO: change folder_output to fname_out path_data, file_data, ext_data = sct.extract_fname(fname_image) fname_output = file_data + '.roi' date_now = datetime.datetime.now() ROI_TEMPLATE = 'Begin Marker ROI\n' \ ' Build version="7.0_33"\n' \ ' Annotation=""\n' \ ' Colour=0\n' \ ' Image source="{fname_segmentation}"\n' \ ' Created "{creation_date}" by Operator ID="SCT"\n' \ ' Slice={slice_num}\n' \ ' Begin Shape\n' \ ' X={position_x}; Y={position_y}\n' \ ' End Shape\n' \ 'End Marker ROI\n' im = Image(fname_image) nx, ny, nz, nt, px, py, pz, pt = im.dim coordinates_centerline = im.getNonZeroCoordinates(sorting='z') f = open(fname_output, "w") sct.printv('\nWriting ROI file...', verbose) for coord in coordinates_centerline: coord_phys_center = im.transfo_pix2phys([[(nx - 1) / 2.0, (ny - 1) / 2.0, coord.z]])[0] coord_phys = im.transfo_pix2phys([[coord.x, coord.y, coord.z]])[0] f.write(ROI_TEMPLATE.format(fname_segmentation=fname_image, creation_date=date_now.strftime("%d %B %Y %H:%M:%S.%f %Z"), slice_num=coord.z + 1, position_x=coord_phys_center[0] - coord_phys[0], position_y=coord_phys_center[1] - coord_phys[1])) f.close() if os.path.abspath(folder_output) != os.getcwd(): sct.copy(fname_output, folder_output) return fname_output
def ifolder2tmp(self): self.curdir = os.getcwd() # copy input image if self.param.fname_im is not None: sct.copy(self.param.fname_im, self.tmp_dir) self.param.fname_im = ''.join(sct.extract_fname(self.param.fname_im)[1:]) else: sct.printv('ERROR: No input image', self.param.verbose, 'error') # copy masked image if self.param.fname_seg is not None: sct.copy(self.param.fname_seg, self.tmp_dir) self.param.fname_seg = ''.join(sct.extract_fname(self.param.fname_seg)[1:]) else: sct.printv('ERROR: No mask image', self.param.verbose, 'error') os.chdir(self.tmp_dir) # go to tmp directory
def ifolder2tmp(self): self.curdir = os.getcwd() # copy input image if self.param.fname_im is not None: sct.copy(self.param.fname_im, self.tmp_dir) self.param.fname_im = ''.join(extract_fname(self.param.fname_im)[1:]) else: printv('ERROR: No input image', self.param.verbose, 'error') # copy masked image if self.param.fname_seg is not None: sct.copy(self.param.fname_seg, self.tmp_dir) self.param.fname_seg = ''.join(extract_fname(self.param.fname_seg)[1:]) else: printv('ERROR: No mask image', self.param.verbose, 'error') os.chdir(self.tmp_dir) # go to tmp directory
def load_manual_gmseg(list_slices_target, list_fname_manual_gmseg, tmp_dir, im_sc_seg_rpi, new_res, square_size_size_mm, for_model=False, fname_mask=None): if isinstance(list_fname_manual_gmseg, str): # consider fname_manual_gmseg as a list of file names to allow multiple manual GM segmentation list_fname_manual_gmseg = [list_fname_manual_gmseg] curdir = os.getcwd() for fname_manual_gmseg in list_fname_manual_gmseg: sct.copy(fname_manual_gmseg, tmp_dir) # change fname level to only file name (path = tmp dir now) path_gm, file_gm, ext_gm = extract_fname(fname_manual_gmseg) fname_manual_gmseg = file_gm + ext_gm os.chdir(tmp_dir) im_manual_gmseg = Image(fname_manual_gmseg).change_orientation("RPI") if fname_mask is not None: fname_gmseg_crop = add_suffix(im_manual_gmseg.absolutepath, '_pre_crop') crop_im = ImageCropper(input_file=im_manual_gmseg.absolutepath, output_file=fname_gmseg_crop, mask=fname_mask) im_manual_gmseg_crop = crop_im.crop() im_manual_gmseg = im_manual_gmseg_crop # assert gmseg has the right number of slices assert im_manual_gmseg.data.shape[2] == len(list_slices_target), 'ERROR: the manual GM segmentation has not the same number of slices than the image.' # interpolate gm to reference image nz_gmseg, nx_gmseg, ny_gmseg, nt_gmseg, pz_gmseg, px_gmseg, py_gmseg, pt_gmseg = im_manual_gmseg.dim list_im_gm = interpolate_im_to_ref(im_manual_gmseg, im_sc_seg_rpi, new_res=new_res, sq_size_size_mm=square_size_size_mm, interpolation_mode=0) # load gm seg in list of slices n_poped = 0 for im_gm, slice_im in zip(list_im_gm, list_slices_target): if im_gm.data.max() == 0 and for_model: list_slices_target.pop(slice_im.id - n_poped) n_poped += 1 else: slice_im.gm_seg.append(im_gm.data) wm_slice = (slice_im.im > 0) - im_gm.data slice_im.wm_seg.append(wm_slice) os.chdir(curdir) return list_slices_target
def _update_html_assets(self, json_data): """Update the html file and assets""" assets_path = os.path.join(os.path.dirname(__file__), 'assets') dest_path = self.qc_params.root_folder with io.open(os.path.join(assets_path, 'index.html')) as template_index: template = Template(template_index.read()) output = template.substitute(sct_json_data=json.dumps(json_data)) io.open(os.path.join(dest_path, 'index.html'), 'w').write(output) for path in ['css', 'js', 'imgs', 'fonts']: src_path = os.path.join(assets_path, '_assets', path) dest_full_path = os.path.join(dest_path, '_assets', path) if not os.path.exists(dest_full_path): os.makedirs(dest_full_path, exist_ok = True) for file_ in os.listdir(src_path): if not os.path.isfile(os.path.join(dest_full_path, file_)): sct.copy(os.path.join(src_path, file_), dest_full_path)
def _update_html_assets(self, json_data): """Update the html file and assets""" assets_path = os.path.join(os.path.dirname(__file__), 'assets') dest_path = self.qc_params.root_folder with io.open(os.path.join(assets_path, 'index.html')) as template_index: template = Template(template_index.read()) output = template.substitute(sct_json_data=json.dumps(json_data)) io.open(os.path.join(dest_path, 'index.html'), 'w').write(output) for path in ['css', 'js', 'imgs', 'fonts']: src_path = os.path.join(assets_path, '_assets', path) dest_full_path = os.path.join(dest_path, '_assets', path) if not os.path.exists(dest_full_path): os.makedirs(dest_full_path) for file_ in os.listdir(src_path): if not os.path.isfile(os.path.join(dest_full_path, file_)): sct.copy(os.path.join(src_path, file_), dest_full_path)
def warp_label(path_label, folder_label, file_label, fname_src, fname_transfo, path_out): """ Warp label files according to info_label.txt file :param path_label: :param folder_label: :param file_label: :param fname_src: :param fname_transfo: :param path_out: :return: """ try: # Read label file template_label_ids, template_label_names, template_label_file, combined_labels_ids, combined_labels_names, \ combined_labels_id_groups, clusters_apriori = \ spinalcordtoolbox.metadata.read_label_file(os.path.join(path_label, folder_label), file_label) except Exception as error: sct.printv( '\nWARNING: Cannot warp label ' + folder_label + ': ' + str(error), 1, 'warning') raise else: # create output folder if not os.path.exists(os.path.join(path_out, folder_label)): os.makedirs(os.path.join(path_out, folder_label)) # Warp label for i in range(0, len(template_label_file)): fname_label = os.path.join(path_label, folder_label, template_label_file[i]) # apply transfo sct.run( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (fname_label, fname_src, fname_transfo, os.path.join(path_out, folder_label, template_label_file[i]), get_interp(template_label_file[i])), is_sct_binary=True, verbose=param.verbose) # Copy list.txt sct.copy(os.path.join(path_label, folder_label, param.file_info_label), os.path.join(path_out, folder_label))
def warp_label(path_label, folder_label, file_label, fname_src, fname_transfo, path_out): """ Warp label files according to info_label.txt file :param path_label: :param folder_label: :param file_label: :param fname_src: :param fname_transfo: :param path_out: :return: """ try: # Read label file template_label_ids, template_label_names, template_label_file, combined_labels_ids, combined_labels_names, \ combined_labels_id_groups, clusters_apriori = \ spinalcordtoolbox.metadata.read_label_file(os.path.join(path_label, folder_label), file_label) except Exception as error: sct.printv('\nWARNING: Cannot warp label ' + folder_label + ': ' + str(error), 1, 'warning') raise else: # create output folder if not os.path.exists(os.path.join(path_out, folder_label)): os.makedirs(os.path.join(path_out, folder_label)) # Warp label for i in range(0, len(template_label_file)): fname_label = os.path.join(path_label, folder_label, template_label_file[i]) # apply transfo sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (fname_label, fname_src, fname_transfo, os.path.join(path_out, folder_label, template_label_file[i]), get_interp(template_label_file[i])), is_sct_binary=True, verbose=param.verbose) # Copy list.txt sct.copy(os.path.join(path_label, folder_label, param.file_info_label), os.path.join(path_out, folder_label))
def copy_data_to_tmp(self): # copy input image if self.param_seg.fname_im is not None: sct.copy(self.param_seg.fname_im, self.tmp_dir) self.param_seg.fname_im = ''.join(extract_fname(self.param_seg.fname_im)[1:]) else: printv('ERROR: No input image', self.param.verbose, 'error') # copy sc seg image if self.param_seg.fname_seg is not None: sct.copy(self.param_seg.fname_seg, self.tmp_dir) self.param_seg.fname_seg = ''.join(extract_fname(self.param_seg.fname_seg)[1:]) else: printv('ERROR: No SC segmentation image', self.param.verbose, 'error') # copy level file if self.param_seg.fname_level is not None: sct.copy(self.param_seg.fname_level, self.tmp_dir) self.param_seg.fname_level = ''.join(extract_fname(self.param_seg.fname_level)[1:]) if self.param_seg.fname_manual_gmseg is not None: sct.copy(self.param_seg.fname_manual_gmseg, self.tmp_dir) self.param_seg.fname_manual_gmseg = ''.join(extract_fname(self.param_seg.fname_manual_gmseg)[1:])
init_sct() parser = get_parser() arguments = parser.parse_args(args=None if sys.argv[1:] else ['--help']) fname_input1 = arguments.i fname_input2 = arguments.d verbose = arguments.v init_sct(log_level=verbose, update=True) # Update log level tmp_dir = sct.tmp_create(verbose=verbose) # create tmp directory tmp_dir = os.path.abspath(tmp_dir) # copy input files to tmp directory # for fname in [fname_input1, fname_input2]: sct.copy(fname_input1, tmp_dir) sct.copy(fname_input2, tmp_dir) fname_input1 = ''.join(sct.extract_fname(fname_input1)[1:]) fname_input2 = ''.join(sct.extract_fname(fname_input2)[1:]) curdir = os.getcwd() os.chdir(tmp_dir) # go to tmp directory if arguments.bin is not None: fname_input1_bin = sct.add_suffix(fname_input1, '_bin') run_proc([ 'sct_maths', '-i', fname_input1, '-bin', '0', '-o', fname_input1_bin ]) fname_input1 = fname_input1_bin fname_input2_bin = sct.add_suffix(fname_input2, '_bin')
def main(args=None): if not args: args = sys.argv[1:] # initialize parameters param = Param() # call main function parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_bvecs = arguments['-bvec'] average = arguments['-a'] verbose = int(arguments['-v']) remove_temp_files = int(arguments['-r']) path_out = arguments['-ofolder'] if '-bval' in arguments: fname_bvals = arguments['-bval'] else: fname_bvals = '' if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] # Initialization start_time = time.time() # sct.printv(arguments) sct.printv('\nInput parameters:', verbose) sct.printv(' input file ............' + fname_data, verbose) sct.printv(' bvecs file ............' + fname_bvecs, verbose) sct.printv(' bvals file ............' + fname_bvals, verbose) sct.printv(' average ...............' + str(average), verbose) # Get full path fname_data = os.path.abspath(fname_data) fname_bvecs = os.path.abspath(fname_bvecs) if fname_bvals: fname_bvals = os.path.abspath(fname_bvals) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(fname_data) # create temporary folder path_tmp = sct.tmp_create(basename="dmri_separate", verbose=verbose) # copy files into tmp folder and convert to nifti sct.printv('\nCopy files into temporary folder...', verbose) ext = '.nii' dmri_name = 'dmri' b0_name = file_data + '_b0' b0_mean_name = b0_name + '_mean' dwi_name = file_data + '_dwi' dwi_mean_name = dwi_name + '_mean' if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)): sct.printv('ERROR in convert.', 1, 'error') sct.copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get size of data im_dmri = Image(dmri_name + ext) sct.printv('\nGet dimensions data...', verbose) nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim sct.printv( '.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # Identify b=0 and DWI images sct.printv(fname_bvals) index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals, param.bval_min, verbose) # Split into T dimension sct.printv('\nSplit along T dimension...', verbose) im_dmri_split_list = split_data(im_dmri, 3) for im_d in im_dmri_split_list: im_d.save() # Merge b=0 images sct.printv('\nMerge b=0...', verbose) from sct_image import concat_data l = [] for it in range(nb_b0): l.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(b0_name + ext) # Average b=0 images if average: sct.printv('\nAverage b=0...', verbose) sct.run([ 'sct_maths', '-i', b0_name + ext, '-o', b0_mean_name + ext, '-mean', 't' ], verbose) # Merge DWI l = [] for it in range(nb_dwi): l.append(dmri_name + '_T' + str(index_dwi[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(dwi_name + ext) # Average DWI images if average: sct.printv('\nAverage DWI...', verbose) sct.run([ 'sct_maths', '-i', dwi_name + ext, '-o', dwi_mean_name + ext, '-mean', 't' ], verbose) # come back os.chdir(curdir) # Generate output files fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data)) fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data)) fname_b0_mean = os.path.abspath( os.path.join(path_out, b0_mean_name + ext_data)) fname_dwi_mean = os.path.abspath( os.path.join(path_out, dwi_mean_name + ext_data)) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, b0_name + ext), fname_b0, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_name + ext), fname_dwi, verbose) if average: sct.generate_output_file(os.path.join(path_tmp, b0_mean_name + ext), fname_b0_mean, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext), fname_dwi_mean, verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv( '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
resample_to = 0.1 if arguments.d is not None: input_second_fname = arguments.d if arguments.thinning is not None: param.thinning = bool(arguments.thinning) if arguments.resampling is not None: resample_to = arguments.resampling if arguments.o is not None: output_fname = arguments.o param.verbose = arguments.v sct.init_sct(log_level=param.verbose, update=True) # Update log level tmp_dir = sct.tmp_create() im1_name = "im1.nii.gz" sct.copy(input_fname, os.path.join(tmp_dir, im1_name)) if input_second_fname != '': im2_name = 'im2.nii.gz' sct.copy(input_second_fname, os.path.join(tmp_dir, im2_name)) else: im2_name = None curdir = os.getcwd() os.chdir(tmp_dir) # now = time.time() input_im1 = Image( resample_image(im1_name, binary=True, thr=0.5, npx=resample_to,
def fmri_moco(param): file_data = 'fmri' ext_data = '.nii' mat_final = 'mat_final/' ext_mat = 'Warp.nii.gz' # warping field # Get dimensions of data sct.printv('\nGet dimensions of data...', param.verbose) im_data = Image(file_data + '.nii') nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv(' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), param.verbose) # Get orientation sct.printv('\nData orientation: ' + im_data.orientation, param.verbose) if im_data.orientation[2] in 'LR': param.is_sagittal = True sct.printv(' Treated as sagittal') elif im_data.orientation[2] in 'IS': param.is_sagittal = False sct.printv(' Treated as axial') else: param.is_sagittal = False sct.printv('WARNING: Orientation seems to be neither axial nor sagittal.') # Adjust group size in case of sagittal scan if param.is_sagittal and param.group_size != 1: sct.printv('For sagittal data group_size should be one for more robustness. Forcing group_size=1.', 1, 'warning') param.group_size = 1 # Split into T dimension sct.printv('\nSplit along T dimension...', param.verbose) im_data = Image(file_data + ext_data) im_data_split_list = split_data(im_data, 3) for im in im_data_split_list: im.save() # assign an index to each volume index_fmri = list(range(0, nt)) # Number of groups nb_groups = int(math.floor(nt / param.group_size)) # Generate groups indexes group_indexes = [] for iGroup in range(nb_groups): group_indexes.append(index_fmri[(iGroup * param.group_size):((iGroup + 1) * param.group_size)]) # add the remaining images to the last fMRI group nb_remaining = nt%param.group_size # number of remaining images if nb_remaining > 0: nb_groups += 1 group_indexes.append(index_fmri[len(index_fmri) - nb_remaining:len(index_fmri)]) # groups for iGroup in tqdm(range(nb_groups), unit='iter', unit_scale=False, desc="Merge within groups", ascii=True, ncols=80): # get index index_fmri_i = group_indexes[iGroup] nt_i = len(index_fmri_i) # Merge Images file_data_merge_i = file_data + '_' + str(iGroup) # cmd = fsloutput + 'fslmerge -t ' + file_data_merge_i # for it in range(nt_i): # cmd = cmd + ' ' + file_data + '_T' + str(index_fmri_i[it]).zfill(4) im_fmri_list = [] for it in range(nt_i): im_fmri_list.append(im_data_split_list[index_fmri_i[it]]) im_fmri_concat = concat_data(im_fmri_list, 3, squeeze_data=True).save(file_data_merge_i + ext_data) file_data_mean = file_data + '_mean_' + str(iGroup) if param.group_size == 1: # copy to new file name instead of averaging (faster) # note: this is a bandage. Ideally we should skip this entire for loop if g=1 sct.copy(file_data_merge_i + '.nii', file_data_mean + '.nii') else: # Average Images sct.run(['sct_maths', '-i', file_data_merge_i + '.nii', '-o', file_data_mean + '.nii', '-mean', 't'], verbose=0) # if not average_data_across_dimension(file_data_merge_i+'.nii', file_data_mean+'.nii', 3): # sct.printv('ERROR in average_data_across_dimension', 1, 'error') # cmd = fsloutput + 'fslmaths ' + file_data_merge_i + ' -Tmean ' + file_data_mean # sct.run(cmd, param.verbose) # Merge groups means. The output 4D volume will be used for motion correction. sct.printv('\nMerging volumes...', param.verbose) file_data_groups_means_merge = 'fmri_averaged_groups' im_mean_list = [] for iGroup in range(nb_groups): im_mean_list.append(Image(file_data + '_mean_' + str(iGroup) + ext_data)) im_mean_concat = concat_data(im_mean_list, 3).save(file_data_groups_means_merge + ext_data) # Estimate moco sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion...', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco = param param_moco.file_data = 'fmri_averaged_groups' param_moco.file_target = file_data + '_mean_' + param.num_target param_moco.path_out = '' param_moco.todo = 'estimate_and_apply' param_moco.mat_moco = 'mat_groups' file_mat = moco.moco(param_moco) # TODO: if g=1, no need to run the block below (already applied) if param.group_size == 1: # if flag g=1, it means that all images have already been corrected, so we just need to rename the file sct.mv('fmri_averaged_groups_moco.nii', 'fmri_moco.nii') else: # create final mat folder sct.create_folder(mat_final) # Copy registration matrices sct.printv('\nCopy transformations...', param.verbose) for iGroup in range(nb_groups): for data in range(len(group_indexes[iGroup])): # we cannot use enumerate because group_indexes has 2 dim. # fetch all file_mat_z for given t-group list_file_mat_z = file_mat[:, iGroup] # loop across file_mat_z and copy to mat_final folder for file_mat_z in list_file_mat_z: # we want to copy 'mat_groups/mat.ZXXXXTYYYYWarp.nii.gz' --> 'mat_final/mat.ZXXXXTYYYZWarp.nii.gz' # Notice the Y->Z in the under the T index: the idea here is to use the single matrix from each group, # and apply it to all images belonging to the same group. sct.copy(file_mat_z + ext_mat, mat_final + file_mat_z[11:20] + 'T' + str(group_indexes[iGroup][data]).zfill(4) + ext_mat) # Apply moco on all fmri data sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Apply moco', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = 'fmri' param_moco.file_target = file_data + '_mean_' + str(0) param_moco.path_out = '' param_moco.mat_moco = mat_final param_moco.todo = 'apply' moco.moco(param_moco) # copy geometric information from header # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1". im_fmri = Image('fmri.nii') im_fmri_moco = Image('fmri_moco.nii') im_fmri_moco.header = im_fmri.header im_fmri_moco.save() # Average volumes sct.printv('\nAveraging data...', param.verbose) sct_maths.main(args=['-i', 'fmri_moco.nii', '-o', 'fmri_moco_mean.nii', '-mean', 't', '-v', '0'])
def apply(self): # Initialization fname_src = self.input_filename # source image (moving) fname_warp_list = self.warp_input # list of warping fields fname_out = self.output_filename # output fname_dest = self.fname_dest # destination image (fix) verbose = self.verbose remove_temp_files = self.remove_temp_files crop_reference = self.crop # if = 1, put 0 everywhere around warping field, if = 2, real crop interp = sct.get_interpolation('isct_antsApplyTransforms', self.interp) # Parse list of warping fields sct.printv('\nParse list of warping fields...', verbose) use_inverse = [] fname_warp_list_invert = [] # fname_warp_list = fname_warp_list.replace(' ', '') # remove spaces # fname_warp_list = fname_warp_list.split(",") # parse with comma for idx_warp, path_warp in enumerate(fname_warp_list): # Check if inverse matrix is specified with '-' at the beginning of file name if path_warp.startswith("-"): use_inverse.append('-i') fname_warp_list[idx_warp] = path_warp[1:] # remove '-' fname_warp_list_invert += [[use_inverse[idx_warp], fname_warp_list[idx_warp]]] else: use_inverse.append('') fname_warp_list_invert += [[path_warp]] path_warp = fname_warp_list[idx_warp] if path_warp.endswith((".nii", ".nii.gz")) \ and msct_image.Image(fname_warp_list[idx_warp]).header.get_intent()[0] != 'vector': raise ValueError("Displacement field in {} is invalid: should be encoded" \ " in a 5D file with vector intent code" \ " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h" \ .format(path_warp)) # need to check if last warping field is an affine transfo isLastAffine = False path_fname, file_fname, ext_fname = sct.extract_fname(fname_warp_list_invert[-1][-1]) if ext_fname in ['.txt', '.mat']: isLastAffine = True # check if destination file is 3d if not sct.check_if_3d(fname_dest): sct.printv('ERROR: Destination data must be 3d') # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order fname_warp_list_invert.reverse() fname_warp_list_invert = functools.reduce(lambda x,y: x+y, fname_warp_list_invert) # Extract path, file and extension path_src, file_src, ext_src = sct.extract_fname(fname_src) path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest) # Get output folder and file name if fname_out == '': path_out = '' # output in user's current directory file_out = file_src + '_reg' ext_out = ext_src fname_out = os.path.join(path_out, file_out + ext_out) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) img_src = msct_image.Image(fname_src) nx, ny, nz, nt, px, py, pz, pt = img_src.dim # nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_src) sct.printv(' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # if 3d if nt == 1: # Apply transformation sct.printv('\nApply transformation...', verbose) if nz in [0, 1]: dim = '2' else: dim = '3' sct.run(['isct_antsApplyTransforms', '-d', dim, '-i', fname_src, '-o', fname_out, '-t', ] + fname_warp_list_invert + [ '-r', fname_dest, ] + interp, verbose=verbose, is_sct_binary=True) # if 4d, loop across the T dimension else: path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose) # convert to nifti into temp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) img_src.save(os.path.join(path_tmp, "data.nii")) sct.copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest)) fname_warp_list_tmp = [] for fname_warp in fname_warp_list: path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) sct.copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp)) fname_warp_list_tmp.append(file_warp + ext_warp) fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1] curdir = os.getcwd() os.chdir(path_tmp) # split along T dimension sct.printv('\nSplit along T dimension...', verbose) im_dat = msct_image.Image('data.nii') im_header = im_dat.hdr data_split_list = sct_image.split_data(im_dat, 3) for im in data_split_list: im.save() # apply transfo sct.printv('\nApply transformation to each 3D volume...', verbose) for it in range(nt): file_data_split = 'data_T' + str(it).zfill(4) + '.nii' file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii' status, output = sct.run(['isct_antsApplyTransforms', '-d', '3', '-i', file_data_split, '-o', file_data_split_reg, '-t', ] + fname_warp_list_invert_tmp + [ '-r', file_dest + ext_dest, ] + interp, verbose, is_sct_binary=True) # Merge files back sct.printv('\nMerge file back...', verbose) import glob path_out, name_out, ext_out = sct.extract_fname(fname_out) # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')] # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715) fname_list = glob.glob('data_reg_T*.nii') fname_list.sort() im_out = sct_image.concat_data(fname_list, 3, im_header['pixdim']) im_out.save(name_out + ext_out) os.chdir(curdir) sct.generate_output_file(os.path.join(path_tmp, name_out + ext_out), fname_out) # Delete temporary folder if specified if int(remove_temp_files): sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # 2. crop the resulting image using dimensions from the warping field warping_field = fname_warp_list_invert[-1] # if last warping field is an affine transfo, we need to compute the space of the concatenate warping field: if isLastAffine: sct.printv('WARNING: the resulting image could have wrong apparent results. You should use an affine transformation as last transformation...', verbose, 'warning') elif crop_reference == 1: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field, background=0).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field+' -b 0') elif crop_reference == 2: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field) sct.display_viewer_syntax([fname_dest, fname_out], verbose=verbose)
def validation(self): tmp_dir_val = sct.tmp_create(basename="segment_graymatter_validation") # copy data into tmp dir val sct.copy(self.param_seg.fname_manual_gmseg, tmp_dir_val) sct.copy(self.param_seg.fname_seg, tmp_dir_val) curdir = os.getcwd() os.chdir(tmp_dir_val) fname_manual_gmseg = os.path.basename( self.param_seg.fname_manual_gmseg) fname_seg = os.path.basename(self.param_seg.fname_seg) im_gmseg = self.im_res_gmseg.copy() im_wmseg = self.im_res_wmseg.copy() if self.param_seg.type_seg == 'prob': im_gmseg = binarize(im_gmseg, thr_max=0.5, thr_min=0.5) im_wmseg = binarize(im_wmseg, thr_max=0.5, thr_min=0.5) fname_gmseg = 'res_gmseg.nii.gz' im_gmseg.save(fname_gmseg) fname_wmseg = 'res_wmseg.nii.gz' im_wmseg.save(fname_wmseg) # get manual WM seg: fname_manual_wmseg = 'manual_wmseg.nii.gz' sct_maths.main(args=[ '-i', fname_seg, '-sub', fname_manual_gmseg, '-o', fname_manual_wmseg ]) # compute DC: try: status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' + fname_wmseg + ' -2d-slices 2') except Exception: # put ref and res in the same space if needed fname_manual_gmseg_corrected = add_suffix(fname_manual_gmseg, '_reg') sct_register_multimodal.main(args=[ '-i', fname_manual_gmseg, '-d', fname_gmseg, '-identity', '1' ]) sct_maths.main(args=[ '-i', fname_manual_gmseg_corrected, '-bin', '0.1', '-o', fname_manual_gmseg_corrected ]) # fname_manual_wmseg_corrected = add_suffix(fname_manual_wmseg, '_reg') sct_register_multimodal.main(args=[ '-i', fname_manual_wmseg, '-d', fname_wmseg, '-identity', '1' ]) sct_maths.main(args=[ '-i', fname_manual_wmseg_corrected, '-bin', '0.1', '-o', fname_manual_wmseg_corrected ]) # recompute DC status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg_corrected + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg_corrected + ' -d ' + fname_wmseg + ' -2d-slices 2') # save results to a text file fname_dc = 'dice_coefficient_' + extract_fname( self.param_seg.fname_im)[1] + '.txt' file_dc = open(fname_dc, 'w') if self.param_seg.type_seg == 'prob': file_dc.write( 'WARNING : the probabilistic segmentations were binarized with a threshold at 0.5 to compute the dice coefficient \n' ) file_dc.write( '\n--------------------------------------------------------------\nDice coefficient on the Gray Matter segmentation:\n' ) file_dc.write(output_gm) file_dc.write( '\n\n--------------------------------------------------------------\nDice coefficient on the White Matter segmentation:\n' ) file_dc.write(output_wm) file_dc.close() # compute HD and MD: fname_hd = 'hausdorff_dist_' + extract_fname( self.param_seg.fname_im)[1] + '.txt' run('sct_compute_hausdorff_distance -i ' + fname_gmseg + ' -d ' + fname_manual_gmseg + ' -thinning 1 -o ' + fname_hd + ' -v ' + str(self.param.verbose)) # get out of tmp dir to copy results to output folder os.chdir(curdir) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_dc), self.param_seg.path_results) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_hd), self.param_seg.path_results) if self.param.rm_tmp: sct.rmtree(tmp_dir_val)
def straighten(self): """ Straighten spinal cord. Steps: (everything is done in physical space) 1. open input image and centreline image 2. extract bspline fitting of the centreline, and its derivatives 3. compute length of centerline 4. compute and generate straight space 5. compute transformations for each voxel of one space: (done using matrices --> improves speed by a factor x300) a. determine which plane of spinal cord centreline it is included b. compute the position of the voxel in the plane (X and Y distance from centreline, along the plane) c. find the correspondant centreline point in the other space d. find the correspondance of the voxel in the corresponding plane 6. generate warping fields for each transformations 7. write warping fields and apply them step 5.b: how to find the corresponding plane? The centerline plane corresponding to a voxel correspond to the nearest point of the centerline. However, we need to compute the distance between the voxel position and the plane to be sure it is part of the plane and not too distant. If it is more far than a threshold, warping value should be 0. step 5.d: how to make the correspondance between centerline point in both images? Both centerline have the same lenght. Therefore, we can map centerline point via their position along the curve. If we use the same number of points uniformely along the spinal cord (1000 for example), the correspondance is straight-forward. :return: """ # Initialization fname_anat = self.input_filename fname_centerline = self.centerline_filename fname_output = self.output_filename remove_temp_files = self.remove_temp_files verbose = self.verbose interpolation_warp = self.interpolation_warp algo_fitting = self.algo_fitting # start timer start_time = time.time() # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_tmp = sct.tmp_create(basename="straighten_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopy files to tmp folder...', verbose) Image(fname_anat).save(os.path.join(path_tmp, "data.nii")) Image(fname_centerline).save(os.path.join(path_tmp, "centerline.nii.gz")) if self.use_straight_reference: Image(self.centerline_reference_filename).save(os.path.join(path_tmp, "centerline_ref.nii.gz")) if self.discs_input_filename != '': Image(self.discs_input_filename).save(os.path.join(path_tmp, "labels_input.nii.gz")) if self.discs_ref_filename != '': Image(self.discs_ref_filename).save(os.path.join(path_tmp, "labels_ref.nii.gz")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Change orientation of the input centerline into RPI image_centerline = Image("centerline.nii.gz").change_orientation("RPI").save("centerline_rpi.nii.gz", mutable=True) # Get dimension nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim if self.speed_factor != 1.0: intermediate_resampling = True px_r, py_r, pz_r = px * self.speed_factor, py * self.speed_factor, pz * self.speed_factor else: intermediate_resampling = False if intermediate_resampling: sct.mv('centerline_rpi.nii.gz', 'centerline_rpi_native.nii.gz') pz_native = pz # TODO: remove system call sct.run(['sct_resample', '-i', 'centerline_rpi_native.nii.gz', '-mm', str(px_r) + 'x' + str(py_r) + 'x' + str(pz_r), '-o', 'centerline_rpi.nii.gz']) image_centerline = Image('centerline_rpi.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim if np.min(image_centerline.data) < 0 or np.max(image_centerline.data) > 1: image_centerline.data[image_centerline.data < 0] = 0 image_centerline.data[image_centerline.data > 1] = 1 image_centerline.save() # 2. extract bspline fitting of the centerline, and its derivatives img_ctl = Image('centerline_rpi.nii.gz') centerline = _get_centerline(img_ctl, algo_fitting, self.degree, verbose) number_of_points = centerline.number_of_points # ========================================================================================== logger.info('Create the straight space and the safe zone') # 3. compute length of centerline # compute the length of the spinal cord based on fitted centerline and size of centerline in z direction # Computation of the safe zone. # The safe zone is defined as the length of the spinal cord for which an axial segmentation will be complete # The safe length (to remove) is computed using the safe radius (given as parameter) and the angle of the # last centerline point with the inferior-superior direction. Formula: Ls = Rs * sin(angle) # Calculate Ls for both edges and remove appropriate number of centerline points radius_safe = 0.0 # mm # inferior edge u = centerline.derivatives[0] v = np.array([0, 0, -1]) angle_inferior = np.arctan2(np.linalg.norm(np.cross(u, v)), np.dot(u, v)) length_safe_inferior = radius_safe * np.sin(angle_inferior) # superior edge u = centerline.derivatives[-1] v = np.array([0, 0, 1]) angle_superior = np.arctan2(np.linalg.norm(np.cross(u, v)), np.dot(u, v)) length_safe_superior = radius_safe * np.sin(angle_superior) # remove points inferior_bound = bisect.bisect(centerline.progressive_length, length_safe_inferior) - 1 superior_bound = centerline.number_of_points - bisect.bisect(centerline.progressive_length_inverse, length_safe_superior) z_centerline = centerline.points[:, 2] length_centerline = centerline.length size_z_centerline = z_centerline[-1] - z_centerline[0] # compute the size factor between initial centerline and straight bended centerline factor_curved_straight = length_centerline / size_z_centerline middle_slice = (z_centerline[0] + z_centerline[-1]) / 2.0 bound_curved = [z_centerline[inferior_bound], z_centerline[superior_bound]] bound_straight = [(z_centerline[inferior_bound] - middle_slice) * factor_curved_straight + middle_slice, (z_centerline[superior_bound] - middle_slice) * factor_curved_straight + middle_slice] logger.info('Length of spinal cord: {}'.format(length_centerline)) logger.info('Size of spinal cord in z direction: {}'.format(size_z_centerline)) logger.info('Ratio length/size: {}'.format(factor_curved_straight)) logger.info('Safe zone boundaries (curved space): {}'.format(bound_curved)) logger.info('Safe zone boundaries (straight space): {}'.format(bound_straight)) # 4. compute and generate straight space # points along curved centerline are already regularly spaced. # calculate position of points along straight centerline # Create straight NIFTI volumes. # ========================================================================================== # TODO: maybe this if case is not needed? if self.use_straight_reference: image_centerline_pad = Image('centerline_rpi.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim fname_ref = 'centerline_ref_rpi.nii.gz' image_centerline_straight = Image('centerline_ref.nii.gz') \ .change_orientation("RPI") \ .save(fname_ref, mutable=True) centerline_straight = _get_centerline(image_centerline_straight, algo_fitting, self.degree, verbose) nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim # Prepare warping fields headers hdr_warp = image_centerline_pad.hdr.copy() hdr_warp.set_data_dtype('float32') hdr_warp_s = image_centerline_straight.hdr.copy() hdr_warp_s.set_data_dtype('float32') if self.discs_input_filename != "" and self.discs_ref_filename != "": discs_input_image = Image('labels_input.nii.gz') coord = discs_input_image.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = discs_input_image.transfo_pix2phys([[c.x, c.y, c.z]]).tolist()[0] c_p.append(c.value) coord_physical.append(c_p) centerline.compute_vertebral_distribution(coord_physical) centerline.save_centerline(image=discs_input_image, fname_output='discs_input_image.nii.gz') discs_ref_image = Image('labels_ref.nii.gz') coord = discs_ref_image.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = discs_ref_image.transfo_pix2phys([[c.x, c.y, c.z]]).tolist()[0] c_p.append(c.value) coord_physical.append(c_p) centerline_straight.compute_vertebral_distribution(coord_physical) centerline_straight.save_centerline(image=discs_ref_image, fname_output='discs_ref_image.nii.gz') else: logger.info('Pad input volume to account for spinal cord length...') start_point, end_point = bound_straight[0], bound_straight[1] offset_z = 0 # if the destination image is resampled, we still create the straight reference space with the native # resolution. # TODO: Maybe this if case is not needed? if intermediate_resampling: padding_z = int(np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) / pz_native)) sct.run( ['sct_image', '-i', 'centerline_rpi_native.nii.gz', '-o', 'tmp.centerline_pad_native.nii.gz', '-pad', '0,0,' + str(padding_z)]) image_centerline_pad = Image('centerline_rpi_native.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim start_point_coord_native = image_centerline_pad.transfo_phys2pix([[0, 0, start_point]])[0] end_point_coord_native = image_centerline_pad.transfo_phys2pix([[0, 0, end_point]])[0] straight_size_x = int(self.xy_size / px) straight_size_y = int(self.xy_size / py) warp_space_x = [int(np.round(nx / 2)) - straight_size_x, int(np.round(nx / 2)) + straight_size_x] warp_space_y = [int(np.round(ny / 2)) - straight_size_y, int(np.round(ny / 2)) + straight_size_y] if warp_space_x[0] < 0: warp_space_x[1] += warp_space_x[0] - 2 warp_space_x[0] = 0 if warp_space_y[0] < 0: warp_space_y[1] += warp_space_y[0] - 2 warp_space_y[0] = 0 spec = dict(( (0, warp_space_x), (1, warp_space_y), (2, (0, end_point_coord_native[2] - start_point_coord_native[2])), )) msct_image.spatial_crop(Image("tmp.centerline_pad_native.nii.gz"), spec).save( "tmp.centerline_pad_crop_native.nii.gz") fname_ref = 'tmp.centerline_pad_crop_native.nii.gz' offset_z = 4 else: fname_ref = 'tmp.centerline_pad_crop.nii.gz' nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim padding_z = int(np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) / pz)) + offset_z image_centerline_pad = pad_image(image_centerline, pad_z_i=padding_z, pad_z_f=padding_z) nx, ny, nz = image_centerline_pad.data.shape hdr_warp = image_centerline_pad.hdr.copy() hdr_warp.set_data_dtype('float32') start_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, start_point]])[0] end_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, end_point]])[0] straight_size_x = int(self.xy_size / px) straight_size_y = int(self.xy_size / py) warp_space_x = [int(np.round(nx / 2)) - straight_size_x, int(np.round(nx / 2)) + straight_size_x] warp_space_y = [int(np.round(ny / 2)) - straight_size_y, int(np.round(ny / 2)) + straight_size_y] if warp_space_x[0] < 0: warp_space_x[1] += warp_space_x[0] - 2 warp_space_x[0] = 0 if warp_space_x[1] >= nx: warp_space_x[1] = nx - 1 if warp_space_y[0] < 0: warp_space_y[1] += warp_space_y[0] - 2 warp_space_y[0] = 0 if warp_space_y[1] >= ny: warp_space_y[1] = ny - 1 spec = dict(( (0, warp_space_x), (1, warp_space_y), (2, (0, end_point_coord[2] - start_point_coord[2] + offset_z)), )) image_centerline_straight = msct_image.spatial_crop(image_centerline_pad, spec) nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim hdr_warp_s = image_centerline_straight.hdr.copy() hdr_warp_s.set_data_dtype('float32') if self.template_orientation == 1: raise NotImplementedError() start_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, start_point]])[0] end_point_coord = image_centerline_pad.transfo_phys2pix([[0, 0, end_point]])[0] number_of_voxel = nx * ny * nz logger.debug('Number of voxels: {}'.format(number_of_voxel)) time_centerlines = time.time() coord_straight = np.empty((number_of_points, 3)) coord_straight[..., 0] = int(np.round(nx_s / 2)) coord_straight[..., 1] = int(np.round(ny_s / 2)) coord_straight[..., 2] = np.linspace(0, end_point_coord[2] - start_point_coord[2], number_of_points) coord_phys_straight = image_centerline_straight.transfo_pix2phys(coord_straight) derivs_straight = np.empty((number_of_points, 3)) derivs_straight[..., 0] = derivs_straight[..., 1] = 0 derivs_straight[..., 2] = 1 dx_straight, dy_straight, dz_straight = derivs_straight.T centerline_straight = Centerline(coord_phys_straight[:, 0], coord_phys_straight[:, 1], coord_phys_straight[:, 2], dx_straight, dy_straight, dz_straight) time_centerlines = time.time() - time_centerlines logger.info('Time to generate centerline: {} ms'.format(np.round(time_centerlines * 1000.0))) if verbose == 2: # TODO: use OO import matplotlib.pyplot as plt from datetime import datetime curved_points = centerline.progressive_length straight_points = centerline_straight.progressive_length range_points = np.linspace(0, 1, number_of_points) dist_curved = np.zeros(number_of_points) dist_straight = np.zeros(number_of_points) for i in range(1, number_of_points): dist_curved[i] = dist_curved[i - 1] + curved_points[i - 1] / centerline.length dist_straight[i] = dist_straight[i - 1] + straight_points[i - 1] / centerline_straight.length plt.plot(range_points, dist_curved) plt.plot(range_points, dist_straight) plt.grid(True) plt.savefig('fig_straighten_' + datetime.now().strftime("%y%m%d%H%M%S%f") + '.png') plt.close() # alignment_mode = 'length' alignment_mode = 'levels' lookup_curved2straight = list(range(centerline.number_of_points)) if self.discs_input_filename != "": # create look-up table curved to straight for index in range(centerline.number_of_points): disc_label = centerline.l_points[index] if alignment_mode == 'length': relative_position = centerline.dist_points[index] else: relative_position = centerline.dist_points_rel[index] idx_closest = centerline_straight.get_closest_to_absolute_position(disc_label, relative_position, backup_index=index, backup_centerline=centerline_straight, mode=alignment_mode) if idx_closest is not None: lookup_curved2straight[index] = idx_closest else: lookup_curved2straight[index] = 0 for p in range(0, len(lookup_curved2straight) // 2): if lookup_curved2straight[p] == lookup_curved2straight[p + 1]: lookup_curved2straight[p] = 0 else: break for p in range(len(lookup_curved2straight) - 1, len(lookup_curved2straight) // 2, -1): if lookup_curved2straight[p] == lookup_curved2straight[p - 1]: lookup_curved2straight[p] = 0 else: break lookup_curved2straight = np.array(lookup_curved2straight) lookup_straight2curved = list(range(centerline_straight.number_of_points)) if self.discs_input_filename != "": for index in range(centerline_straight.number_of_points): disc_label = centerline_straight.l_points[index] if alignment_mode == 'length': relative_position = centerline_straight.dist_points[index] else: relative_position = centerline_straight.dist_points_rel[index] idx_closest = centerline.get_closest_to_absolute_position(disc_label, relative_position, backup_index=index, backup_centerline=centerline_straight, mode=alignment_mode) if idx_closest is not None: lookup_straight2curved[index] = idx_closest for p in range(0, len(lookup_straight2curved) // 2): if lookup_straight2curved[p] == lookup_straight2curved[p + 1]: lookup_straight2curved[p] = 0 else: break for p in range(len(lookup_straight2curved) - 1, len(lookup_straight2curved) // 2, -1): if lookup_straight2curved[p] == lookup_straight2curved[p - 1]: lookup_straight2curved[p] = 0 else: break lookup_straight2curved = np.array(lookup_straight2curved) # Create volumes containing curved and straight warping fields data_warp_curved2straight = np.zeros((nx_s, ny_s, nz_s, 1, 3)) data_warp_straight2curved = np.zeros((nx, ny, nz, 1, 3)) # 5. compute transformations # Curved and straight images and the same dimensions, so we compute both warping fields at the same time. # b. determine which plane of spinal cord centreline it is included # sct.printv(nx * ny * nz, nx_s * ny_s * nz_s) if self.curved2straight: for u in tqdm(range(nz_s)): x_s, y_s, z_s = np.mgrid[0:nx_s, 0:ny_s, u:u + 1] indexes_straight = np.array(list(zip(x_s.ravel(), y_s.ravel(), z_s.ravel()))) physical_coordinates_straight = image_centerline_straight.transfo_pix2phys(indexes_straight) nearest_indexes_straight = centerline_straight.find_nearest_indexes(physical_coordinates_straight) distances_straight = centerline_straight.get_distances_from_planes(physical_coordinates_straight, nearest_indexes_straight) lookup = lookup_straight2curved[nearest_indexes_straight] indexes_out_distance_straight = np.logical_or( np.logical_or(distances_straight > self.threshold_distance, distances_straight < -self.threshold_distance), lookup == 0) projected_points_straight = centerline_straight.get_projected_coordinates_on_planes( physical_coordinates_straight, nearest_indexes_straight) coord_in_planes_straight = centerline_straight.get_in_plans_coordinates(projected_points_straight, nearest_indexes_straight) coord_straight2curved = centerline.get_inverse_plans_coordinates(coord_in_planes_straight, lookup) displacements_straight = coord_straight2curved - physical_coordinates_straight # Invert Z coordinate as ITK & ANTs physical coordinate system is LPS- (RAI+) # while ours is LPI- # Refs: https://sourceforge.net/p/advants/discussion/840261/thread/2a1e9307/#fb5a # https://www.slicer.org/wiki/Coordinate_systems displacements_straight[:, 2] = -displacements_straight[:, 2] displacements_straight[indexes_out_distance_straight] = [100000.0, 100000.0, 100000.0] data_warp_curved2straight[indexes_straight[:, 0], indexes_straight[:, 1], indexes_straight[:, 2], 0, :]\ = -displacements_straight if self.straight2curved: for u in tqdm(range(nz)): x, y, z = np.mgrid[0:nx, 0:ny, u:u + 1] indexes = np.array(list(zip(x.ravel(), y.ravel(), z.ravel()))) physical_coordinates = image_centerline_pad.transfo_pix2phys(indexes) nearest_indexes_curved = centerline.find_nearest_indexes(physical_coordinates) distances_curved = centerline.get_distances_from_planes(physical_coordinates, nearest_indexes_curved) lookup = lookup_curved2straight[nearest_indexes_curved] indexes_out_distance_curved = np.logical_or( np.logical_or(distances_curved > self.threshold_distance, distances_curved < -self.threshold_distance), lookup == 0) projected_points_curved = centerline.get_projected_coordinates_on_planes(physical_coordinates, nearest_indexes_curved) coord_in_planes_curved = centerline.get_in_plans_coordinates(projected_points_curved, nearest_indexes_curved) coord_curved2straight = centerline_straight.points[lookup] coord_curved2straight[:, 0:2] += coord_in_planes_curved[:, 0:2] coord_curved2straight[:, 2] += distances_curved displacements_curved = coord_curved2straight - physical_coordinates displacements_curved[:, 2] = -displacements_curved[:, 2] displacements_curved[indexes_out_distance_curved] = [100000.0, 100000.0, 100000.0] data_warp_straight2curved[indexes[:, 0], indexes[:, 1], indexes[:, 2], 0, :] = -displacements_curved # Creation of the safe zone based on pre-calculated safe boundaries coord_bound_curved_inf, coord_bound_curved_sup = image_centerline_pad.transfo_phys2pix( [[0, 0, bound_curved[0]]]), image_centerline_pad.transfo_phys2pix([[0, 0, bound_curved[1]]]) coord_bound_straight_inf, coord_bound_straight_sup = image_centerline_straight.transfo_phys2pix( [[0, 0, bound_straight[0]]]), image_centerline_straight.transfo_phys2pix([[0, 0, bound_straight[1]]]) if radius_safe > 0: data_warp_curved2straight[:, :, 0:coord_bound_straight_inf[0][2], 0, :] = 100000.0 data_warp_curved2straight[:, :, coord_bound_straight_sup[0][2]:, 0, :] = 100000.0 data_warp_straight2curved[:, :, 0:coord_bound_curved_inf[0][2], 0, :] = 100000.0 data_warp_straight2curved[:, :, coord_bound_curved_sup[0][2]:, 0, :] = 100000.0 # Generate warp files as a warping fields hdr_warp_s.set_intent('vector', (), '') hdr_warp_s.set_data_dtype('float32') hdr_warp.set_intent('vector', (), '') hdr_warp.set_data_dtype('float32') if self.curved2straight: img = Nifti1Image(data_warp_curved2straight, None, hdr_warp_s) save(img, 'tmp.curve2straight.nii.gz') logger.info('Warping field generated: tmp.curve2straight.nii.gz') if self.straight2curved: img = Nifti1Image(data_warp_straight2curved, None, hdr_warp) save(img, 'tmp.straight2curve.nii.gz') logger.info('Warping field generated: tmp.straight2curve.nii.gz') image_centerline_straight.save(fname_ref) if self.curved2straight: logger.info('Apply transformation to input image...') sct.run(['isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i', 'data.nii', '-o', 'tmp.anat_rigid_warp.nii.gz', '-t', 'tmp.curve2straight.nii.gz', '-n', 'BSpline[3]'], is_sct_binary=True, verbose=verbose) if self.accuracy_results: time_accuracy_results = time.time() # compute the error between the straightened centerline/segmentation and the central vertical line. # Ideally, the error should be zero. # Apply deformation to input image logger.info('Apply transformation to centerline image...') sct.run(['isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i', 'centerline.nii.gz', '-o', 'tmp.centerline_straight.nii.gz', '-t', 'tmp.curve2straight.nii.gz', '-n', 'NearestNeighbor'], is_sct_binary=True, verbose=verbose) file_centerline_straight = Image('tmp.centerline_straight.nii.gz', verbose=verbose) nx, ny, nz, nt, px, py, pz, pt = file_centerline_straight.dim coordinates_centerline = file_centerline_straight.getNonZeroCoordinates(sorting='z') mean_coord = [] for z in range(coordinates_centerline[0].z, coordinates_centerline[-1].z): temp_mean = [coord.value for coord in coordinates_centerline if coord.z == z] if temp_mean: mean_value = np.mean(temp_mean) mean_coord.append( np.mean([[coord.x * coord.value / mean_value, coord.y * coord.value / mean_value] for coord in coordinates_centerline if coord.z == z], axis=0)) # compute error between the straightened centerline and the straight line. x0 = file_centerline_straight.data.shape[0] / 2.0 y0 = file_centerline_straight.data.shape[1] / 2.0 count_mean = 0 if number_of_points >= 10: mean_c = mean_coord[2:-2] # we don't include the four extrema because there are usually messy. else: mean_c = mean_coord for coord_z in mean_c: if not np.isnan(np.sum(coord_z)): dist = ((x0 - coord_z[0]) * px) ** 2 + ((y0 - coord_z[1]) * py) ** 2 self.mse_straightening += dist dist = np.sqrt(dist) if dist > self.max_distance_straightening: self.max_distance_straightening = dist count_mean += 1 self.mse_straightening = np.sqrt(self.mse_straightening / float(count_mean)) self.elapsed_time_accuracy = time.time() - time_accuracy_results os.chdir(curdir) # Generate output file (in current folder) # TODO: do not uncompress the warping field, it is too time consuming! logger.info('Generate output files...') if self.curved2straight: sct.generate_output_file(os.path.join(path_tmp, "tmp.curve2straight.nii.gz"), os.path.join(self.path_output, "warp_curve2straight.nii.gz"), verbose) if self.straight2curved: sct.generate_output_file(os.path.join(path_tmp, "tmp.straight2curve.nii.gz"), os.path.join(self.path_output, "warp_straight2curve.nii.gz"), verbose) # create ref_straight.nii.gz file that can be used by other SCT functions that need a straight reference space if self.curved2straight: sct.copy(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, "straight_ref.nii.gz")) # move straightened input file if fname_output == '': fname_straight = sct.generate_output_file(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, file_anat + "_straight" + ext_anat), verbose) else: fname_straight = sct.generate_output_file(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, fname_output), verbose) # straightened anatomic # Remove temporary files if remove_temp_files: logger.info('Remove temporary files...') sct.rmtree(path_tmp) if self.accuracy_results: logger.info('Maximum x-y error: {} mm'.format(self.max_distance_straightening)) logger.info('Accuracy of straightening (MSE): {} mm'.format(self.mse_straightening)) # display elapsed time self.elapsed_time = int(np.round(time.time() - start_time)) return fname_straight
def main(args=None): # initializations param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_seg = arguments['-s'] if '-l' in arguments: fname_landmarks = arguments['-l'] label_type = 'body' elif '-ldisc' in arguments: fname_landmarks = arguments['-ldisc'] label_type = 'disc' else: sct.printv('ERROR: Labels should be provided.', 1, 'error') if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = '' param.path_qc = arguments.get("-qc", None) path_template = arguments['-t'] contrast_template = arguments['-c'] ref = arguments['-ref'] param.remove_temp_files = int(arguments.get('-r')) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level param.verbose = verbose # TODO: not clean, unify verbose or param.verbose in code, but not both param.straighten_fitting = arguments['-straighten-fitting'] # if '-cpu-nb' in arguments: # arg_cpu = ' -cpu-nb '+str(arguments['-cpu-nb']) # else: # arg_cpu = '' # registration parameters if '-param' in arguments: # reset parameters but keep step=0 (might be overwritten if user specified step=0) paramreg = ParamregMultiStep([step0]) if ref == 'subject': paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz' # add user parameters for paramStep in arguments['-param']: paramreg.addStep(paramStep) else: paramreg = ParamregMultiStep([step0, step1, step2]) # if ref=subject, initialize registration using different affine parameters if ref == 'subject': paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz' # initialize other parameters zsubsample = param.zsubsample # retrieve template file names file_template_vertebral_labeling = get_file_label(os.path.join(path_template, 'template'), 'vertebral labeling') file_template = get_file_label(os.path.join(path_template, 'template'), contrast_template.upper() + '-weighted template') file_template_seg = get_file_label(os.path.join(path_template, 'template'), 'spinal cord') # start timer start_time = time.time() # get fname of the template + template objects fname_template = os.path.join(path_template, 'template', file_template) fname_template_vertebral_labeling = os.path.join(path_template, 'template', file_template_vertebral_labeling) fname_template_seg = os.path.join(path_template, 'template', file_template_seg) fname_template_disc_labeling = os.path.join(path_template, 'template', 'PAM50_label_disc.nii.gz') # check file existence # TODO: no need to do that! sct.printv('\nCheck template files...') sct.check_file_exist(fname_template, verbose) sct.check_file_exist(fname_template_vertebral_labeling, verbose) sct.check_file_exist(fname_template_seg, verbose) path_data, file_data, ext_data = sct.extract_fname(fname_data) # sct.printv(arguments) sct.printv('\nCheck parameters:', verbose) sct.printv(' Data: ' + fname_data, verbose) sct.printv(' Landmarks: ' + fname_landmarks, verbose) sct.printv(' Segmentation: ' + fname_seg, verbose) sct.printv(' Path template: ' + path_template, verbose) sct.printv(' Remove temp files: ' + str(param.remove_temp_files), verbose) # check input labels labels = check_labels(fname_landmarks, label_type=label_type) vertebral_alignment = False if len(labels) > 2 and label_type == 'disc': vertebral_alignment = True path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose) # set temporary file names ftmp_data = 'data.nii' ftmp_seg = 'seg.nii.gz' ftmp_label = 'label.nii.gz' ftmp_template = 'template.nii' ftmp_template_seg = 'template_seg.nii.gz' ftmp_template_label = 'template_label.nii.gz' # copy files to temporary folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) Image(fname_data).save(os.path.join(path_tmp, ftmp_data)) Image(fname_seg).save(os.path.join(path_tmp, ftmp_seg)) Image(fname_landmarks).save(os.path.join(path_tmp, ftmp_label)) Image(fname_template).save(os.path.join(path_tmp, ftmp_template)) Image(fname_template_seg).save(os.path.join(path_tmp, ftmp_template_seg)) Image(fname_template_vertebral_labeling).save(os.path.join(path_tmp, ftmp_template_label)) if label_type == 'disc': Image(fname_template_disc_labeling).save(os.path.join(path_tmp, ftmp_template_label)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Generate labels from template vertebral labeling if label_type == 'body': sct.printv('\nGenerate labels from template vertebral labeling', verbose) ftmp_template_label_, ftmp_template_label = ftmp_template_label, sct.add_suffix(ftmp_template_label, "_body") sct_label_utils.main(args=['-i', ftmp_template_label_, '-vert-body', '0', '-o', ftmp_template_label]) # check if provided labels are available in the template sct.printv('\nCheck if provided labels are available in the template', verbose) image_label_template = Image(ftmp_template_label) labels_template = image_label_template.getNonZeroCoordinates(sorting='value') if labels[-1].value > labels_template[-1].value: sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max ' 'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' + str(labels_template[-1].value), verbose, 'error') # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling) if len(labels) == 1: paramreg.steps['0'].dof = 'Tx_Ty_Tz' sct.printv('WARNING: Only one label is present. Forcing initial transformation to: ' + paramreg.steps['0'].dof, 1, 'warning') # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord). # If labels are not centered, mis-registration errors are observed (see issue #1826) ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg) # binarize segmentation (in case it has values below 0 caused by manual editing) sct.printv('\nBinarize segmentation', verbose) ftmp_seg_, ftmp_seg = ftmp_seg, sct.add_suffix(ftmp_seg, "_bin") sct_maths.main(['-i', ftmp_seg_, '-bin', '0.5', '-o', ftmp_seg]) # Switch between modes: subject->template or template->subject if ref == 'template': # resample data to 1mm isotropic sct.printv('\nResample data to 1mm isotropic...', verbose) resample_file(ftmp_data, add_suffix(ftmp_data, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose) ftmp_data = add_suffix(ftmp_data, '_1mm') resample_file(ftmp_seg, add_suffix(ftmp_seg, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose) ftmp_seg = add_suffix(ftmp_seg, '_1mm') # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling # with nearest neighbour can make them disappear. resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm')) ftmp_label = add_suffix(ftmp_label, '_1mm') # Change orientation of input images to RPI sct.printv('\nChange orientation of input images to RPI...', verbose) ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop') if vertebral_alignment: # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details image_labels = Image(ftmp_label) coordinates_labels = image_labels.getNonZeroCoordinates(sorting='z') nx, ny, nz, nt, px, py, pz, pt = image_labels.dim offset_crop = 10.0 * pz # cropping the image 10 mm above and below the highest and lowest label cropping_slices = [coordinates_labels[0].z - offset_crop, coordinates_labels[-1].z + offset_crop] # make sure that the cropping slices do not extend outside of the slice range (issue #1811) if cropping_slices[0] < 0: cropping_slices[0] = 0 if cropping_slices[1] > nz: cropping_slices[1] = nz msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, np.int32(np.round(cropping_slices))),))).save(ftmp_seg) else: # if we do not align the vertebral levels, we crop the segmentation from top to bottom im_seg_rpi = Image(ftmp_seg_) bottom = 0 for data in msct_image.SlicerOneAxis(im_seg_rpi, "IS"): if (data != 0).any(): break bottom += 1 top = im_seg_rpi.data.shape[2] for data in msct_image.SlicerOneAxis(im_seg_rpi, "SI"): if (data != 0).any(): break top -= 1 msct_image.spatial_crop(im_seg_rpi, dict(((2, (bottom, top)),))).save(ftmp_seg) # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) fn_warp_curve2straight = os.path.join(curdir, "warp_curve2straight.nii.gz") fn_warp_straight2curve = os.path.join(curdir, "warp_straight2curve.nii.gz") fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz") cache_input_files=[ftmp_seg] if vertebral_alignment: cache_input_files += [ ftmp_template_seg, ftmp_label, ftmp_template_label, ] cache_sig = sct.cache_signature( input_files=cache_input_files, ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(fn_warp_straight2curve) and os.path.isfile(fn_straight_ref): sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz') sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz') sct.copy(fn_straight_ref, 'straight_ref.nii.gz') # apply straightening sct.run(['sct_apply_transfo', '-i', ftmp_seg, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', add_suffix(ftmp_seg, '_straight')]) else: from spinalcordtoolbox.straightening import SpinalCordStraightener sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg) sc_straight.algo_fitting = param.straighten_fitting sc_straight.output_filename = add_suffix(ftmp_seg, '_straight') sc_straight.path_output = './' sc_straight.qc = '0' sc_straight.remove_temp_files = param.remove_temp_files sc_straight.verbose = verbose if vertebral_alignment: sc_straight.centerline_reference_filename = ftmp_template_seg sc_straight.use_straight_reference = True sc_straight.discs_input_filename = ftmp_label sc_straight.discs_ref_filename = ftmp_template_label sc_straight.straighten() sct.cache_save(cachefile, cache_sig) # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER # re-define warping field using non-cropped space (to avoid issue #367) s, o = sct.run(['sct_concat_transfo', '-w', 'warp_straight2curve.nii.gz', '-d', ftmp_data, '-o', 'warp_straight2curve.nii.gz']) if vertebral_alignment: sct.copy('warp_curve2straight.nii.gz', 'warp_curve2straightAffine.nii.gz') else: # Label preparation: # -------------------------------------------------------------------------------- # Remove unused label on template. Keep only label present in the input label image sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose) sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label]) # Dilating the input label so they can be straighten without losing them sct.printv('\nDilating input labels using 3vox ball radius') sct_maths.main(['-i', ftmp_label, '-dilate', '3', '-o', add_suffix(ftmp_label, '_dilate')]) ftmp_label = add_suffix(ftmp_label, '_dilate') # Apply straightening to labels sct.printv('\nApply straightening to labels...', verbose) sct.run(['sct_apply_transfo', '-i', ftmp_label, '-o', add_suffix(ftmp_label, '_straight'), '-d', add_suffix(ftmp_seg, '_straight'), '-w', 'warp_curve2straight.nii.gz', '-x', 'nn']) ftmp_label = add_suffix(ftmp_label, '_straight') # Compute rigid transformation straight landmarks --> template landmarks sct.printv('\nEstimate transformation for step #0...', verbose) try: register_landmarks(ftmp_label, ftmp_template_label, paramreg.steps['0'].dof, fname_affine='straight2templateAffine.txt', verbose=verbose) except RuntimeError: raise('Input labels do not seem to be at the right place. Please check the position of the labels. ' 'See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42') # Concatenate transformations: curve --> straight --> affine sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose) sct.run(['sct_concat_transfo', '-w', 'warp_curve2straight.nii.gz,straight2templateAffine.txt', '-d', 'template.nii', '-o', 'warp_curve2straightAffine.nii.gz']) # Apply transformation sct.printv('\nApply transformation...', verbose) sct.run(['sct_apply_transfo', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz']) ftmp_data = add_suffix(ftmp_data, '_straightAffine') sct.run(['sct_apply_transfo', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz', '-x', 'linear']) ftmp_seg = add_suffix(ftmp_seg, '_straightAffine') """ # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform. # Solution found: remove slices below and above landmarks to avoid rotation effects points_straight = [] for coord in landmark_template: points_straight.append(coord.z) min_point, max_point = int(np.round(np.min(points_straight))), int(np.round(np.max(points_straight))) ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_black') msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (min_point,max_point)),))).save(ftmp_seg) """ # open segmentation im = Image(ftmp_seg) im_new = msct_image.empty_like(im) # binarize im_new.data = im.data > 0.5 # find min-max of anat2template (for subsequent cropping) zmin_template, zmax_template = msct_image.find_zmin_zmax(im_new, threshold=0.5) # save binarized segmentation im_new.save(add_suffix(ftmp_seg, '_bin')) # unused? # crop template in z-direction (for faster processing) # TODO: refactor to use python module instead of doing i/o sct.printv('\nCrop data in template space (for faster processing)...', verbose) ftmp_template_, ftmp_template = ftmp_template, add_suffix(ftmp_template, '_crop') msct_image.spatial_crop(Image(ftmp_template_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template) ftmp_template_seg_, ftmp_template_seg = ftmp_template_seg, add_suffix(ftmp_template_seg, '_crop') msct_image.spatial_crop(Image(ftmp_template_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template_seg) ftmp_data_, ftmp_data = ftmp_data, add_suffix(ftmp_data, '_crop') msct_image.spatial_crop(Image(ftmp_data_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_data) ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop') msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_seg) # sub-sample in z-direction # TODO: refactor to use python module instead of doing i/o sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose) sct.run(['sct_resample', '-i', ftmp_template, '-o', add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_template = add_suffix(ftmp_template, '_sub') sct.run(['sct_resample', '-i', ftmp_template_seg, '-o', add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub') sct.run(['sct_resample', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_data = add_suffix(ftmp_data, '_sub') sct.run(['sct_resample', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose) ftmp_seg = add_suffix(ftmp_seg, '_sub') # Registration straight spinal cord to template sct.printv('\nRegister straight spinal cord to template...', verbose) # loop across registration steps warp_forward = [] warp_inverse = [] for i_step in range(1, len(paramreg.steps)): sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = ftmp_data dest = ftmp_template interp_step = 'linear' elif paramreg.steps[str(i_step)].type == 'seg': src = ftmp_seg dest = ftmp_template_seg interp_step = 'nn' else: sct.printv('ERROR: Wrong image type.', 1, 'error') if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': src_seg = ftmp_seg dest_seg = ftmp_template_seg # if step>1, apply warp_forward_concat to the src image to be used if i_step > 1: # apply transformation from previous step, to use as new src for registration sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose) src = add_suffix(src, '_regStep' + str(i_step - 1)) if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # also apply transformation to the seg sct.run(['sct_apply_transfo', '-i', src_seg, '-d', dest_seg, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose) src_seg = add_suffix(src_seg, '_regStep' + str(i_step - 1)) # register src --> dest # TODO: display param for debugging if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # im_seg case warp_forward_out, warp_inverse_out = register([src, src_seg], [dest, dest_seg], paramreg, param, str(i_step)) else: warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.append(warp_inverse_out) # Concatenate transformations: sct.printv('\nConcatenate transformations: anat --> template...', verbose) sct.run(['sct_concat_transfo', '-w', 'warp_curve2straightAffine.nii.gz,' + ','.join(warp_forward), '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz'], verbose) # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose) sct.printv('\nConcatenate transformations: template --> anat...', verbose) warp_inverse.reverse() if vertebral_alignment: sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse) + ',warp_straight2curve.nii.gz', '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose) else: sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse) + ',-straight2templateAffine.txt,warp_straight2curve.nii.gz', '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose) # register template->subject elif ref == 'subject': # Change orientation of input images to RPI sct.printv('\nChange orientation of input images to RPI...', verbose) ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath # Remove unused label on template. Keep only label present in the input label image sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose) sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label]) # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This # new label is added at the level of the upper most label (lowest value), at 1cm to the right. for i_file in [ftmp_label, ftmp_template_label]: im_label = Image(i_file) coord_label = im_label.getCoordinatesAveragedByValue() # N.B. landmarks are sorted by value # Create new label from copy import deepcopy new_label = deepcopy(coord_label[0]) # move it 5mm to the left (orientation is RAS) nx, ny, nz, nt, px, py, pz, pt = im_label.dim new_label.x = np.round(coord_label[0].x + 5.0 / px) # assign value 99 new_label.value = 99 # Add to existing image im_label.data[int(new_label.x), int(new_label.y), int(new_label.z)] = new_label.value # Overwrite label file # im_label.absolutepath = 'label_rpi_modif.nii.gz' im_label.save() # Bring template to subject space using landmark-based transformation sct.printv('\nEstimate transformation for step #0...', verbose) warp_forward = ['template2subjectAffine.txt'] warp_inverse = ['-template2subjectAffine.txt'] try: register_landmarks(ftmp_template_label, ftmp_label, paramreg.steps['0'].dof, fname_affine=warp_forward[0], verbose=verbose, path_qc="./") except Exception: sct.printv('ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42', verbose=verbose, type='error') # loop across registration steps for i_step in range(1, len(paramreg.steps)): sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose) # identify which is the src and dest if paramreg.steps[str(i_step)].type == 'im': src = ftmp_template dest = ftmp_data interp_step = 'linear' elif paramreg.steps[str(i_step)].type == 'seg': src = ftmp_template_seg dest = ftmp_seg interp_step = 'nn' else: sct.printv('ERROR: Wrong image type.', 1, 'error') # apply transformation from previous step, to use as new src for registration sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose) src = add_suffix(src, '_regStep' + str(i_step - 1)) # register src --> dest # TODO: display param for debugging warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step)) warp_forward.append(warp_forward_out) warp_inverse.insert(0, warp_inverse_out) # Concatenate transformations: sct.printv('\nConcatenate transformations: template --> subject...', verbose) sct.run(['sct_concat_transfo', '-w', ','.join(warp_forward), '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose) sct.printv('\nConcatenate transformations: subject --> template...', verbose) sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse), '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz'], verbose) # Apply warping fields to anat and template sct.run(['sct_apply_transfo', '-i', 'template.nii', '-o', 'template2anat.nii.gz', '-d', 'data.nii', '-w', 'warp_template2anat.nii.gz', '-crop', '1'], verbose) sct.run(['sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz', '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'], verbose) # come back os.chdir(curdir) # Generate output files sct.printv('\nGenerate output files...', verbose) fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data) fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data) sct.generate_output_file(os.path.join(path_tmp, "warp_template2anat.nii.gz"), os.path.join(path_output, "warp_template2anat.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_anat2template.nii.gz"), os.path.join(path_output, "warp_anat2template.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"), fname_template2anat, verbose) sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"), fname_anat2template, verbose) if ref == 'template': # copy straightening files in case subsequent SCT functions need them sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Delete temporary files if param.remove_temp_files: sct.printv('\nDelete temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) if param.path_qc is not None: generate_qc(fname_data, fname_in2=fname_template2anat, fname_seg=fname_seg, args=args, path_qc=os.path.abspath(param.path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_register_to_template') sct.display_viewer_syntax([fname_data, fname_template2anat], verbose=verbose) sct.display_viewer_syntax([fname_template, fname_anat2template], verbose=verbose)
def moco(param): # retrieve parameters file_data = param.file_data file_target = param.file_target folder_mat = param.mat_moco # output folder of mat file todo = param.todo suffix = param.suffix verbose = param.verbose # other parameters file_mask = 'mask.nii' sct.printv('\nInput parameters:', param.verbose) sct.printv(' Input file ............' + file_data, param.verbose) sct.printv(' Reference file ........' + file_target, param.verbose) sct.printv(' Polynomial degree .....' + param.poly, param.verbose) sct.printv(' Smoothing kernel ......' + param.smooth, param.verbose) sct.printv(' Gradient step .........' + param.gradStep, param.verbose) sct.printv(' Metric ................' + param.metric, param.verbose) sct.printv(' Sampling ..............' + param.sampling, param.verbose) sct.printv(' Todo ..................' + todo, param.verbose) sct.printv(' Mask .................' + param.fname_mask, param.verbose) sct.printv(' Output mat folder .....' + folder_mat, param.verbose) # create folder for mat files sct.create_folder(folder_mat) # Get size of data sct.printv('\nData dimensions:', verbose) im_data = Image(param.file_data) nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv((' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt)), verbose) # copy file_target to a temporary file sct.printv('\nCopy file_target to a temporary file...', verbose) file_target = "target.nii.gz" convert(param.file_target, file_target) # If scan is sagittal, split src and target along Z (slice) if param.is_sagittal: dim_sag = 2 # TODO: find it # z-split data (time series) im_z_list = split_data(im_data, dim=dim_sag, squeeze_data=False) file_data_splitZ = [] for im_z in im_z_list: im_z.save() file_data_splitZ.append(im_z.absolutepath) # z-split target im_targetz_list = split_data(Image(file_target), dim=dim_sag, squeeze_data=False) file_target_splitZ = [] for im_targetz in im_targetz_list: im_targetz.save() file_target_splitZ.append(im_targetz.absolutepath) # z-split mask (if exists) if not param.fname_mask == '': im_maskz_list = split_data(Image(file_mask), dim=dim_sag, squeeze_data=False) file_mask_splitZ = [] for im_maskz in im_maskz_list: im_maskz.save() file_mask_splitZ.append(im_maskz.absolutepath) # initialize file list for output matrices file_mat = np.empty((nz, nt), dtype=object) # axial orientation else: file_data_splitZ = [file_data] # TODO: make it absolute like above file_target_splitZ = [file_target] # TODO: make it absolute like above # initialize file list for output matrices file_mat = np.empty((1, nt), dtype=object) # deal with mask if not param.fname_mask == '': convert(param.fname_mask, file_mask, squeeze_data=False) im_maskz_list = [Image(file_mask)] # use a list with single element # Loop across file list, where each file is either a 2D volume (if sagittal) or a 3D volume (otherwise) # file_mat = tuple([[[] for i in range(nt)] for i in range(nz)]) file_data_splitZ_moco = [] sct.printv('\nRegister. Loop across Z (note: there is only one Z if orientation is axial') for file in file_data_splitZ: iz = file_data_splitZ.index(file) # Split data along T dimension # sct.printv('\nSplit data along T dimension.', verbose) im_z = Image(file) list_im_zt = split_data(im_z, dim=3) file_data_splitZ_splitT = [] for im_zt in list_im_zt: im_zt.save(verbose=0) file_data_splitZ_splitT.append(im_zt.absolutepath) # file_data_splitT = file_data + '_T' # Motion correction: initialization index = np.arange(nt) file_data_splitT_num = [] file_data_splitZ_splitT_moco = [] failed_transfo = [0 for i in range(nt)] # Motion correction: Loop across T for indice_index in tqdm(range(nt), unit='iter', unit_scale=False, desc="Z=" + str(iz) + "/" + str(len(file_data_splitZ)-1), ascii=True, ncols=80): # create indices and display stuff it = index[indice_index] file_mat[iz][it] = os.path.join(folder_mat, "mat.Z") + str(iz).zfill(4) + 'T' + str(it).zfill(4) file_data_splitZ_splitT_moco.append(sct.add_suffix(file_data_splitZ_splitT[it], '_moco')) # deal with masking if not param.fname_mask == '': input_mask = im_maskz_list[iz] else: input_mask = None # run 3D registration failed_transfo[it] = register(param, file_data_splitZ_splitT[it], file_target_splitZ[iz], file_mat[iz][it], file_data_splitZ_splitT_moco[it], im_mask=input_mask) # average registered volume with target image # N.B. use weighted averaging: (target * nb_it + moco) / (nb_it + 1) if param.iterAvg and indice_index < 10 and failed_transfo[it] == 0 and not param.todo == 'apply': im_targetz = Image(file_target_splitZ[iz]) data_targetz = im_targetz.data data_mocoz = Image(file_data_splitZ_splitT_moco[it]).data data_targetz = (data_targetz * (indice_index + 1) + data_mocoz) / (indice_index + 2) im_targetz.data = data_targetz im_targetz.save(verbose=0) # Replace failed transformation with the closest good one fT = [i for i, j in enumerate(failed_transfo) if j == 1] gT = [i for i, j in enumerate(failed_transfo) if j == 0] for it in range(len(fT)): abs_dist = [np.abs(gT[i] - fT[it]) for i in range(len(gT))] if not abs_dist == []: index_good = abs_dist.index(min(abs_dist)) sct.printv(' transfo #' + str(fT[it]) + ' --> use transfo #' + str(gT[index_good]), verbose) # copy transformation sct.copy(file_mat[iz][gT[index_good]] + 'Warp.nii.gz', file_mat[iz][fT[it]] + 'Warp.nii.gz') # apply transformation sct_apply_transfo.main(args=['-i', file_data_splitZ_splitT[fT[it]], '-d', file_target, '-w', file_mat[iz][fT[it]] + 'Warp.nii.gz', '-o', file_data_splitZ_splitT_moco[fT[it]], '-x', param.interp]) else: # exit program if no transformation exists. sct.printv('\nERROR in ' + os.path.basename(__file__) + ': No good transformation exist. Exit program.\n', verbose, 'error') sys.exit(2) # Merge data along T file_data_splitZ_moco.append(sct.add_suffix(file, suffix)) if todo != 'estimate': im_out = concat_data(file_data_splitZ_splitT_moco, 3) im_out.save(file_data_splitZ_moco[iz]) # If sagittal, merge along Z if param.is_sagittal: im_out = concat_data(file_data_splitZ_moco, 2) dirname, basename, ext = sct.extract_fname(file_data) path_out = os.path.join(dirname, basename + suffix + ext) im_out.save(path_out) return file_mat
def validation(self): tmp_dir_val = sct.tmp_create(basename="segment_graymatter_validation") # copy data into tmp dir val sct.copy(self.param_seg.fname_manual_gmseg, tmp_dir_val) sct.copy(self.param_seg.fname_seg, tmp_dir_val) curdir = os.getcwd() os.chdir(tmp_dir_val) fname_manual_gmseg = os.path.basename(self.param_seg.fname_manual_gmseg) fname_seg = os.path.basename(self.param_seg.fname_seg) im_gmseg = self.im_res_gmseg.copy() im_wmseg = self.im_res_wmseg.copy() if self.param_seg.type_seg == 'prob': im_gmseg = binarize(im_gmseg, thr_max=0.5, thr_min=0.5) im_wmseg = binarize(im_wmseg, thr_max=0.5, thr_min=0.5) fname_gmseg = 'res_gmseg.nii.gz' im_gmseg.save(fname_gmseg) fname_wmseg = 'res_wmseg.nii.gz' im_wmseg.save(fname_wmseg) # get manual WM seg: fname_manual_wmseg = 'manual_wmseg.nii.gz' sct_maths.main(args=['-i', fname_seg, '-sub', fname_manual_gmseg, '-o', fname_manual_wmseg]) # compute DC: try: status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' + fname_wmseg + ' -2d-slices 2') except Exception: # put ref and res in the same space if needed fname_manual_gmseg_corrected = add_suffix(fname_manual_gmseg, '_reg') sct_register_multimodal.main(args=['-i', fname_manual_gmseg, '-d', fname_gmseg, '-identity', '1']) sct_maths.main(args=['-i', fname_manual_gmseg_corrected, '-bin', '0.1', '-o', fname_manual_gmseg_corrected]) # fname_manual_wmseg_corrected = add_suffix(fname_manual_wmseg, '_reg') sct_register_multimodal.main(args=['-i', fname_manual_wmseg, '-d', fname_wmseg, '-identity', '1']) sct_maths.main(args=['-i', fname_manual_wmseg_corrected, '-bin', '0.1', '-o', fname_manual_wmseg_corrected]) # recompute DC status_gm, output_gm = run('sct_dice_coefficient -i ' + fname_manual_gmseg_corrected + ' -d ' + fname_gmseg + ' -2d-slices 2') status_wm, output_wm = run('sct_dice_coefficient -i ' + fname_manual_wmseg_corrected + ' -d ' + fname_wmseg + ' -2d-slices 2') # save results to a text file fname_dc = 'dice_coefficient_' + extract_fname(self.param_seg.fname_im)[1] + '.txt' file_dc = open(fname_dc, 'w') if self.param_seg.type_seg == 'prob': file_dc.write('WARNING : the probabilistic segmentations were binarized with a threshold at 0.5 to compute the dice coefficient \n') file_dc.write('\n--------------------------------------------------------------\nDice coefficient on the Gray Matter segmentation:\n') file_dc.write(output_gm) file_dc.write('\n\n--------------------------------------------------------------\nDice coefficient on the White Matter segmentation:\n') file_dc.write(output_wm) file_dc.close() # compute HD and MD: fname_hd = 'hausdorff_dist_' + extract_fname(self.param_seg.fname_im)[1] + '.txt' run('sct_compute_hausdorff_distance -i ' + fname_gmseg + ' -d ' + fname_manual_gmseg + ' -thinning 1 -o ' + fname_hd + ' -v ' + str(self.param.verbose)) # get out of tmp dir to copy results to output folder os.chdir(curdir) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_dc), self.param_seg.path_results) sct.copy(os.path.join(self.tmp_dir, tmp_dir_val, fname_hd), self.param_seg.path_results) if self.param.rm_tmp: sct.rmtree(tmp_dir_val)
def detect_centerline(image_fname, contrast_type, optic_models_path, folder_output, remove_temp_files=False, init_option=None, output_roi=False, verbose=0): """This method will use the OptiC to detect the centerline. :param image_fname: The input image filename. :param init_option: Axial slice where the propagation starts. :param contrast_type: The contrast type. :param optic_models_path: The path with the Optic model files. :param folder_output: The OptiC output folder. :param remove_temp_files: Remove the temporary created files. :param verbose: Adjusts the verbosity of the logging. :returns: The OptiC output filename. """ image_input = Image(image_fname) path_data, file_data, ext_data = sct.extract_fname(image_fname) sct.printv('Detecting the spinal cord using OptiC', verbose=verbose) image_input_orientation = image_input.orientation temp_folder = sct.TempFolder() temp_folder.copy_from(image_fname) curdir = os.getcwd() temp_folder.chdir() # convert image data type to int16, as required by opencv (backend in OptiC) image_int_filename = sct.add_suffix(file_data + ext_data, "_int16") img = Image(image_fname) img_int16 = img.copy() # rescale intensity min_out = np.iinfo('uint16').min max_out = np.iinfo('uint16').max min_in = np.nanmin(img.data) max_in = np.nanmax(img.data) data_rescaled = img.data.astype('float') * (max_out - min_out) / (max_in - min_in) img_int16.data = data_rescaled - (data_rescaled.min() - min_out) # change data type img_int16.save(image_int_filename, dtype=np.uint16) del img, img_int16 # reorient the input image to RPI + convert to .nii reoriented_image_filename = sct.add_suffix(image_int_filename, "_RPI") img_filename = ''.join(sct.extract_fname(reoriented_image_filename)[:2]) reoriented_image_filename_nii = img_filename + '.nii' cmd_reorient = 'sct_image -i "%s" -o "%s" -setorient RPI -v 0' % \ (image_int_filename, reoriented_image_filename_nii) sct.run(cmd_reorient, verbose=0) image_rpi_init = Image(reoriented_image_filename_nii) nxr, nyr, nzr, ntr, pxr, pyr, pzr, ptr = image_rpi_init.dim if init_option is not None: if init_option > 1: init_option /= (nzr - 1) # call the OptiC method to generate the spinal cord centerline optic_input = img_filename optic_filename = img_filename + '_optic' os.environ["FSLOUTPUTTYPE"] = "NIFTI_PAIR" cmd_optic = 'isct_spine_detect -ctype=dpdt -lambda=1 "%s" "%s" "%s"' % \ (optic_models_path, optic_input, optic_filename) sct.run(cmd_optic, verbose=0) # convert .img and .hdr files to .nii.gz optic_hdr_filename = img_filename + '_optic_ctr.hdr' centerline_optic_RPI_filename = sct.add_suffix(file_data + ext_data, "_centerline_optic_RPI") img = nib.load(optic_hdr_filename) nib.save(img, centerline_optic_RPI_filename) # reorient the output image to initial orientation centerline_optic_filename = sct.add_suffix(file_data + ext_data, "_centerline_optic") cmd_reorient = 'sct_image -i "%s" -o "%s" -setorient "%s" -v 0' % \ (centerline_optic_RPI_filename, centerline_optic_filename, image_input_orientation) sct.run(cmd_reorient, verbose=0) # copy centerline to parent folder folder_output_from_temp = folder_output if not os.path.isabs(folder_output): folder_output_from_temp = os.path.join(curdir, folder_output) sct.printv('Copy output to ' + folder_output, verbose=0) sct.copy(centerline_optic_filename, folder_output_from_temp) if output_roi: fname_roi_centerline = centerline2roi( fname_image=centerline_optic_RPI_filename, folder_output=folder_output_from_temp, verbose=verbose) # Note: the .roi file is defined in RPI orientation. To be used, it must be applied on the original image with # a RPI orientation. For this reason, this script also outputs the input image in RPI orientation sct.copy(reoriented_image_filename_nii, folder_output_from_temp) # return to initial folder temp_folder.chdir_undo() # delete temporary folder if remove_temp_files: temp_folder.cleanup() return init_option, os.path.join(folder_output, centerline_optic_filename)
def register(param, file_src, file_dest, file_mat, file_out, im_mask=None): """ Register two images by estimating slice-wise Tx and Ty transformations, which are regularized along Z. This function uses ANTs' isct_antsSliceRegularizedRegistration. :param param: :param file_src: :param file_dest: :param file_mat: :param file_out: :param im_mask: Image of mask, could be 2D or 3D :return: """ # TODO: deal with mask # initialization failed_transfo = 0 # by default, failed matrix is 0 (i.e., no failure) do_registration = True # get metric radius (if MeanSquares, CC) or nb bins (if MI) if param.metric == 'MI': metric_radius = '16' else: metric_radius = '4' file_out_concat = file_out kw = dict() im_data = Image(file_src) # TODO: pass argument to use antsReg instead of opening Image each time # register file_src to file_dest if param.todo == 'estimate' or param.todo == 'estimate_and_apply': # If orientation is sagittal, use antsRegistration in 2D mode # Note: the parameter --restrict-deformation is irrelevant with affine transfo if im_data.orientation[2] in 'LR': cmd = ['isct_antsRegistration', '-d', '2', '--transform', 'Affine[%s]' %param.gradStep, '--metric', param.metric + '[' + file_dest + ',' + file_src + ',1,' + metric_radius + ',Regular,' + param.sampling + ']', '--convergence', param.iter, '--shrink-factors', '1', '--smoothing-sigmas', param.smooth, '--verbose', '1', '--output', '[' + file_mat + ',' + file_out_concat + ']'] cmd += sct.get_interpolation('isct_antsRegistration', param.interp) if im_mask is not None: # if user specified a mask, make sure there are non-null voxels in the image before running the registration if np.count_nonzero(im_mask.data): cmd += ['--masks', im_mask.absolutepath] else: # Mask only contains zeros. Copying the image instead of estimating registration. sct.copy(file_src, file_out_concat, verbose=0) do_registration = False # TODO: create affine mat file with identity, in case used by -g 2 # 3D mode else: cmd = ['isct_antsSliceRegularizedRegistration', '--polydegree', param.poly, '--transform', 'Translation[%s]' %param.gradStep, '--metric', param.metric + '[' + file_dest + ',' + file_src + ',1,' + metric_radius + ',Regular,' + param.sampling + ']', '--iterations', param.iter, '--shrinkFactors', '1', '--smoothingSigmas', param.smooth, '--verbose', '1', '--output', '[' + file_mat + ',' + file_out_concat + ']'] cmd += sct.get_interpolation('isct_antsSliceRegularizedRegistration', param.interp) if im_mask is not None: cmd += ['--mask', im_mask.absolutepath] # run command if do_registration: kw.update(dict(is_sct_binary=True)) env = dict() env.update(os.environ) env = kw.get("env", env) # reducing the number of CPU used for moco (see issue #201) env["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "1" status, output = sct.run(cmd, verbose=0, **kw) elif param.todo == 'apply': sct_apply_transfo.main(args=['-i', file_src, '-d', file_dest, '-w', file_mat + 'Warp.nii.gz', '-o', file_out_concat, '-x', param.interp, '-v', '0']) # check if output file exists if not os.path.isfile(file_out_concat): # sct.printv(output, verbose, 'error') sct.printv('WARNING in ' + os.path.basename(__file__) + ': No output. Maybe related to improper calculation of ' 'mutual information. Either the mask you provided is ' 'too small, or the subject moved a lot. If you see too ' 'many messages like this try with a bigger mask. ' 'Using previous transformation for this volume (if it' 'exists).', param.verbose, 'warning') failed_transfo = 1 # TODO: if sagittal, copy header (because ANTs screws it) and add singleton in 3rd dimension (for z-concatenation) if im_data.orientation[2] in 'LR' and do_registration: im_out = Image(file_out_concat) im_out.header = im_data.header im_out.data = np.expand_dims(im_out.data, 2) im_out.save(file_out, verbose=0) # return status of failure return failed_transfo
def fmri_moco(param): file_data = "fmri.nii" mat_final = 'mat_final/' ext_mat = 'Warp.nii.gz' # warping field # Get dimensions of data sct.printv('\nGet dimensions of data...', param.verbose) im_data = Image(param.fname_data) nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv(' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), param.verbose) # Get orientation sct.printv('\nData orientation: ' + im_data.orientation, param.verbose) if im_data.orientation[2] in 'LR': param.is_sagittal = True sct.printv(' Treated as sagittal') elif im_data.orientation[2] in 'IS': param.is_sagittal = False sct.printv(' Treated as axial') else: param.is_sagittal = False sct.printv('WARNING: Orientation seems to be neither axial nor sagittal.') # Adjust group size in case of sagittal scan if param.is_sagittal and param.group_size != 1: sct.printv('For sagittal data group_size should be one for more robustness. Forcing group_size=1.', 1, 'warning') param.group_size = 1 # Split into T dimension sct.printv('\nSplit along T dimension...', param.verbose) im_data_split_list = split_data(im_data, 3) for im in im_data_split_list: x_dirname, x_basename, x_ext = sct.extract_fname(im.absolutepath) # Make further steps slurp the data to avoid too many open files (#2149) im.absolutepath = os.path.join(x_dirname, x_basename + ".nii.gz") im.save() # assign an index to each volume index_fmri = list(range(0, nt)) # Number of groups nb_groups = int(math.floor(nt / param.group_size)) # Generate groups indexes group_indexes = [] for iGroup in range(nb_groups): group_indexes.append(index_fmri[(iGroup * param.group_size):((iGroup + 1) * param.group_size)]) # add the remaining images to the last fMRI group nb_remaining = nt%param.group_size # number of remaining images if nb_remaining > 0: nb_groups += 1 group_indexes.append(index_fmri[len(index_fmri) - nb_remaining:len(index_fmri)]) # groups for iGroup in tqdm(range(nb_groups), unit='iter', unit_scale=False, desc="Merge within groups", ascii=True, ncols=80): # get index index_fmri_i = group_indexes[iGroup] nt_i = len(index_fmri_i) # Merge Images file_data_merge_i = sct.add_suffix(file_data, '_' + str(iGroup)) # cmd = fsloutput + 'fslmerge -t ' + file_data_merge_i # for it in range(nt_i): # cmd = cmd + ' ' + file_data + '_T' + str(index_fmri_i[it]).zfill(4) im_fmri_list = [] for it in range(nt_i): im_fmri_list.append(im_data_split_list[index_fmri_i[it]]) im_fmri_concat = concat_data(im_fmri_list, 3, squeeze_data=True).save(file_data_merge_i) file_data_mean = sct.add_suffix(file_data, '_mean_' + str(iGroup)) if file_data_mean.endswith(".nii"): file_data_mean += ".gz" # #2149 if param.group_size == 1: # copy to new file name instead of averaging (faster) # note: this is a bandage. Ideally we should skip this entire for loop if g=1 convert(file_data_merge_i, file_data_mean) else: # Average Images sct.run(['sct_maths', '-i', file_data_merge_i, '-o', file_data_mean, '-mean', 't'], verbose=0) # if not average_data_across_dimension(file_data_merge_i+'.nii', file_data_mean+'.nii', 3): # sct.printv('ERROR in average_data_across_dimension', 1, 'error') # cmd = fsloutput + 'fslmaths ' + file_data_merge_i + ' -Tmean ' + file_data_mean # sct.run(cmd, param.verbose) # Merge groups means. The output 4D volume will be used for motion correction. sct.printv('\nMerging volumes...', param.verbose) file_data_groups_means_merge = 'fmri_averaged_groups.nii' im_mean_list = [] for iGroup in range(nb_groups): file_data_mean = sct.add_suffix(file_data, '_mean_' + str(iGroup)) if file_data_mean.endswith(".nii"): file_data_mean += ".gz" # #2149 im_mean_list.append(Image(file_data_mean)) im_mean_concat = concat_data(im_mean_list, 3).save(file_data_groups_means_merge) # Estimate moco sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion...', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco = param param_moco.file_data = 'fmri_averaged_groups.nii' param_moco.file_target = sct.add_suffix(file_data, '_mean_' + param.num_target) if param_moco.file_target.endswith(".nii"): param_moco.file_target += ".gz" # #2149 param_moco.path_out = '' param_moco.todo = 'estimate_and_apply' param_moco.mat_moco = 'mat_groups' file_mat = moco.moco(param_moco) # TODO: if g=1, no need to run the block below (already applied) if param.group_size == 1: # if flag g=1, it means that all images have already been corrected, so we just need to rename the file sct.mv('fmri_averaged_groups_moco.nii', 'fmri_moco.nii') else: # create final mat folder sct.create_folder(mat_final) # Copy registration matrices sct.printv('\nCopy transformations...', param.verbose) for iGroup in range(nb_groups): for data in range(len(group_indexes[iGroup])): # we cannot use enumerate because group_indexes has 2 dim. # fetch all file_mat_z for given t-group list_file_mat_z = file_mat[:, iGroup] # loop across file_mat_z and copy to mat_final folder for file_mat_z in list_file_mat_z: # we want to copy 'mat_groups/mat.ZXXXXTYYYYWarp.nii.gz' --> 'mat_final/mat.ZXXXXTYYYZWarp.nii.gz' # Notice the Y->Z in the under the T index: the idea here is to use the single matrix from each group, # and apply it to all images belonging to the same group. sct.copy(file_mat_z + ext_mat, mat_final + file_mat_z[11:20] + 'T' + str(group_indexes[iGroup][data]).zfill(4) + ext_mat) # Apply moco on all fmri data sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Apply moco', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = 'fmri.nii' param_moco.file_target = sct.add_suffix(file_data, '_mean_' + str(0)) if param_moco.file_target.endswith(".nii"): param_moco.file_target += ".gz" param_moco.path_out = '' param_moco.mat_moco = mat_final param_moco.todo = 'apply' moco.moco(param_moco) # copy geometric information from header # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1". im_fmri = Image('fmri.nii') im_fmri_moco = Image('fmri_moco.nii') im_fmri_moco.header = im_fmri.header im_fmri_moco.save() # Average volumes sct.printv('\nAveraging data...', param.verbose) sct_maths.main(args=['-i', 'fmri_moco.nii', '-o', 'fmri_moco_mean.nii', '-mean', 't', '-v', '0'])
def main(args=None): # initializations initz = '' initcenter = '' fname_initlabel = '' file_labelz = 'labelz.nii.gz' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(args) fname_in = os.path.abspath(arguments["-i"]) fname_seg = os.path.abspath(arguments['-s']) contrast = arguments['-c'] path_template = arguments['-t'] scale_dist = arguments['-scale-dist'] if '-ofolder' in arguments: path_output = arguments['-ofolder'] else: path_output = os.curdir param.path_qc = arguments.get("-qc", None) if '-discfile' in arguments: fname_disc = os.path.abspath(arguments['-discfile']) else: fname_disc = None if '-initz' in arguments: initz = arguments['-initz'] if '-initcenter' in arguments: initcenter = arguments['-initcenter'] # if user provided text file, parse and overwrite arguments if '-initfile' in arguments: file = open(arguments['-initfile'], 'r') initfile = ' ' + file.read().replace('\n', '') arg_initfile = initfile.split(' ') for idx_arg, arg in enumerate(arg_initfile): if arg == '-initz': initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')] if arg == '-initcenter': initcenter = int(arg_initfile[idx_arg + 1]) if '-initlabel' in arguments: # get absolute path of label fname_initlabel = os.path.abspath(arguments['-initlabel']) if '-param' in arguments: param.update(arguments['-param'][0]) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level remove_temp_files = int(arguments['-r']) denoise = int(arguments['-denoise']) laplacian = int(arguments['-laplacian']) path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder...', verbose) Image(fname_in).save(os.path.join(path_tmp, "data.nii")) Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii")) # Go go temp folder curdir = os.getcwd() os.chdir(path_tmp) # Straighten spinal cord sct.printv('\nStraighten spinal cord...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) cache_sig = sct.cache_signature( input_files=[fname_in, fname_seg], ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz")): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz') # apply straightening s, o = sct.run(['sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii']) else: cmd = ['sct_straighten_spinalcord', '-i', 'data.nii', '-s', 'segmentation.nii', '-r', str(remove_temp_files)] if param.path_qc is not None and os.environ.get("SCT_RECURSIVE_QC", None) == "1": cmd += ['-qc', param.path_qc] s, o = sct.run(cmd) sct.cache_save(cachefile, cache_sig) # resample to 0.5mm isotropic to match template resolution sct.printv('\nResample to 0.5mm isotropic...', verbose) s, o = sct.run(['sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii'], verbose=verbose) # Apply straightening to segmentation # N.B. Output is RPI sct.printv('\nApply straightening to segmentation...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation.nii', 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'), verbose=verbose, is_sct_binary=True, ) # Threshold segmentation at 0.5 sct.run(['sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii'], verbose) # If disc label file is provided, label vertebrae using that file instead of automatically if fname_disc: # Apply straightening to disc-label sct.printv('\nApply straightening to disc labels...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labeldisc_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1) else: # create label to identify disc sct.printv('\nCreate label to identify disc...', verbose) fname_labelz = os.path.join(path_tmp, file_labelz) if initz or initcenter: if initcenter: # find z centered in FOV nii = Image('segmentation.nii').change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions z_center = int(np.round(nz / 2)) # get z_center initz = [z_center, initcenter] # create single label and output as labels.nii.gz label = ProcessLabels('segmentation.nii', fname_output='tmp.labelz.nii.gz', coordinates=['{},{}'.format(initz[0], initz[1])]) im_label = label.process('create-seg') im_label.data = sct_maths.dilate(im_label.data, [3]) # TODO: create a dilation method specific to labels, # which does not apply a convolution across all voxels (highly inneficient) im_label.save(fname_labelz) elif fname_initlabel: import sct_label_utils # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the # new definition of labels (i.e., C2-C3 = 3). sct_label_utils.main(['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz]) else: # automatically finds C2-C3 disc im_data = Image('data.nii') im_seg = Image('segmentation.nii') im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast) ind_label = np.where(im_label_c2c3.data) if not np.size(ind_label) == 0: # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the # recent version of SCT it is defined as "3". im_label_c2c3.data[ind_label] = 2 else: sct.printv('Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error') im_label_c2c3.save(fname_labelz) # dilate label so it is not lost when applying warping sct_maths.main(['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz]) # Apply straightening to z-label sct.printv('\nAnd apply straightening to label...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labelz_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # get z value and disk value to initialize labeling sct.printv('\nGet z and disc values from straight label...', verbose) init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz') sct.printv('.. ' + str(init_disc), verbose) # denoise data if denoise: sct.printv('\nDenoise data...', verbose) sct.run(['sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05', '-o', 'data_straightr.nii'], verbose) # apply laplacian filtering if laplacian: sct.printv('\nApply Laplacian filter...', verbose) sct.run(['sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii'], verbose) # detect vertebral levels on straight spinal cord vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc, verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist) # un-straighten labeled spinal cord sct.printv('\nUn-straighten labeling...', verbose) sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation_straight_labeled.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled.nii', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # Clean labeled segmentation sct.printv('\nClean labeled segmentation (correct interpolation errors)...', verbose) clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii') # label discs sct.printv('\nLabel discs...', verbose) label_discs('segmentation_labeled.nii', verbose=verbose) # come back os.chdir(curdir) # Generate output files path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg) fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled) sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg)) # copy straightening files in case subsequent SCT functions need them sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose) sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp) # Generate QC report if param.path_qc is not None: path_qc = os.path.abspath(param.path_qc) qc_dataset = arguments.get("-qc-dataset", None) qc_subject = arguments.get("-qc-subject", None) labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg) generate_qc(fname_in, fname_seg=labeled_seg_file, args=args, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae') sct.display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])
def fmri_moco(param): file_data = "fmri.nii" mat_final = 'mat_final/' ext_mat = 'Warp.nii.gz' # warping field # Get dimensions of data sct.printv('\nGet dimensions of data...', param.verbose) im_data = Image(param.fname_data) nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv( ' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), param.verbose) # Get orientation sct.printv('\nData orientation: ' + im_data.orientation, param.verbose) if im_data.orientation[2] in 'LR': param.is_sagittal = True sct.printv(' Treated as sagittal') elif im_data.orientation[2] in 'IS': param.is_sagittal = False sct.printv(' Treated as axial') else: param.is_sagittal = False sct.printv( 'WARNING: Orientation seems to be neither axial nor sagittal.') # Adjust group size in case of sagittal scan if param.is_sagittal and param.group_size != 1: sct.printv( 'For sagittal data group_size should be one for more robustness. Forcing group_size=1.', 1, 'warning') param.group_size = 1 # Split into T dimension sct.printv('\nSplit along T dimension...', param.verbose) im_data_split_list = split_data(im_data, 3) for im in im_data_split_list: x_dirname, x_basename, x_ext = sct.extract_fname(im.absolutepath) # Make further steps slurp the data to avoid too many open files (#2149) im.absolutepath = os.path.join(x_dirname, x_basename + ".nii.gz") im.save() # assign an index to each volume index_fmri = list(range(0, nt)) # Number of groups nb_groups = int(math.floor(nt / param.group_size)) # Generate groups indexes group_indexes = [] for iGroup in range(nb_groups): group_indexes.append(index_fmri[(iGroup * param.group_size):((iGroup + 1) * param.group_size)]) # add the remaining images to the last fMRI group nb_remaining = nt % param.group_size # number of remaining images if nb_remaining > 0: nb_groups += 1 group_indexes.append(index_fmri[len(index_fmri) - nb_remaining:len(index_fmri)]) # groups for iGroup in tqdm(range(nb_groups), unit='iter', unit_scale=False, desc="Merge within groups", ascii=True, ncols=80): # get index index_fmri_i = group_indexes[iGroup] nt_i = len(index_fmri_i) # Merge Images file_data_merge_i = sct.add_suffix(file_data, '_' + str(iGroup)) # cmd = fsloutput + 'fslmerge -t ' + file_data_merge_i # for it in range(nt_i): # cmd = cmd + ' ' + file_data + '_T' + str(index_fmri_i[it]).zfill(4) im_fmri_list = [] for it in range(nt_i): im_fmri_list.append(im_data_split_list[index_fmri_i[it]]) im_fmri_concat = concat_data(im_fmri_list, 3, squeeze_data=True).save(file_data_merge_i) file_data_mean = sct.add_suffix(file_data, '_mean_' + str(iGroup)) if file_data_mean.endswith(".nii"): file_data_mean += ".gz" # #2149 if param.group_size == 1: # copy to new file name instead of averaging (faster) # note: this is a bandage. Ideally we should skip this entire for loop if g=1 convert(file_data_merge_i, file_data_mean) else: # Average Images sct.run([ 'sct_maths', '-i', file_data_merge_i, '-o', file_data_mean, '-mean', 't' ], verbose=0) # if not average_data_across_dimension(file_data_merge_i+'.nii', file_data_mean+'.nii', 3): # sct.printv('ERROR in average_data_across_dimension', 1, 'error') # cmd = fsloutput + 'fslmaths ' + file_data_merge_i + ' -Tmean ' + file_data_mean # sct.run(cmd, param.verbose) # Merge groups means. The output 4D volume will be used for motion correction. sct.printv('\nMerging volumes...', param.verbose) file_data_groups_means_merge = 'fmri_averaged_groups.nii' im_mean_list = [] for iGroup in range(nb_groups): file_data_mean = sct.add_suffix(file_data, '_mean_' + str(iGroup)) if file_data_mean.endswith(".nii"): file_data_mean += ".gz" # #2149 im_mean_list.append(Image(file_data_mean)) im_mean_concat = concat_data(im_mean_list, 3).save(file_data_groups_means_merge) # Estimate moco sct.printv( '\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion...', param.verbose) sct.printv( '-------------------------------------------------------------------------------', param.verbose) param_moco = param param_moco.file_data = 'fmri_averaged_groups.nii' param_moco.file_target = sct.add_suffix(file_data, '_mean_' + param.num_target) if param_moco.file_target.endswith(".nii"): param_moco.file_target += ".gz" # #2149 param_moco.path_out = '' param_moco.todo = 'estimate_and_apply' param_moco.mat_moco = 'mat_groups' file_mat = moco.moco(param_moco) # TODO: if g=1, no need to run the block below (already applied) if param.group_size == 1: # if flag g=1, it means that all images have already been corrected, so we just need to rename the file sct.mv('fmri_averaged_groups_moco.nii', 'fmri_moco.nii') else: # create final mat folder sct.create_folder(mat_final) # Copy registration matrices sct.printv('\nCopy transformations...', param.verbose) for iGroup in range(nb_groups): for data in range( len(group_indexes[iGroup]) ): # we cannot use enumerate because group_indexes has 2 dim. # fetch all file_mat_z for given t-group list_file_mat_z = file_mat[:, iGroup] # loop across file_mat_z and copy to mat_final folder for file_mat_z in list_file_mat_z: # we want to copy 'mat_groups/mat.ZXXXXTYYYYWarp.nii.gz' --> 'mat_final/mat.ZXXXXTYYYZWarp.nii.gz' # Notice the Y->Z in the under the T index: the idea here is to use the single matrix from each group, # and apply it to all images belonging to the same group. sct.copy( file_mat_z + ext_mat, mat_final + file_mat_z[11:20] + 'T' + str(group_indexes[iGroup][data]).zfill(4) + ext_mat) # Apply moco on all fmri data sct.printv( '\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Apply moco', param.verbose) sct.printv( '-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = 'fmri.nii' param_moco.file_target = sct.add_suffix(file_data, '_mean_' + str(0)) if param_moco.file_target.endswith(".nii"): param_moco.file_target += ".gz" param_moco.path_out = '' param_moco.mat_moco = mat_final param_moco.todo = 'apply' file_mat = moco.moco(param_moco) # copy geometric information from header # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1". im_fmri = Image('fmri.nii') im_fmri_moco = Image('fmri_moco.nii') im_fmri_moco.header = im_fmri.header im_fmri_moco.save() # Extract and output the motion parameters if param.output_motion_param: from sct_image import multicomponent_split import csv #files_warp = [] files_warp_X, files_warp_Y = [], [] moco_param = [] for fname_warp in file_mat[0]: # Cropping the image to keep only one voxel in the XY plane im_warp = Image(fname_warp + ext_mat) im_warp.data = np.expand_dims(np.expand_dims( im_warp.data[0, 0, :, :, :], axis=0), axis=0) # These three lines allow to generate one file instead of two, containing X, Y and Z moco parameters #fname_warp_crop = fname_warp + '_crop_' + ext_mat #files_warp.append(fname_warp_crop) #im_warp.save(fname_warp_crop) # Separating the three components and saving X and Y only (Z is equal to 0 by default). im_warp_XYZ = multicomponent_split(im_warp) fname_warp_crop_X = fname_warp + '_crop_X_' + ext_mat im_warp_XYZ[0].save(fname_warp_crop_X) files_warp_X.append(fname_warp_crop_X) fname_warp_crop_Y = fname_warp + '_crop_Y_' + ext_mat im_warp_XYZ[1].save(fname_warp_crop_Y) files_warp_Y.append(fname_warp_crop_Y) # Calculating the slice-wise average moco estimate to provide a QC file moco_param.append([ np.mean(np.ravel(im_warp_XYZ[0].data)), np.mean(np.ravel(im_warp_XYZ[1].data)) ]) # These two lines allow to generate one file instead of two, containing X, Y and Z moco parameters #im_warp_concat = concat_data(files_warp, dim=3) #im_warp_concat.save('fmri_moco_params.nii') # Concatenating the moco parameters into a time series for X and Y components. im_warp_concat = concat_data(files_warp_X, dim=3) im_warp_concat.save('fmri_moco_params_X.nii') im_warp_concat = concat_data(files_warp_Y, dim=3) im_warp_concat.save('fmri_moco_params_Y.nii') # Writing a TSV file with the slicewise average estimate of the moco parameters, as it is a useful QC file. with open('fmri_moco_params.tsv', 'wt') as out_file: tsv_writer = csv.writer(out_file, delimiter='\t') tsv_writer.writerow(['X', 'Y']) for mocop in moco_param: tsv_writer.writerow([mocop[0], mocop[1]]) # Average volumes sct.printv('\nAveraging data...', param.verbose) sct_maths.main(args=[ '-i', 'fmri_moco.nii', '-o', 'fmri_moco_mean.nii', '-mean', 't', '-v', '0' ])
def compute_properties_along_centerline(fname_seg_image, property_list, fname_disks_image=None, smooth_factor=5.0, interpolation_mode=0, remove_temp_files=1, verbose=1): # Check list of properties # If diameters is in the list, compute major and minor axis length and check orientation compute_diameters = False property_list_local = list(property_list) if 'diameters' in property_list_local: compute_diameters = True property_list_local.remove('diameters') property_list_local.append('major_axis_length') property_list_local.append('minor_axis_length') property_list_local.append('orientation') # TODO: make sure fname_segmentation and fname_disks are in the same space path_tmp = sct.tmp_create(basename="compute_properties_along_centerline", verbose=verbose) sct.copy(fname_seg_image, path_tmp) if fname_disks_image is not None: sct.copy(fname_disks_image, path_tmp) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) fname_segmentation = os.path.abspath(fname_seg_image) path_data, file_data, ext_data = sct.extract_fname(fname_segmentation) # Change orientation of the input centerline into RPI sct.printv('\nOrient centerline to RPI orientation...', verbose) im_seg = Image(file_data + ext_data) fname_segmentation_orient = 'segmentation_rpi' + ext_data image = set_orientation(im_seg, 'RPI') image.setFileName(fname_segmentation_orient) image.save() # Initiating some variables nx, ny, nz, nt, px, py, pz, pt = image.dim resolution = 0.5 properties = {key: [] for key in property_list_local} properties['incremental_length'] = [] properties['distance_from_C1'] = [] properties['vertebral_level'] = [] properties['z_slice'] = [] # compute the spinal cord centerline based on the spinal cord segmentation number_of_points = 5 * nz x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline( fname_segmentation_orient, algo_fitting='nurbs', verbose=verbose, nurbs_pts_number=number_of_points, all_slices=False, phys_coordinates=True, remove_outliers=True) centerline = Centerline(x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv) # Compute vertebral distribution along centerline based on position of intervertebral disks if fname_disks_image is not None: fname_disks = os.path.abspath(fname_disks_image) path_data, file_data, ext_data = sct.extract_fname(fname_disks) im_disks = Image(file_data + ext_data) fname_disks_orient = 'disks_rpi' + ext_data image_disks = set_orientation(im_disks, 'RPI') image_disks.setFileName(fname_disks_orient) image_disks.save() image_disks = Image(fname_disks_orient) coord = image_disks.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = image_disks.transfo_pix2phys([[c.x, c.y, c.z]])[0] c_p.append(c.value) coord_physical.append(c_p) centerline.compute_vertebral_distribution(coord_physical) sct.printv('Computing spinal cord shape along the spinal cord...') timer_properties = sct.Timer( number_of_iteration=centerline.number_of_points) timer_properties.start() # Extracting patches perpendicular to the spinal cord and computing spinal cord shape for index in range(centerline.number_of_points): # value_out = -5.0 value_out = 0.0 current_patch = centerline.extract_perpendicular_square( image, index, resolution=resolution, interpolation_mode=interpolation_mode, border='constant', cval=value_out) # check for pixels close to the spinal cord segmentation that are out of the image from skimage.morphology import dilation patch_zero = np.copy(current_patch) patch_zero[patch_zero == value_out] = 0.0 patch_borders = dilation(patch_zero) - patch_zero """ if np.count_nonzero(patch_borders + current_patch == value_out + 1.0) != 0: c = image.transfo_phys2pix([centerline.points[index]])[0] print('WARNING: no patch for slice', c[2]) timer_properties.add_iteration() continue """ sc_properties = properties2d(patch_zero, [resolution, resolution]) if sc_properties is not None: properties['incremental_length'].append( centerline.incremental_length[index]) if fname_disks_image is not None: properties['distance_from_C1'].append( centerline.dist_points[index]) properties['vertebral_level'].append( centerline.l_points[index]) properties['z_slice'].append( image.transfo_phys2pix([centerline.points[index]])[0][2]) for property_name in property_list_local: properties[property_name].append(sc_properties[property_name]) else: c = image.transfo_phys2pix([centerline.points[index]])[0] print('WARNING: no properties for slice', c[2]) timer_properties.add_iteration() timer_properties.stop() # Adding centerline to the properties for later use properties['centerline'] = centerline # We assume that the major axis is in the right-left direction # this script checks the orientation of the spinal cord and invert axis if necessary to make sure the major axis is right-left if compute_diameters: diameter_major = properties['major_axis_length'] diameter_minor = properties['minor_axis_length'] orientation = properties['orientation'] for i, orientation_item in enumerate(orientation): if -45.0 < orientation_item < 45.0: continue else: temp = diameter_minor[i] properties['minor_axis_length'][i] = diameter_major[i] properties['major_axis_length'][i] = temp properties['RL_diameter'] = properties['major_axis_length'] properties['AP_diameter'] = properties['minor_axis_length'] del properties['major_axis_length'] del properties['minor_axis_length'] # smooth the spinal cord shape with a gaussian kernel if required # TODO: not all properties can be smoothed if smooth_factor != 0.0: # smooth_factor is in mm import scipy window = scipy.signal.hann(smooth_factor / np.mean(centerline.progressive_length)) for property_name in property_list_local: properties[property_name] = scipy.signal.convolve( properties[property_name], window, mode='same') / np.sum(window) if compute_diameters: property_list_local.remove('major_axis_length') property_list_local.remove('minor_axis_length') property_list_local.append('RL_diameter') property_list_local.append('AP_diameter') property_list = property_list_local # Display properties on the referential space. Requires intervertebral disks if verbose == 2: x_increment = 'distance_from_C1' if fname_disks_image is None: x_increment = 'incremental_length' # Display the image and plot all contours found fig, axes = plt.subplots(len(property_list_local), sharex=True, sharey=False) for k, property_name in enumerate(property_list_local): axes[k].plot(properties[x_increment], properties[property_name]) axes[k].set_ylabel(property_name) if fname_disks_image is not None: properties[ 'distance_disk_from_C1'] = centerline.distance_from_C1label # distance between each disk and C1 (or first disk) xlabel_disks = [ centerline.convert_vertlabel2disklabel[label] for label in properties['distance_disk_from_C1'] ] xtick_disks = [ properties['distance_disk_from_C1'][label] for label in properties['distance_disk_from_C1'] ] plt.xticks(xtick_disks, xlabel_disks, rotation=30) else: axes[-1].set_xlabel('Position along the spinal cord (in mm)') plt.show() # Removing temporary folder os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp) return property_list, properties
def propseg(img_input, options_dict): """ :param img_input: source image, to be segmented :param options_dict: arguments as dictionary :return: segmented Image """ arguments = options_dict fname_input_data = img_input.absolutepath fname_data = os.path.abspath(fname_input_data) contrast_type = arguments["-c"] contrast_type_conversion = {'t1': 't1', 't2': 't2', 't2s': 't2', 'dwi': 't1'} contrast_type_propseg = contrast_type_conversion[contrast_type] # Starting building the command cmd = ['isct_propseg', '-t', contrast_type_propseg] if "-ofolder" in arguments: folder_output = arguments["-ofolder"] else: folder_output = './' cmd += ['-o', folder_output] if not os.path.isdir(folder_output) and os.path.exists(folder_output): logger.error("output directory %s is not a valid directory" % folder_output) if not os.path.exists(folder_output): os.makedirs(folder_output) if "-down" in arguments: cmd += ["-down", str(arguments["-down"])] if "-up" in arguments: cmd += ["-up", str(arguments["-up"])] remove_temp_files = 1 if "-r" in arguments: remove_temp_files = int(arguments["-r"]) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # Update for propseg binary if verbose > 0: cmd += ["-verbose"] # Output options if "-mesh" in arguments: cmd += ["-mesh"] if "-centerline-binary" in arguments: cmd += ["-centerline-binary"] if "-CSF" in arguments: cmd += ["-CSF"] if "-centerline-coord" in arguments: cmd += ["-centerline-coord"] if "-cross" in arguments: cmd += ["-cross"] if "-init-tube" in arguments: cmd += ["-init-tube"] if "-low-resolution-mesh" in arguments: cmd += ["-low-resolution-mesh"] if "-detect-nii" in arguments: cmd += ["-detect-nii"] if "-detect-png" in arguments: cmd += ["-detect-png"] # Helping options use_viewer = None use_optic = True # enabled by default init_option = None rescale_header = arguments["-rescale"] if "-init" in arguments: init_option = float(arguments["-init"]) if init_option < 0: sct.printv('Command-line usage error: ' + str(init_option) + " is not a valid value for '-init'", 1, 'error') sys.exit(1) if "-init-centerline" in arguments: if str(arguments["-init-centerline"]) == "viewer": use_viewer = "centerline" elif str(arguments["-init-centerline"]) == "hough": use_optic = False else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header(str(arguments["-init-centerline"]), rescale_header, verbose=verbose) else: fname_labels_viewer = str(arguments["-init-centerline"]) cmd += ["-init-centerline", fname_labels_viewer] use_optic = False if "-init-mask" in arguments: if str(arguments["-init-mask"]) == "viewer": use_viewer = "mask" else: if rescale_header is not 1: fname_labels_viewer = func_rescale_header(str(arguments["-init-mask"]), rescale_header) else: fname_labels_viewer = str(arguments["-init-mask"]) cmd += ["-init-mask", fname_labels_viewer] use_optic = False if "-mask-correction" in arguments: cmd += ["-mask-correction", str(arguments["-mask-correction"])] if "-radius" in arguments: cmd += ["-radius", str(arguments["-radius"])] if "-detect-n" in arguments: cmd += ["-detect-n", str(arguments["-detect-n"])] if "-detect-gap" in arguments: cmd += ["-detect-gap", str(arguments["-detect-gap"])] if "-init-validation" in arguments: cmd += ["-init-validation"] if "-nbiter" in arguments: cmd += ["-nbiter", str(arguments["-nbiter"])] if "-max-area" in arguments: cmd += ["-max-area", str(arguments["-max-area"])] if "-max-deformation" in arguments: cmd += ["-max-deformation", str(arguments["-max-deformation"])] if "-min-contrast" in arguments: cmd += ["-min-contrast", str(arguments["-min-contrast"])] if "-d" in arguments: cmd += ["-d", str(arguments["-d"])] if "-distance-search" in arguments: cmd += ["-dsearch", str(arguments["-distance-search"])] if "-alpha" in arguments: cmd += ["-alpha", str(arguments["-alpha"])] # check if input image is in 3D. Otherwise itk image reader will cut the 4D image in 3D volumes and only take the first one. image_input = Image(fname_data) image_input_rpi = image_input.copy().change_orientation('RPI') nx, ny, nz, nt, px, py, pz, pt = image_input_rpi.dim if nt > 1: sct.printv('ERROR: your input image needs to be 3D in order to be segmented.', 1, 'error') path_data, file_data, ext_data = sct.extract_fname(fname_data) path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose) # rescale header (see issue #1406) if rescale_header is not 1: fname_data_propseg = func_rescale_header(fname_data, rescale_header) else: fname_data_propseg = fname_data # add to command cmd += ['-i', fname_data_propseg] # if centerline or mask is asked using viewer if use_viewer: from spinalcordtoolbox.gui.base import AnatomicalParams from spinalcordtoolbox.gui.centerline import launch_centerline_dialog params = AnatomicalParams() if use_viewer == 'mask': params.num_points = 3 params.interval_in_mm = 15 # superior-inferior interval between two consecutive labels params.starting_slice = 'midfovminusinterval' if use_viewer == 'centerline': # setting maximum number of points to a reasonable value params.num_points = 20 params.interval_in_mm = 30 params.starting_slice = 'top' im_data = Image(fname_data_propseg) im_mask_viewer = msct_image.zeros_like(im_data) # im_mask_viewer.absolutepath = sct.add_suffix(fname_data_propseg, '_labels_viewer') controller = launch_centerline_dialog(im_data, im_mask_viewer, params) fname_labels_viewer = sct.add_suffix(fname_data_propseg, '_labels_viewer') if not controller.saved: sct.printv('The viewer has been closed before entering all manual points. Please try again.', 1, 'error') sys.exit(1) # save labels controller.as_niftii(fname_labels_viewer) # add mask filename to parameters string if use_viewer == "centerline": cmd += ["-init-centerline", fname_labels_viewer] elif use_viewer == "mask": cmd += ["-init-mask", fname_labels_viewer] # If using OptiC elif use_optic: image_centerline = optic.detect_centerline(image_input, contrast_type, verbose) fname_centerline_optic = os.path.join(path_tmp, 'centerline_optic.nii.gz') image_centerline.save(fname_centerline_optic) cmd += ["-init-centerline", fname_centerline_optic] if init_option is not None: if init_option > 1: init_option /= (nz - 1) cmd += ['-init', str(init_option)] # enabling centerline extraction by default (needed by check_and_correct_segmentation() ) cmd += ['-centerline-binary'] # run propseg status, output = sct.run(cmd, verbose, raise_exception=False, is_sct_binary=True) # check status is not 0 if not status == 0: sct.printv('Automatic cord detection failed. Please initialize using -init-centerline or -init-mask (see help)', 1, 'error') sys.exit(1) # build output filename fname_seg = os.path.join(folder_output, os.path.basename(sct.add_suffix(fname_data, "_seg"))) fname_centerline = os.path.join(folder_output, os.path.basename(sct.add_suffix(fname_data, "_centerline"))) # in case header was rescaled, we need to update the output file names by removing the "_rescaled" if rescale_header is not 1: sct.mv(os.path.join(folder_output, sct.add_suffix(os.path.basename(fname_data_propseg), "_seg")), fname_seg) sct.mv(os.path.join(folder_output, sct.add_suffix(os.path.basename(fname_data_propseg), "_centerline")), fname_centerline) # if user was used, copy the labelled points to the output folder (they will then be scaled back) if use_viewer: fname_labels_viewer_new = os.path.join(folder_output, os.path.basename(sct.add_suffix(fname_data, "_labels_viewer"))) sct.copy(fname_labels_viewer, fname_labels_viewer_new) # update variable (used later) fname_labels_viewer = fname_labels_viewer_new # check consistency of segmentation if arguments["-correct-seg"] == "1": check_and_correct_segmentation(fname_seg, fname_centerline, folder_output=folder_output, threshold_distance=3.0, remove_temp_files=remove_temp_files, verbose=verbose) # copy header from input to segmentation to make sure qform is the same sct.printv("Copy header input --> output(s) to make sure qform is the same.", verbose) list_fname = [fname_seg, fname_centerline] if use_viewer: list_fname.append(fname_labels_viewer) for fname in list_fname: im = Image(fname) im.header = image_input.header im.save(dtype='int8') # they are all binary masks hence fine to save as int8 return Image(fname_seg)
def main(args=None): # initialization start_time = time.time() path_out = '.' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(sys.argv[1:]) param.fname_data = arguments['-i'] param.fname_bvecs = arguments['-bvec'] if '-bval' in arguments: param.fname_bvals = arguments['-bval'] if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] if '-g' in arguments: param.group_size = arguments['-g'] if '-m' in arguments: param.fname_mask = arguments['-m'] if '-param' in arguments: param.update(arguments['-param']) if '-thr' in arguments: param.otsu = arguments['-thr'] if '-x' in arguments: param.interp = arguments['-x'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-r' in arguments: param.remove_temp_files = int(arguments['-r']) param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level # Get full path param.fname_data = os.path.abspath(param.fname_data) param.fname_bvecs = os.path.abspath(param.fname_bvecs) if param.fname_bvals != '': param.fname_bvals = os.path.abspath(param.fname_bvals) if param.fname_mask != '': param.fname_mask = os.path.abspath(param.fname_mask) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) path_mask, file_mask, ext_mask = sct.extract_fname(param.fname_mask) path_tmp = sct.tmp_create(basename="dmri_moco", verbose=param.verbose) # names of files in temporary folder mask_name = 'mask' bvecs_fname = 'bvecs.txt' # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(param.fname_data, os.path.join(path_tmp, "dmri.nii")) sct.copy(param.fname_bvecs, os.path.join(path_tmp, bvecs_fname), verbose=param.verbose) if param.fname_mask != '': sct.copy(param.fname_mask, os.path.join(path_tmp, mask_name + ext_mask), verbose=param.verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # update field in param (because used later). # TODO: make this cleaner... if param.fname_mask != '': param.fname_mask = mask_name + ext_mask # run moco fname_data_moco_tmp = dmri_moco(param) # generate b0_moco_mean and dwi_moco_mean args = [ '-i', fname_data_moco_tmp, '-bvec', 'bvecs.txt', '-a', '1', '-v', '0' ] if not param.fname_bvals == '': # if bvals file is provided args += ['-bval', param.fname_bvals] fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean = sct_dmri_separate_b0_and_dwi.main( args=args) # come back os.chdir(curdir) # Generate output files fname_dmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data) fname_dmri_moco_b0_mean = sct.add_suffix(fname_dmri_moco, '_b0_mean') fname_dmri_moco_dwi_mean = sct.add_suffix(fname_dmri_moco, '_dwi_mean') sct.create_folder(path_out) sct.printv('\nGenerate output files...', param.verbose) sct.generate_output_file(fname_data_moco_tmp, fname_dmri_moco, param.verbose) sct.generate_output_file(fname_b0_mean, fname_dmri_moco_b0_mean, param.verbose) sct.generate_output_file(fname_dwi_mean, fname_dmri_moco_dwi_mean, param.verbose) # Delete temporary files if param.remove_temp_files == 1: sct.printv('\nDelete temporary files...', param.verbose) sct.rmtree(path_tmp, verbose=param.verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv( '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) sct.display_viewer_syntax([fname_dmri_moco, file_data], mode='ortho,ortho')
def compute_ratio(self): type_ratio = self.param_seg.ratio tmp_dir_ratio = tmp_create(basename="compute_ratio") curdir = os.getcwd() os.chdir(tmp_dir_ratio) fname_gmseg = self.im_res_gmseg.absolutepath fname_wmseg = self.im_res_wmseg.absolutepath if self.im_res_gmseg.orientation != "RPI": fname_gmseg = self.im_res_gmseg.change_orientation( self.im_res_gmseg, 'RPI', generate_path=True).save().absolutepath fname_wmseg = self.im_res_wmseg.change_orientation( self.im_res_wmseg, 'RPI', generate_path=True).save().absolutepath sct_process_segmentation.main([ '-i', fname_gmseg, '-p', 'csa', '-ofolder', 'gm_csa', '-no-angle', '1' ]) sct_process_segmentation.main([ '-i', fname_wmseg, '-p', 'csa', '-ofolder', 'wm_csa', '-no-angle', '1' ]) gm_csa = open(os.path.join('gm_csa', 'csa_per_slice.txt'), 'r') wm_csa = open(os.path.join('wm_csa', 'csa_per_slice.txt'), 'r') gm_csa_lines = gm_csa.readlines() wm_csa_lines = wm_csa.readlines() gm_csa.close() wm_csa.close() fname_ratio = 'ratio_by_' + type_ratio + '.txt' file_ratio = open(fname_ratio, 'w') file_ratio.write(type_ratio + ', ratio GM/WM CSA\n') csa_gm_wm_by_level = { 0: [], 1: [], 2: [], 3: [], 4: [], 5: [], 6: [], 7: [], 8: [], 9: [], 10: [], 11: [], 12: [], 13: [], 14: [], 15: [], 16: [], 17: [], 18: [], 19: [], 20: [], 21: [], 22: [], 23: [], 24: [] } for gm_line, wm_line in zip(gm_csa_lines[1:], wm_csa_lines[1:]): i, gm_area, gm_angle = gm_line.split(',') j, wm_area, wm_angle = wm_line.split(',') assert i == j if type_ratio == 'level': level_slice = int(self.target_im[int(i)].level) csa_gm_wm_by_level[level_slice].append( (float(gm_area), float(wm_area))) else: file_ratio.write(i + ', ' + str(float(gm_area) / float(wm_area)) + '\n') if type_ratio == 'level': for l, gm_wm_list in sorted(csa_gm_wm_by_level.items()): if str(gm_wm_list) != '[]': csa_gm_list = [] csa_wm_list = [] for gm, wm in gm_wm_list: csa_gm_list.append(gm) csa_wm_list.append(wm) csa_gm = np.mean(csa_gm_list) csa_wm = np.mean(csa_wm_list) file_ratio.write( str(l) + ', ' + str(csa_gm / csa_wm) + '\n') file_ratio.close() sct.copy(fname_ratio, os.path.join(self.param_seg.path_results, fname_ratio)) os.chdir(curdir)
def dmri_moco(param): file_data = 'dmri.nii' file_data_dirname, file_data_basename, file_data_ext = sct.extract_fname( file_data) file_b0 = 'b0.nii' file_dwi = 'dwi.nii' ext_data = '.nii.gz' # workaround "too many open files" by slurping the data mat_final = 'mat_final/' file_dwi_group = 'dwi_averaged_groups.nii' ext_mat = 'Warp.nii.gz' # warping field # Get dimensions of data sct.printv('\nGet dimensions of data...', param.verbose) im_data = Image(file_data) nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv(' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), param.verbose) # Identify b=0 and DWI images index_b0, index_dwi, nb_b0, nb_dwi = sct_dmri_separate_b0_and_dwi.identify_b0( 'bvecs.txt', param.fname_bvals, param.bval_min, param.verbose) # check if dmri and bvecs are the same size if not nb_b0 + nb_dwi == nt: sct.printv( '\nERROR in ' + os.path.basename(__file__) + ': Size of data (' + str(nt) + ') and size of bvecs (' + str(nb_b0 + nb_dwi) + ') are not the same. Check your bvecs file.\n', 1, 'error') sys.exit(2) # Prepare NIFTI (mean/groups...) #=================================================================================================================== # Split into T dimension sct.printv('\nSplit along T dimension...', param.verbose) im_data_split_list = split_data(im_data, 3) for im in im_data_split_list: x_dirname, x_basename, x_ext = sct.extract_fname(im.absolutepath) im.absolutepath = os.path.join(x_dirname, x_basename + ".nii.gz") im.save() # Merge b=0 images sct.printv('\nMerge b=0...', param.verbose) im_b0_list = [] for it in range(nb_b0): im_b0_list.append(im_data_split_list[index_b0[it]]) im_b0_out = concat_data(im_b0_list, 3).save(file_b0) sct.printv((' File created: ' + file_b0), param.verbose) # Average b=0 images sct.printv('\nAverage b=0...', param.verbose) file_b0_mean = sct.add_suffix(file_b0, '_mean') sct.run(['sct_maths', '-i', file_b0, '-o', file_b0_mean, '-mean', 't'], param.verbose) # Number of DWI groups nb_groups = int(math.floor(nb_dwi / param.group_size)) # Generate groups indexes group_indexes = [] for iGroup in range(nb_groups): group_indexes.append(index_dwi[(iGroup * param.group_size):((iGroup + 1) * param.group_size)]) # add the remaining images to the last DWI group nb_remaining = nb_dwi % param.group_size # number of remaining images if nb_remaining > 0: nb_groups += 1 group_indexes.append(index_dwi[len(index_dwi) - nb_remaining:len(index_dwi)]) file_dwi_dirname, file_dwi_basename, file_dwi_ext = sct.extract_fname( file_dwi) # DWI groups file_dwi_mean = [] for iGroup in tqdm(range(nb_groups), unit='iter', unit_scale=False, desc="Merge within groups", ascii=True, ncols=80): # get index index_dwi_i = group_indexes[iGroup] nb_dwi_i = len(index_dwi_i) # Merge DW Images file_dwi_merge_i = os.path.join( file_dwi_dirname, file_dwi_basename + '_' + str(iGroup) + ext_data) im_dwi_list = [] for it in range(nb_dwi_i): im_dwi_list.append(im_data_split_list[index_dwi_i[it]]) im_dwi_out = concat_data(im_dwi_list, 3).save(file_dwi_merge_i) # Average DW Images file_dwi_mean_i = os.path.join( file_dwi_dirname, file_dwi_basename + '_mean_' + str(iGroup) + ext_data) file_dwi_mean.append(file_dwi_mean_i) sct.run([ "sct_maths", "-i", file_dwi_merge_i, "-o", file_dwi_mean[iGroup], "-mean", "t" ], 0) # Merge DWI groups means sct.printv('\nMerging DW files...', param.verbose) # file_dwi_groups_means_merge = 'dwi_averaged_groups' im_dw_list = [] for iGroup in range(nb_groups): im_dw_list.append(file_dwi_mean[iGroup]) im_dw_out = concat_data(im_dw_list, 3).save(file_dwi_group) # Average DW Images # TODO: USEFULL ??? sct.printv('\nAveraging all DW images...', param.verbose) sct.run([ "sct_maths", "-i", file_dwi_group, "-o", file_dwi_group + '_mean' + ext_data, "-mean", "t" ], param.verbose) # segment dwi images using otsu algorithm if param.otsu: sct.printv('\nSegment group DWI using OTSU algorithm...', param.verbose) # import module otsu = importlib.import_module('sct_otsu') # get class from module param_otsu = otsu.param() #getattr(otsu, param) param_otsu.fname_data = file_dwi_group param_otsu.threshold = param.otsu param_otsu.file_suffix = '_seg' # run otsu otsu.otsu(param_otsu) file_dwi_group = file_dwi_group + '_seg.nii' # START MOCO #=================================================================================================================== # Estimate moco on b0 groups sct.printv( '\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion on b=0 images...', param.verbose) sct.printv( '-------------------------------------------------------------------------------', param.verbose) param_moco = param param_moco.file_data = 'b0.nii' # identify target image if index_dwi[0] != 0: # If first DWI is not the first volume (most common), then there is a least one b=0 image before. In that case # select it as the target image for registration of all b=0 param_moco.file_target = os.path.join( file_data_dirname, file_data_basename + '_T' + str(index_b0[index_dwi[0] - 1]).zfill(4) + ext_data) else: # If first DWI is the first volume, then the target b=0 is the first b=0 from the index_b0. param_moco.file_target = os.path.join( file_data_dirname, file_data_basename + '_T' + str(index_b0[0]).zfill(4) + ext_data) param_moco.path_out = '' param_moco.todo = 'estimate' param_moco.mat_moco = 'mat_b0groups' file_mat_b0 = moco.moco(param_moco) # Estimate moco on dwi groups sct.printv( '\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion on DW images...', param.verbose) sct.printv( '-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = file_dwi_group param_moco.file_target = file_dwi_mean[ 0] # target is the first DW image (closest to the first b=0) param_moco.path_out = '' param_moco.todo = 'estimate_and_apply' param_moco.mat_moco = 'mat_dwigroups' file_mat_dwi = moco.moco(param_moco) # create final mat folder sct.create_folder(mat_final) # Copy b=0 registration matrices # TODO: use file_mat_b0 and file_mat_dwi instead of the hardcoding below sct.printv('\nCopy b=0 registration matrices...', param.verbose) for it in range(nb_b0): sct.copy( 'mat_b0groups/' + 'mat.Z0000T' + str(it).zfill(4) + ext_mat, mat_final + 'mat.Z0000T' + str(index_b0[it]).zfill(4) + ext_mat) # Copy DWI registration matrices sct.printv('\nCopy DWI registration matrices...', param.verbose) for iGroup in range(nb_groups): for dwi in range( len(group_indexes[iGroup]) ): # we cannot use enumerate because group_indexes has 2 dim. sct.copy( 'mat_dwigroups/' + 'mat.Z0000T' + str(iGroup).zfill(4) + ext_mat, mat_final + 'mat.Z0000T' + str(group_indexes[iGroup][dwi]).zfill(4) + ext_mat) # Spline Regularization along T if param.spline_fitting: moco.spline(mat_final, nt, nz, param.verbose, np.array(index_b0), param.plot_graph) # combine Eddy Matrices if param.run_eddy: param.mat_2_combine = 'mat_eddy' param.mat_final = mat_final moco.combine_matrix(param) # Apply moco on all dmri data sct.printv( '\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Apply moco', param.verbose) sct.printv( '-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = file_data param_moco.file_target = os.path.join( file_dwi_dirname, file_dwi_basename + '_mean_' + str(0) + ext_data) # reference for reslicing into proper coordinate system param_moco.path_out = '' param_moco.mat_moco = mat_final param_moco.todo = 'apply' moco.moco(param_moco) # copy geometric information from header # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1". im_dmri = Image(file_data) fname_data_moco = os.path.join(file_data_dirname, file_data_basename + param.suffix + '.nii') im_dmri_moco = Image(fname_data_moco) im_dmri_moco.header = im_dmri.header im_dmri_moco.save() return os.path.abspath(fname_data_moco)
def main(args=None): # Initialization # fname_anat = '' # fname_centerline = '' sigma = 3 # default value of the standard deviation for the Gaussian smoothing (in terms of number of voxels) param = Param() # remove_temp_files = param.remove_temp_files # verbose = param.verbose start_time = time.time() parser = get_parser() arguments = parser.parse(sys.argv[1:]) fname_anat = arguments['-i'] fname_centerline = arguments['-s'] if '-smooth' in arguments: sigma = arguments['-smooth'] if '-param' in arguments: param.update(arguments['-param']) if '-r' in arguments: remove_temp_files = int(arguments['-r']) if '-v' in arguments: verbose = int(arguments['-v']) # Display arguments sct.printv('\nCheck input arguments...') sct.printv(' Volume to smooth .................. ' + fname_anat) sct.printv(' Centerline ........................ ' + fname_centerline) sct.printv(' Sigma (mm) ........................ ' + str(sigma)) sct.printv(' Verbose ........................... ' + str(verbose)) # Check that input is 3D: from spinalcordtoolbox.image import Image nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim dim = 4 # by default, will be adjusted later if nt == 1: dim = 3 if nz == 1: dim = 2 if dim == 4: sct.printv( 'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n' 'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning') sct.printv('4D images not supported, aborting ...', verbose, 'error') # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_centerline, file_centerline, ext_centerline = sct.extract_fname( fname_centerline) path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat)) sct.copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert to nii format convert('anat' + ext_anat, 'anat.nii') convert('centerline' + ext_centerline, 'centerline.nii') # Change orientation of the input image into RPI sct.printv('\nOrient input volume to RPI orientation...') fname_anat_rpi = msct_image.Image("anat.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Change orientation of the input image into RPI sct.printv('\nOrient centerline to RPI orientation...') fname_centerline_rpi = msct_image.Image("centerline.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Straighten the spinal cord # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) cache_sig = sct.cache_signature( input_files=[fname_anat_rpi, fname_centerline_rpi], input_params={"x": "spline"}, ) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile( os.path.join( curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile( os.path.join( curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile( os.path.join(curdir, 'straight_ref.nii.gz')): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz') # apply straightening sct.run([ 'sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline' ], verbose) else: sct.run([ 'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting=' + param.algo_fitting ], verbose) sct.cache_save(cachefile, cache_sig) # Smooth the straightened image along z sct.printv('\nSmooth the straightened image along z...') sct.run([ 'sct_maths', '-i', 'anat_rpi_straight.nii', '-smooth', '0,0,' + str(sigma), '-o', 'anat_rpi_straight_smooth.nii' ], verbose) # Apply the reversed warping field to get back the curved spinal cord sct.printv( '\nApply the reversed warping field to get back the curved spinal cord...' ) sct.run([ 'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline' ], verbose) # replace zeroed voxels by original image (issue #937) sct.printv('\nReplace zeroed voxels by original image...', verbose) nii_smooth = Image('anat_rpi_straight_smooth_curved.nii') data_smooth = nii_smooth.data data_input = Image('anat.nii').data indzero = np.where(data_smooth == 0) data_smooth[indzero] = data_input[indzero] nii_smooth.data = data_smooth nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii') # come back os.chdir(curdir) # Generate output file sct.printv('\nGenerate output file...') sct.generate_output_file( os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"), file_anat + '_smooth' + ext_anat) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # Display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') sct.display_viewer_syntax([file_anat, file_anat + '_smooth'], verbose=verbose)
resample_to = 0.1 if "-d" in arguments: input_second_fname = arguments["-d"] if "-thinning" in arguments: param.thinning = bool(int(arguments["-thinning"])) if "-resampling" in arguments: resample_to = arguments["-resampling"] if "-o" in arguments: output_fname = arguments["-o"] param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level tmp_dir = sct.tmp_create() im1_name = "im1.nii.gz" sct.copy(input_fname, os.path.join(tmp_dir, im1_name)) if input_second_fname != '': im2_name = 'im2.nii.gz' sct.copy(input_second_fname, os.path.join(tmp_dir, im2_name)) else: im2_name = None curdir = os.getcwd() os.chdir(tmp_dir) # now = time.time() input_im1 = Image(resample_image(im1_name, binary=True, thr=0.5, npx=resample_to, npy=resample_to)) input_im1.absolutepath = os.path.basename(input_fname) if im2_name is not None: input_im2 = Image(resample_image(im2_name, binary=True, thr=0.5, npx=resample_to, npy=resample_to)) input_im2.absolutepath = os.path.basename(input_second_fname)
def spline(folder_mat, nt, nz, verbose, index_b0 = [], graph=0): sct.printv('\n\n\n------------------------------------------------------------------------------', verbose) sct.printv('Spline Regularization along T: Smoothing Patient Motion...', verbose) file_mat = [[[] for i in range(nz)] for i in range(nt)] for it in range(nt): for iz in range(nz): file_mat[it][iz] = os.path.join(folder_mat, "mat.T") + str(it) + '_Z' + str(iz) + '.txt' # Copying the existing Matrices to another folder old_mat = os.path.join(folder_mat, "old") if not os.path.exists(old_mat): os.makedirs(old_mat) # TODO for mat in glob.glob(os.path.join(folder_mat, '*.txt')): sct.copy(mat, old_mat) sct.printv('\nloading matrices...', verbose) X = [[[] for i in range(nt)] for i in range(nz)] Y = [[[] for i in range(nt)] for i in range(nz)] X_smooth = [[[] for i in range(nt)] for i in range(nz)] Y_smooth = [[[] for i in range(nt)] for i in range(nz)] for iz in range(nz): for it in range(nt): file = open(file_mat[it][iz]) Matrix = np.loadtxt(file) file.close() X[iz][it] = Matrix[0, 3] Y[iz][it] = Matrix[1, 3] # Generate motion splines sct.printv('\nGenerate motion splines...', verbose) T = np.arange(nt) if graph: import pylab as pl for iz in range(nz): spline = scipy.interpolate.UnivariateSpline(T, X[iz][:], w=None, bbox=[None, None], k=3, s=None) X_smooth[iz][:] = spline(T) if graph: pl.plot(T, X_smooth[iz][:], label='spline_smoothing') pl.plot(T, X[iz][:], marker='*', linestyle='None', label='original_val') if len(index_b0) != 0: T_b0 = [T[i_b0] for i_b0 in index_b0] X_b0 = [X[iz][i_b0] for i_b0 in index_b0] pl.plot(T_b0, X_b0, marker='D', linestyle='None', color='k', label='b=0') pl.title('X') pl.grid() pl.legend() pl.show() spline = scipy.interpolate.UnivariateSpline(T, Y[iz][:], w=None, bbox=[None, None], k=3, s=None) Y_smooth[iz][:] = spline(T) if graph: pl.plot(T, Y_smooth[iz][:], label='spline_smoothing') pl.plot(T, Y[iz][:], marker='*', linestyle='None', label='original_val') if len(index_b0) != 0: T_b0 = [T[i_b0] for i_b0 in index_b0] Y_b0 = [Y[iz][i_b0] for i_b0 in index_b0] pl.plot(T_b0, Y_b0, marker='D', linestyle='None', color='k', label='b=0') pl.title('Y') pl.grid() pl.legend() pl.show() # Storing the final Matrices sct.printv('\nStoring the final Matrices...', verbose) for iz in range(nz): for it in range(nt): file = open(file_mat[it][iz]) Matrix = np.loadtxt(file) file.close() Matrix[0, 3] = X_smooth[iz][it] Matrix[1, 3] = Y_smooth[iz][it] file = open(file_mat[it][iz], 'w') np.savetxt(file_mat[it][iz], Matrix, fmt="%s", delimiter=' ', newline='\n') file.close() sct.printv('\n...Done. Patient motion has been smoothed', verbose) sct.printv('------------------------------------------------------------------------------\n', verbose)
def main(args=None): if not args: args = sys.argv[1:] # initialize parameters param = Param() # call main function parser = get_parser() arguments = parser.parse(args) fname_data = arguments['-i'] fname_bvecs = arguments['-bvec'] average = arguments['-a'] verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level remove_temp_files = int(arguments['-r']) path_out = arguments['-ofolder'] if '-bval' in arguments: fname_bvals = arguments['-bval'] else: fname_bvals = '' if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] # Initialization start_time = time.time() # sct.printv(arguments) sct.printv('\nInput parameters:', verbose) sct.printv(' input file ............' + fname_data, verbose) sct.printv(' bvecs file ............' + fname_bvecs, verbose) sct.printv(' bvals file ............' + fname_bvals, verbose) sct.printv(' average ...............' + str(average), verbose) # Get full path fname_data = os.path.abspath(fname_data) fname_bvecs = os.path.abspath(fname_bvecs) if fname_bvals: fname_bvals = os.path.abspath(fname_bvals) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(fname_data) # create temporary folder path_tmp = sct.tmp_create(basename="dmri_separate", verbose=verbose) # copy files into tmp folder and convert to nifti sct.printv('\nCopy files into temporary folder...', verbose) ext = '.nii' dmri_name = 'dmri' b0_name = file_data + '_b0' b0_mean_name = b0_name + '_mean' dwi_name = file_data + '_dwi' dwi_mean_name = dwi_name + '_mean' if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)): sct.printv('ERROR in convert.', 1, 'error') sct.copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Get size of data im_dmri = Image(dmri_name + ext) sct.printv('\nGet dimensions data...', verbose) nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # Identify b=0 and DWI images sct.printv(fname_bvals) index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals, param.bval_min, verbose) # Split into T dimension sct.printv('\nSplit along T dimension...', verbose) im_dmri_split_list = split_data(im_dmri, 3) for im_d in im_dmri_split_list: im_d.save() # Merge b=0 images sct.printv('\nMerge b=0...', verbose) from sct_image import concat_data l = [] for it in range(nb_b0): l.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(b0_name + ext) # Average b=0 images if average: sct.printv('\nAverage b=0...', verbose) sct.run(['sct_maths', '-i', b0_name + ext, '-o', b0_mean_name + ext, '-mean', 't'], verbose) # Merge DWI l = [] for it in range(nb_dwi): l.append(dmri_name + '_T' + str(index_dwi[it]).zfill(4) + ext) im_out = concat_data(l, 3).save(dwi_name + ext) # Average DWI images if average: sct.printv('\nAverage DWI...', verbose) sct.run(['sct_maths', '-i', dwi_name + ext, '-o', dwi_mean_name + ext, '-mean', 't'], verbose) # come back os.chdir(curdir) # Generate output files fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data)) fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data)) fname_b0_mean = os.path.abspath(os.path.join(path_out, b0_mean_name + ext_data)) fname_dwi_mean = os.path.abspath(os.path.join(path_out, dwi_mean_name + ext_data)) sct.printv('\nGenerate output files...', verbose) sct.generate_output_file(os.path.join(path_tmp, b0_name + ext), fname_b0, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_name + ext), fname_dwi, verbose) if average: sct.generate_output_file(os.path.join(path_tmp, b0_mean_name + ext), fname_b0_mean, verbose) sct.generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext), fname_dwi_mean, verbose) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose) return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
def apply(self): # Initialization fname_src = self.input_filename # source image (moving) list_warp = self.list_warp # list of warping fields fname_out = self.output_filename # output fname_dest = self.fname_dest # destination image (fix) verbose = self.verbose remove_temp_files = self.remove_temp_files crop_reference = self.crop # if = 1, put 0 everywhere around warping field, if = 2, real crop interp = sct.get_interpolation('isct_antsApplyTransforms', self.interp) # Parse list of warping fields sct.printv('\nParse list of warping fields...', verbose) use_inverse = [] fname_warp_list_invert = [] # list_warp = list_warp.replace(' ', '') # remove spaces # list_warp = list_warp.split(",") # parse with comma for idx_warp, path_warp in enumerate(self.list_warp): # Check if this transformation should be inverted if path_warp in self.list_warpinv: use_inverse.append('-i') # list_warp[idx_warp] = path_warp[1:] # remove '-' fname_warp_list_invert += [[ use_inverse[idx_warp], list_warp[idx_warp] ]] else: use_inverse.append('') fname_warp_list_invert += [[path_warp]] path_warp = list_warp[idx_warp] if path_warp.endswith((".nii", ".nii.gz")) \ and msct_image.Image(list_warp[idx_warp]).header.get_intent()[0] != 'vector': raise ValueError("Displacement field in {} is invalid: should be encoded" \ " in a 5D file with vector intent code" \ " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h" \ .format(path_warp)) # need to check if last warping field is an affine transfo isLastAffine = False path_fname, file_fname, ext_fname = sct.extract_fname( fname_warp_list_invert[-1][-1]) if ext_fname in ['.txt', '.mat']: isLastAffine = True # check if destination file is 3d if not sct.check_if_3d(fname_dest): sct.printv('ERROR: Destination data must be 3d') # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order fname_warp_list_invert.reverse() fname_warp_list_invert = functools.reduce(lambda x, y: x + y, fname_warp_list_invert) # Extract path, file and extension path_src, file_src, ext_src = sct.extract_fname(fname_src) path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest) # Get output folder and file name if fname_out == '': path_out = '' # output in user's current directory file_out = file_src + '_reg' ext_out = ext_src fname_out = os.path.join(path_out, file_out + ext_out) # Get dimensions of data sct.printv('\nGet dimensions of data...', verbose) img_src = msct_image.Image(fname_src) nx, ny, nz, nt, px, py, pz, pt = img_src.dim # nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_src) sct.printv( ' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose) # if 3d if nt == 1: # Apply transformation sct.printv('\nApply transformation...', verbose) if nz in [0, 1]: dim = '2' else: dim = '3' sct.run([ 'isct_antsApplyTransforms', '-d', dim, '-i', fname_src, '-o', fname_out, '-t' ] + fname_warp_list_invert + ['-r', fname_dest] + interp, verbose=verbose, is_sct_binary=True) # if 4d, loop across the T dimension else: path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose) # convert to nifti into temp folder sct.printv( '\nCopying input data to tmp folder and convert to nii...', verbose) img_src.save(os.path.join(path_tmp, "data.nii")) sct.copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest)) fname_warp_list_tmp = [] for fname_warp in list_warp: path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp) sct.copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp)) fname_warp_list_tmp.append(file_warp + ext_warp) fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1] curdir = os.getcwd() os.chdir(path_tmp) # split along T dimension sct.printv('\nSplit along T dimension...', verbose) im_dat = msct_image.Image('data.nii') im_header = im_dat.hdr data_split_list = sct_image.split_data(im_dat, 3) for im in data_split_list: im.save() # apply transfo sct.printv('\nApply transformation to each 3D volume...', verbose) for it in range(nt): file_data_split = 'data_T' + str(it).zfill(4) + '.nii' file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii' status, output = sct.run([ 'isct_antsApplyTransforms', '-d', '3', '-i', file_data_split, '-o', file_data_split_reg, '-t', ] + fname_warp_list_invert_tmp + [ '-r', file_dest + ext_dest, ] + interp, verbose, is_sct_binary=True) # Merge files back sct.printv('\nMerge file back...', verbose) import glob path_out, name_out, ext_out = sct.extract_fname(fname_out) # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')] # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715) fname_list = glob.glob('data_reg_T*.nii') fname_list.sort() im_out = sct_image.concat_data(fname_list, 3, im_header['pixdim']) im_out.save(name_out + ext_out) os.chdir(curdir) sct.generate_output_file( os.path.join(path_tmp, name_out + ext_out), fname_out) # Delete temporary folder if specified if int(remove_temp_files): sct.printv('\nRemove temporary files...', verbose) sct.rmtree(path_tmp, verbose=verbose) # 2. crop the resulting image using dimensions from the warping field warping_field = fname_warp_list_invert[-1] # if last warping field is an affine transfo, we need to compute the space of the concatenate warping field: if isLastAffine: sct.printv( 'WARNING: the resulting image could have wrong apparent results. You should use an affine transformation as last transformation...', verbose, 'warning') elif crop_reference == 1: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field, background=0).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field+' -b 0') elif crop_reference == 2: ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field).crop() # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field) sct.display_viewer_syntax([fname_dest, fname_out], verbose=verbose)
def main(): # Parameters bootstrap_iter = 200 folder_atlas = '../create_atlas/final_results/' # path to atlas. add / at the end folder_cropped_atlas = "cropped_atlas/" crop = 0 # crop atlas, default=1. Only need to do it once (saves time). zcrop_ind = [10, 110, 210, 310, 410] mask_folder = ['manual_masks/charles/', 'manual_masks/julien/', 'manual_masks/tanguy/', 'manual_masks/simon/'] # folder of manual masks std_noise_list = [0, 5, 10, 20] # standard deviation of the noise added to the generated phantom fixed_noise = 10 # in percent range_tract_list = [0, 5, 10, 20] # in percent fixed_range = 10 # in percent val_csf_list = [5, 10, 50, 100] # in percent of white matter val_csf_fixed = 50 list_methods = ['ml', 'map', 'wa', 'wath', 'bin', 'man0', 'man1', 'man2', 'man3'] param_map_list = ['0,20', '5,20', '10,20', '15,20', '20,20', '25,20', '30,20', '20,0', '20,5', '20,10', '20,15', '20,20', '20,25', '20,30'] results_folder = 'results/' # add / at the end # Crop the atlas if crop == 1: create_folder(folder_cropped_atlas, 1) crop_atlas(folder_atlas, folder_cropped_atlas, zcrop_ind) # Copy the info_label.txt file in the cropped atlas' folder. This file needs to be there in order for the sct_extract_metric code to work sct.copy(os.path.join(folder_atlas, 'info_label.txt'), folder_cropped_atlas) # create output folder create_folder(results_folder, 1) # loop across noise levels range_tract = fixed_range val_csf = val_csf_fixed for std_noise in std_noise_list: results_file = 'results_noise'+str(std_noise)+'_range'+str(range_tract)+'_csf'+str(val_csf) validate_atlas(folder_cropped_atlas, bootstrap_iter, std_noise, range_tract, val_csf, results_folder+'noise/', results_file, mask_folder, list_methods) # loop across tract ranges std_noise = fixed_noise val_csf = val_csf_fixed for range_tract in range_tract_list: results_file = 'results_noise'+str(std_noise)+'_range'+str(range_tract)+'_csf'+str(val_csf) validate_atlas(folder_cropped_atlas, bootstrap_iter, std_noise, range_tract, val_csf, results_folder+'tracts/', results_file, mask_folder, list_methods) # loop across CSF value std_noise = fixed_noise range_tract = fixed_range for val_csf in val_csf_list: results_file = 'results_noise'+str(std_noise)+'_range'+str(range_tract)+'_csf'+str(val_csf) validate_atlas(folder_cropped_atlas, bootstrap_iter, std_noise, range_tract, val_csf, results_folder+'csf/', results_file, mask_folder, list_methods) # bin vs manual std_noise = fixed_noise range_tract = fixed_range val_csf = val_csf_fixed results_file = 'results_noise'+str(std_noise)+'_range'+str(range_tract)+'_csf'+str(val_csf) validate_atlas(folder_cropped_atlas, bootstrap_iter, std_noise, range_tract, val_csf, results_folder+'manual_mask/', results_file, mask_folder, ['bin', 'man0', 'man1', 'man2', 'man3'], 0, '20,20', ['2', '17', '0,1,15,16']) # loop across params for MAP estimation std_noise = fixed_noise range_tract = fixed_range val_csf = val_csf_fixed for param_map in param_map_list: results_file = 'results_map'+str(param_map) validate_atlas(folder_cropped_atlas, bootstrap_iter, std_noise, range_tract, val_csf, results_folder+'map/', results_file, mask_folder, ['map'], 1, param_map)
def deep_segmentation_MSlesion(fname_image, contrast_type, output_folder, ctr_algo='svm', ctr_file=None, brain_bool=True, remove_temp_files=1, verbose=1): """Pipeline.""" path_script = os.path.dirname(__file__) path_sct = os.path.dirname(path_script) # create temporary folder with intermediate results sct.log.info("\nCreating temporary folder...") file_fname = os.path.basename(fname_image) tmp_folder = sct.TempFolder() tmp_folder_path = tmp_folder.get_path() fname_image_tmp = tmp_folder.copy_from(fname_image) if ctr_algo == 'manual': # if the ctr_file is provided tmp_folder.copy_from(ctr_file) file_ctr = os.path.basename(ctr_file) else: file_ctr = None tmp_folder.chdir() # orientation of the image, should be RPI sct.log.info("\nReorient the image to RPI, if necessary...") fname_orient = sct.add_suffix(file_fname, '_RPI') im_2orient = Image(file_fname) original_orientation = im_2orient.orientation if original_orientation != 'RPI': im_orient = msct_image.change_orientation(im_2orient, 'RPI').save(fname_orient) else: im_orient = im_2orient sct.copy(fname_image_tmp, fname_orient) input_resolution = im_orient.dim[4:7] del im_2orient, im_orient # find the spinal cord centerline - execute OptiC binary sct.log.info("\nFinding the spinal cord centerline...") contrast_type_ctr = contrast_type.split('_')[0] fname_res, centerline_filename = find_centerline(algo=ctr_algo, image_fname=fname_orient, path_sct=path_sct, contrast_type=contrast_type_ctr, brain_bool=brain_bool, folder_output=tmp_folder_path, remove_temp_files=remove_temp_files, centerline_fname=file_ctr) im_nii, ctr_nii = Image(fname_res), Image(centerline_filename) # crop image around the spinal cord centerline sct.log.info("\nCropping the image around the spinal cord...") fname_crop = sct.add_suffix(fname_res, '_crop') crop_size = 48 X_CROP_LST, Y_CROP_LST, im_crop_nii = crop_image_around_centerline(im_in=im_nii, ctr_in=ctr_nii, crop_size=crop_size) del ctr_nii # normalize the intensity of the images sct.log.info("Normalizing the intensity...") im_norm_in = apply_intensity_normalization(img=im_crop_nii, contrast=contrast_type) del im_crop_nii # resample to 0.5mm isotropic fname_norm = sct.add_suffix(fname_orient, '_norm') im_norm_in.save(fname_norm) fname_res3d = sct.add_suffix(fname_norm, '_resampled3d') spinalcordtoolbox.resample.nipy_resample.resample_file(fname_norm, fname_res3d, '0.5x0.5x0.5', 'mm', 'linear', verbose=0) # segment data using 3D convolutions sct.log.info("\nSegmenting the MS lesions using deep learning on 3D patches...") segmentation_model_fname = os.path.join(path_sct, 'data', 'deepseg_lesion_models', '{}_lesion.h5'.format(contrast_type)) fname_seg_crop_res = sct.add_suffix(fname_res3d, '_lesionseg') segment_3d(model_fname=segmentation_model_fname, contrast_type=contrast_type, fname_in=fname_res3d, fname_out=fname_seg_crop_res) # resample to the initial pz resolution fname_seg_res2d = sct.add_suffix(fname_seg_crop_res, '_resampled2d') initial_2d_resolution = 'x'.join(['0.5', '0.5', str(input_resolution[2])]) spinalcordtoolbox.resample.nipy_resample.resample_file(fname_seg_crop_res, fname_seg_res2d, initial_2d_resolution, 'mm', 'linear', verbose=0) seg_crop_data = Image(fname_seg_res2d).data # reconstruct the segmentation from the crop data sct.log.info("\nReassembling the image...") seg_uncrop_nii = uncrop_image(ref_in=im_nii, data_crop=seg_crop_data, x_crop_lst=X_CROP_LST, y_crop_lst=Y_CROP_LST) fname_seg_res_RPI = sct.add_suffix(file_fname, '_res_RPI_seg') seg_uncrop_nii.save(fname_seg_res_RPI) del seg_uncrop_nii, im_nii, seg_crop_data # resample to initial resolution sct.log.info("Resampling the segmentation to the original image resolution...") initial_resolution = 'x'.join([str(input_resolution[0]), str(input_resolution[1]), str(input_resolution[2])]) fname_seg_RPI = sct.add_suffix(file_fname, '_RPI_seg') spinalcordtoolbox.resample.nipy_resample.resample_file(fname_seg_res_RPI, fname_seg_RPI, initial_resolution, 'mm', 'linear', verbose=0) seg_initres_nii = Image(fname_seg_RPI) # binarize the resampled image to remove interpolation effects sct.log.info("\nBinarizing the segmentation to avoid interpolation effects...") thr = 0.1 seg_initres_nii.data[np.where(seg_initres_nii.data >= thr)] = 1 seg_initres_nii.data[np.where(seg_initres_nii.data < thr)] = 0 # reorient to initial orientation sct.log.info("\nReorienting the segmentation to the original image orientation...") fname_seg = sct.add_suffix(file_fname, '_seg') if original_orientation != 'RPI': out_nii = msct_image.change_orientation(seg_initres_nii, original_orientation) seg_initres_nii.save(fname_seg) del seg_initres_nii tmp_folder.chdir_undo() # copy image from temporary folder into output folder sct.copy(os.path.join(tmp_folder_path, fname_seg), output_folder) # remove temporary files if remove_temp_files: sct.log.info("\nRemove temporary files...") tmp_folder.cleanup() return os.path.join(output_folder, fname_seg)
def main(args=None): # initialization start_time = time.time() path_out = '.' param = Param() # check user arguments if not args: args = sys.argv[1:] # Get parser info parser = get_parser() arguments = parser.parse(sys.argv[1:]) param.fname_data = arguments['-i'] param.fname_bvecs = arguments['-bvec'] if '-bval' in arguments: param.fname_bvals = arguments['-bval'] if '-bvalmin' in arguments: param.bval_min = arguments['-bvalmin'] if '-g' in arguments: param.group_size = arguments['-g'] if '-m' in arguments: param.fname_mask = arguments['-m'] if '-param' in arguments: param.update(arguments['-param']) if '-thr' in arguments: param.otsu = arguments['-thr'] if '-x' in arguments: param.interp = arguments['-x'] if '-ofolder' in arguments: path_out = arguments['-ofolder'] if '-r' in arguments: param.remove_temp_files = int(arguments['-r']) param.verbose = int(arguments.get('-v')) sct.init_sct(log_level=param.verbose, update=True) # Update log level # Get full path param.fname_data = os.path.abspath(param.fname_data) param.fname_bvecs = os.path.abspath(param.fname_bvecs) if param.fname_bvals != '': param.fname_bvals = os.path.abspath(param.fname_bvals) if param.fname_mask != '': param.fname_mask = os.path.abspath(param.fname_mask) # Extract path, file and extension path_data, file_data, ext_data = sct.extract_fname(param.fname_data) path_mask, file_mask, ext_mask = sct.extract_fname(param.fname_mask) path_tmp = sct.tmp_create(basename="dmri_moco", verbose=param.verbose) # names of files in temporary folder mask_name = 'mask' bvecs_fname = 'bvecs.txt' # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose) convert(param.fname_data, os.path.join(path_tmp, "dmri.nii")) sct.copy(param.fname_bvecs, os.path.join(path_tmp, bvecs_fname), verbose=param.verbose) if param.fname_mask != '': sct.copy(param.fname_mask, os.path.join(path_tmp, mask_name + ext_mask), verbose=param.verbose) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # update field in param (because used later). # TODO: make this cleaner... if param.fname_mask != '': param.fname_mask = mask_name + ext_mask # run moco fname_data_moco_tmp = dmri_moco(param) # generate b0_moco_mean and dwi_moco_mean args = ['-i', fname_data_moco_tmp, '-bvec', 'bvecs.txt', '-a', '1', '-v', '0'] if not param.fname_bvals == '': # if bvals file is provided args += ['-bval', param.fname_bvals] fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean = sct_dmri_separate_b0_and_dwi.main(args=args) # come back os.chdir(curdir) # Generate output files fname_dmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data) fname_dmri_moco_b0_mean = sct.add_suffix(fname_dmri_moco, '_b0_mean') fname_dmri_moco_dwi_mean = sct.add_suffix(fname_dmri_moco, '_dwi_mean') sct.create_folder(path_out) sct.printv('\nGenerate output files...', param.verbose) sct.generate_output_file(fname_data_moco_tmp, fname_dmri_moco, param.verbose) sct.generate_output_file(fname_b0_mean, fname_dmri_moco_b0_mean, param.verbose) sct.generate_output_file(fname_dwi_mean, fname_dmri_moco_dwi_mean, param.verbose) # Delete temporary files if param.remove_temp_files == 1: sct.printv('\nDelete temporary files...', param.verbose) sct.rmtree(path_tmp, verbose=param.verbose) # display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose) sct.display_viewer_syntax([fname_dmri_moco, file_data], mode='ortho,ortho')
def main(args=None): # Initialization param = Param() start_time = time.time() parser = get_parser() arguments = parser.parse(sys.argv[1:]) fname_anat = arguments['-i'] fname_centerline = arguments['-s'] if '-smooth' in arguments: sigma = arguments['-smooth'] if '-param' in arguments: param.update(arguments['-param']) if '-r' in arguments: remove_temp_files = int(arguments['-r']) verbose = int(arguments.get('-v')) sct.init_sct(log_level=verbose, update=True) # Update log level # Display arguments sct.printv('\nCheck input arguments...') sct.printv(' Volume to smooth .................. ' + fname_anat) sct.printv(' Centerline ........................ ' + fname_centerline) sct.printv(' Sigma (mm) ........................ ' + str(sigma)) sct.printv(' Verbose ........................... ' + str(verbose)) # Check that input is 3D: from spinalcordtoolbox.image import Image nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim dim = 4 # by default, will be adjusted later if nt == 1: dim = 3 if nz == 1: dim = 2 if dim == 4: sct.printv('WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n' 'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning') sct.printv('4D images not supported, aborting ...', verbose, 'error') # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_centerline, file_centerline, ext_centerline = sct.extract_fname(fname_centerline) path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose) sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat)) sct.copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert to nii format convert('anat' + ext_anat, 'anat.nii') convert('centerline' + ext_centerline, 'centerline.nii') # Change orientation of the input image into RPI sct.printv('\nOrient input volume to RPI orientation...') fname_anat_rpi = msct_image.Image("anat.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Change orientation of the input image into RPI sct.printv('\nOrient centerline to RPI orientation...') fname_centerline_rpi = msct_image.Image("centerline.nii") \ .change_orientation("RPI", generate_path=True) \ .save() \ .absolutepath # Straighten the spinal cord # straighten segmentation sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) cache_sig = sct.cache_signature(input_files=[fname_anat_rpi, fname_centerline_rpi], input_params={"x": "spline"}) cachefile = os.path.join(curdir, "straightening.cache") if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(os.path.join(curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile(os.path.join(curdir, 'straight_ref.nii.gz')): # if they exist, copy them into current folder sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning') sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz') sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz') sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz') # apply straightening sct.run(['sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline'], verbose) else: sct.run(['sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting='+param.algo_fitting], verbose) sct.cache_save(cachefile, cache_sig) # move warping fields locally (to use caching next time) sct.copy('warp_curve2straight.nii.gz', os.path.join(curdir, 'warp_curve2straight.nii.gz')) sct.copy('warp_straight2curve.nii.gz', os.path.join(curdir, 'warp_straight2curve.nii.gz')) # Smooth the straightened image along z sct.printv('\nSmooth the straightened image...') sigma_smooth = ",".join([str(i) for i in sigma]) sct_maths.main(args=['-i', 'anat_rpi_straight.nii', '-smooth', sigma_smooth, '-o', 'anat_rpi_straight_smooth.nii', '-v', '0']) # Apply the reversed warping field to get back the curved spinal cord sct.printv('\nApply the reversed warping field to get back the curved spinal cord...') sct.run(['sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline'], verbose) # replace zeroed voxels by original image (issue #937) sct.printv('\nReplace zeroed voxels by original image...', verbose) nii_smooth = Image('anat_rpi_straight_smooth_curved.nii') data_smooth = nii_smooth.data data_input = Image('anat.nii').data indzero = np.where(data_smooth == 0) data_smooth[indzero] = data_input[indzero] nii_smooth.data = data_smooth nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii') # come back os.chdir(curdir) # Generate output file sct.printv('\nGenerate output file...') sct.generate_output_file(os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"), file_anat + '_smooth' + ext_anat) # Remove temporary files if remove_temp_files == 1: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # Display elapsed time elapsed_time = time.time() - start_time sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') sct.display_viewer_syntax([file_anat, file_anat + '_smooth'], verbose=verbose)
def dmri_moco(param): file_data = 'dmri.nii' file_data_dirname, file_data_basename, file_data_ext = sct.extract_fname(file_data) file_b0 = 'b0.nii' file_dwi = 'dwi.nii' ext_data = '.nii.gz' # workaround "too many open files" by slurping the data mat_final = 'mat_final/' file_dwi_group = 'dwi_averaged_groups.nii' ext_mat = 'Warp.nii.gz' # warping field # Get dimensions of data sct.printv('\nGet dimensions of data...', param.verbose) im_data = Image(file_data) nx, ny, nz, nt, px, py, pz, pt = im_data.dim sct.printv(' ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), param.verbose) # Identify b=0 and DWI images index_b0, index_dwi, nb_b0, nb_dwi = sct_dmri_separate_b0_and_dwi.identify_b0('bvecs.txt', param.fname_bvals, param.bval_min, param.verbose) # check if dmri and bvecs are the same size if not nb_b0 + nb_dwi == nt: sct.printv('\nERROR in ' + os.path.basename(__file__) + ': Size of data (' + str(nt) + ') and size of bvecs (' + str(nb_b0 + nb_dwi) + ') are not the same. Check your bvecs file.\n', 1, 'error') sys.exit(2) # Prepare NIFTI (mean/groups...) #=================================================================================================================== # Split into T dimension sct.printv('\nSplit along T dimension...', param.verbose) im_data_split_list = split_data(im_data, 3) for im in im_data_split_list: x_dirname, x_basename, x_ext = sct.extract_fname(im.absolutepath) im.absolutepath = os.path.join(x_dirname, x_basename + ".nii.gz") im.save() # Merge b=0 images sct.printv('\nMerge b=0...', param.verbose) im_b0_list = [] for it in range(nb_b0): im_b0_list.append(im_data_split_list[index_b0[it]]) im_b0_out = concat_data(im_b0_list, 3).save(file_b0) sct.printv((' File created: ' + file_b0), param.verbose) # Average b=0 images sct.printv('\nAverage b=0...', param.verbose) file_b0_mean = sct.add_suffix(file_b0, '_mean') sct.run(['sct_maths', '-i', file_b0, '-o', file_b0_mean, '-mean', 't'], param.verbose) # Number of DWI groups nb_groups = int(math.floor(nb_dwi / param.group_size)) # Generate groups indexes group_indexes = [] for iGroup in range(nb_groups): group_indexes.append(index_dwi[(iGroup * param.group_size):((iGroup + 1) * param.group_size)]) # add the remaining images to the last DWI group nb_remaining = nb_dwi%param.group_size # number of remaining images if nb_remaining > 0: nb_groups += 1 group_indexes.append(index_dwi[len(index_dwi) - nb_remaining:len(index_dwi)]) file_dwi_dirname, file_dwi_basename, file_dwi_ext = sct.extract_fname(file_dwi) # DWI groups file_dwi_mean = [] for iGroup in tqdm(range(nb_groups), unit='iter', unit_scale=False, desc="Merge within groups", ascii=True, ncols=80): # get index index_dwi_i = group_indexes[iGroup] nb_dwi_i = len(index_dwi_i) # Merge DW Images file_dwi_merge_i = os.path.join(file_dwi_dirname, file_dwi_basename + '_' + str(iGroup) + ext_data) im_dwi_list = [] for it in range(nb_dwi_i): im_dwi_list.append(im_data_split_list[index_dwi_i[it]]) im_dwi_out = concat_data(im_dwi_list, 3).save(file_dwi_merge_i) # Average DW Images file_dwi_mean_i = os.path.join(file_dwi_dirname, file_dwi_basename + '_mean_' + str(iGroup) + ext_data) file_dwi_mean.append(file_dwi_mean_i) sct.run(["sct_maths", "-i", file_dwi_merge_i, "-o", file_dwi_mean[iGroup], "-mean", "t"], 0) # Merge DWI groups means sct.printv('\nMerging DW files...', param.verbose) # file_dwi_groups_means_merge = 'dwi_averaged_groups' im_dw_list = [] for iGroup in range(nb_groups): im_dw_list.append(file_dwi_mean[iGroup]) im_dw_out = concat_data(im_dw_list, 3).save(file_dwi_group) # Average DW Images # TODO: USEFULL ??? sct.printv('\nAveraging all DW images...', param.verbose) sct.run(["sct_maths", "-i", file_dwi_group, "-o", file_dwi_group + '_mean' + ext_data, "-mean", "t"], param.verbose) # segment dwi images using otsu algorithm if param.otsu: sct.printv('\nSegment group DWI using OTSU algorithm...', param.verbose) # import module otsu = importlib.import_module('sct_otsu') # get class from module param_otsu = otsu.param() #getattr(otsu, param) param_otsu.fname_data = file_dwi_group param_otsu.threshold = param.otsu param_otsu.file_suffix = '_seg' # run otsu otsu.otsu(param_otsu) file_dwi_group = file_dwi_group + '_seg.nii' # START MOCO #=================================================================================================================== # Estimate moco on b0 groups sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion on b=0 images...', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco = param param_moco.file_data = 'b0.nii' # identify target image if index_dwi[0] != 0: # If first DWI is not the first volume (most common), then there is a least one b=0 image before. In that case # select it as the target image for registration of all b=0 param_moco.file_target = os.path.join(file_data_dirname, file_data_basename + '_T' + str(index_b0[index_dwi[0] - 1]).zfill(4) + ext_data) else: # If first DWI is the first volume, then the target b=0 is the first b=0 from the index_b0. param_moco.file_target = os.path.join(file_data_dirname, file_data_basename + '_T' + str(index_b0[0]).zfill(4) + ext_data) param_moco.path_out = '' param_moco.todo = 'estimate' param_moco.mat_moco = 'mat_b0groups' file_mat_b0 = moco.moco(param_moco) # Estimate moco on dwi groups sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Estimating motion on DW images...', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = file_dwi_group param_moco.file_target = file_dwi_mean[0] # target is the first DW image (closest to the first b=0) param_moco.path_out = '' param_moco.todo = 'estimate_and_apply' param_moco.mat_moco = 'mat_dwigroups' file_mat_dwi = moco.moco(param_moco) # create final mat folder sct.create_folder(mat_final) # Copy b=0 registration matrices # TODO: use file_mat_b0 and file_mat_dwi instead of the hardcoding below sct.printv('\nCopy b=0 registration matrices...', param.verbose) for it in range(nb_b0): sct.copy('mat_b0groups/' + 'mat.Z0000T' + str(it).zfill(4) + ext_mat, mat_final + 'mat.Z0000T' + str(index_b0[it]).zfill(4) + ext_mat) # Copy DWI registration matrices sct.printv('\nCopy DWI registration matrices...', param.verbose) for iGroup in range(nb_groups): for dwi in range(len(group_indexes[iGroup])): # we cannot use enumerate because group_indexes has 2 dim. sct.copy('mat_dwigroups/' + 'mat.Z0000T' + str(iGroup).zfill(4) + ext_mat, mat_final + 'mat.Z0000T' + str(group_indexes[iGroup][dwi]).zfill(4) + ext_mat) # Spline Regularization along T if param.spline_fitting: moco.spline(mat_final, nt, nz, param.verbose, np.array(index_b0), param.plot_graph) # combine Eddy Matrices if param.run_eddy: param.mat_2_combine = 'mat_eddy' param.mat_final = mat_final moco.combine_matrix(param) # Apply moco on all dmri data sct.printv('\n-------------------------------------------------------------------------------', param.verbose) sct.printv(' Apply moco', param.verbose) sct.printv('-------------------------------------------------------------------------------', param.verbose) param_moco.file_data = file_data param_moco.file_target = os.path.join(file_dwi_dirname, file_dwi_basename + '_mean_' + str(0) + ext_data) # reference for reslicing into proper coordinate system param_moco.path_out = '' param_moco.mat_moco = mat_final param_moco.todo = 'apply' moco.moco(param_moco) # copy geometric information from header # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1". im_dmri = Image(file_data) fname_data_moco = os.path.join(file_data_dirname, file_data_basename + param.suffix + '.nii') im_dmri_moco = Image(fname_data_moco) im_dmri_moco.header = im_dmri.header im_dmri_moco.save() return os.path.abspath(fname_data_moco)