Esempio n. 1
0
    def train(
        self,
        max_epochs: Optional[int] = None,
        use_gpu: Optional[Union[str, int, bool]] = None,
        train_size: float = 0.9,
        validation_size: Optional[float] = None,
        batch_size: int = 128,
        plan_kwargs: Optional[dict] = None,
        **trainer_kwargs,
    ):
        """
        Train the model.

        Parameters
        ----------
        max_epochs
            Number of passes through the dataset. If `None`, defaults to
            `np.min([round((20000 / n_cells) * 400), 400])`
        use_gpu
            Use default GPU if available (if None or True), or index of GPU to use (if int),
            or name of GPU (if str), or use CPU (if False).
        train_size
            Size of training set in the range [0.0, 1.0].
        validation_size
            Size of the test set. If `None`, defaults to 1 - `train_size`. If
            `train_size + validation_size < 1`, the remaining cells belong to a test set.
        batch_size
            Minibatch size to use during training.
        plan_kwargs
            Keyword args for :class:`~scvi.lightning.TrainingPlan`. Keyword arguments passed to
            `train()` will overwrite values present in `plan_kwargs`, when appropriate.
        **trainer_kwargs
            Other keyword args for :class:`~scvi.lightning.Trainer`.
        """
        if max_epochs is None:
            n_cells = self.adata.n_obs
            max_epochs = np.min([round((20000 / n_cells) * 400), 400])

        plan_kwargs = plan_kwargs if isinstance(plan_kwargs, dict) else dict()

        data_splitter = DataSplitter(
            self.adata,
            train_size=train_size,
            validation_size=validation_size,
            batch_size=batch_size,
            use_gpu=use_gpu,
        )
        training_plan = PyroTrainingPlan(self.module, **plan_kwargs)
        runner = TrainRunner(
            self,
            training_plan=training_plan,
            data_splitter=data_splitter,
            max_epochs=max_epochs,
            use_gpu=use_gpu,
            **trainer_kwargs,
        )
        return runner()
Esempio n. 2
0
def test_device_backed_data_splitter():
    a = synthetic_iid()
    # test leaving validataion_size empty works
    ds = DeviceBackedDataSplitter(a, train_size=1.0, use_gpu=None)
    ds.setup()
    train_dl = ds.train_dataloader()
    ds.val_dataloader()
    assert len(next(iter(train_dl))["X"]) == a.shape[0]

    model = SCVI(a, n_latent=5)
    training_plan = TrainingPlan(model.module, len(ds.train_idx))
    runner = TrainRunner(
        model,
        training_plan=training_plan,
        data_splitter=ds,
        max_epochs=1,
        use_gpu=None,
    )
    runner()
Esempio n. 3
0
def test_device_backed_data_splitter():
    a = synthetic_iid()
    SCVI.setup_anndata(a, batch_key="batch", labels_key="labels")
    model = SCVI(a, n_latent=5)
    adata_manager = model.adata_manager
    # test leaving validataion_size empty works
    ds = DeviceBackedDataSplitter(adata_manager, train_size=1.0, use_gpu=None)
    ds.setup()
    train_dl = ds.train_dataloader()
    ds.val_dataloader()
    loaded_x = next(iter(train_dl))["X"]
    assert len(loaded_x) == a.shape[0]
    np.testing.assert_array_equal(loaded_x.cpu().numpy(), a.X)

    training_plan = TrainingPlan(model.module, len(ds.train_idx))
    runner = TrainRunner(
        model,
        training_plan=training_plan,
        data_splitter=ds,
        max_epochs=1,
        use_gpu=None,
    )
    runner()
Esempio n. 4
0
    def train(
        self,
        max_epochs: Optional[int] = None,
        n_samples_per_label: Optional[float] = None,
        check_val_every_n_epoch: Optional[int] = None,
        train_size: float = 0.9,
        validation_size: Optional[float] = None,
        batch_size: int = 128,
        use_gpu: Optional[Union[str, int, bool]] = None,
        plan_kwargs: Optional[dict] = None,
        **trainer_kwargs,
    ):
        """
        Train the model.

        Parameters
        ----------
        max_epochs
            Number of passes through the dataset for semisupervised training.
        n_samples_per_label
            Number of subsamples for each label class to sample per epoch. By default, there
            is no label subsampling.
        check_val_every_n_epoch
            Frequency with which metrics are computed on the data for validation set for both
            the unsupervised and semisupervised trainers. If you'd like a different frequency for
            the semisupervised trainer, set check_val_every_n_epoch in semisupervised_train_kwargs.
        train_size
            Size of training set in the range [0.0, 1.0].
        validation_size
            Size of the test set. If `None`, defaults to 1 - `train_size`. If
            `train_size + validation_size < 1`, the remaining cells belong to a test set.
        batch_size
            Minibatch size to use during training.
        use_gpu
            Use default GPU if available (if None or True), or index of GPU to use (if int),
            or name of GPU (if str, e.g., `'cuda:0'`), or use CPU (if False).
        plan_kwargs
            Keyword args for :class:`~scvi.train.SemiSupervisedTrainingPlan`. Keyword arguments passed to
            `train()` will overwrite values present in `plan_kwargs`, when appropriate.
        **trainer_kwargs
            Other keyword args for :class:`~scvi.train.Trainer`.
        """

        if max_epochs is None:
            n_cells = self.adata.n_obs
            max_epochs = np.min([round((20000 / n_cells) * 400), 400])

            if self.was_pretrained:
                max_epochs = int(np.min([10, np.max([2, round(max_epochs / 3.0)])]))

        logger.info("Training for {} epochs.".format(max_epochs))

        plan_kwargs = {} if plan_kwargs is None else plan_kwargs

        # if we have labeled cells, we want to subsample labels each epoch
        sampler_callback = (
            [SubSampleLabels()] if len(self._labeled_indices) != 0 else []
        )

        data_splitter = SemiSupervisedDataSplitter(
            adata=self.adata,
            unlabeled_category=self.unlabeled_category_,
            train_size=train_size,
            validation_size=validation_size,
            n_samples_per_label=n_samples_per_label,
            batch_size=batch_size,
            use_gpu=use_gpu,
        )
        training_plan = SemiSupervisedTrainingPlan(self.module, **plan_kwargs)
        if "callbacks" in trainer_kwargs.keys():
            trainer_kwargs["callbacks"].concatenate(sampler_callback)
        else:
            trainer_kwargs["callbacks"] = sampler_callback

        runner = TrainRunner(
            self,
            training_plan=training_plan,
            data_splitter=data_splitter,
            max_epochs=max_epochs,
            use_gpu=use_gpu,
            check_val_every_n_epoch=check_val_every_n_epoch,
            **trainer_kwargs,
        )
        return runner()
Esempio n. 5
0
    def train(
        self,
        max_epochs: int = 400,
        lr: float = 1e-3,
        use_gpu: Optional[Union[str, int, bool]] = None,
        train_size: float = 1,
        validation_size: Optional[float] = None,
        batch_size: int = 128,
        plan_kwargs: Optional[dict] = None,
        early_stopping: bool = True,
        early_stopping_patience: int = 30,
        early_stopping_min_delta: float = 0.0,
        **kwargs,
    ):
        """
        Trains the model.

        Parameters
        ----------
        max_epochs
            Number of epochs to train for
        lr
            Learning rate for optimization.
        use_gpu
            Use default GPU if available (if None or True), or index of GPU to use (if int),
            or name of GPU (if str, e.g., `'cuda:0'`), or use CPU (if False).
        train_size
            Size of training set in the range [0.0, 1.0].
        validation_size
            Size of the test set. If `None`, defaults to 1 - `train_size`. If
            `train_size + validation_size < 1`, the remaining cells belong to a test set.
        batch_size
            Minibatch size to use during training.
        plan_kwargs
            Keyword args for :class:`~scvi.train.ClassifierTrainingPlan`. Keyword arguments passed to
        early_stopping
            Adds callback for early stopping on validation_loss
        early_stopping_patience
            Number of times early stopping metric can not improve over early_stopping_min_delta
        early_stopping_min_delta
            Threshold for counting an epoch torwards patience
            `train()` will overwrite values present in `plan_kwargs`, when appropriate.
        **kwargs
            Other keyword args for :class:`~scvi.train.Trainer`.
        """
        update_dict = {
            "lr": lr,
        }
        if plan_kwargs is not None:
            plan_kwargs.update(update_dict)
        else:
            plan_kwargs = update_dict

        if early_stopping:
            early_stopping_callback = [
                LoudEarlyStopping(
                    monitor="validation_loss",
                    min_delta=early_stopping_min_delta,
                    patience=early_stopping_patience,
                    mode="min",
                )
            ]
            if "callbacks" in kwargs:
                kwargs["callbacks"] += early_stopping_callback
            else:
                kwargs["callbacks"] = early_stopping_callback
            kwargs["check_val_every_n_epoch"] = 1

        if max_epochs is None:
            n_cells = self.adata.n_obs
            max_epochs = np.min([round((20000 / n_cells) * 400), 400])

        plan_kwargs = plan_kwargs if isinstance(plan_kwargs, dict) else dict()

        data_splitter = DataSplitter(
            self.adata_manager,
            train_size=train_size,
            validation_size=validation_size,
            batch_size=batch_size,
            use_gpu=use_gpu,
        )
        training_plan = ClassifierTrainingPlan(self.module, **plan_kwargs)
        runner = TrainRunner(
            self,
            training_plan=training_plan,
            data_splitter=data_splitter,
            max_epochs=max_epochs,
            use_gpu=use_gpu,
            **kwargs,
        )
        return runner()
Esempio n. 6
0
    def train(
        self,
        max_epochs: int = 500,
        lr: float = 1e-4,
        use_gpu: Optional[Union[str, int, bool]] = None,
        train_size: float = 0.9,
        validation_size: Optional[float] = None,
        batch_size: int = 128,
        weight_decay: float = 1e-3,
        eps: float = 1e-08,
        early_stopping: bool = True,
        save_best: bool = True,
        check_val_every_n_epoch: Optional[int] = None,
        n_steps_kl_warmup: Optional[int] = None,
        n_epochs_kl_warmup: Optional[int] = 50,
        adversarial_mixing: bool = True,
        plan_kwargs: Optional[dict] = None,
        **kwargs,
    ):
        """
        Trains the model using amortized variational inference.

        Parameters
        ----------
        max_epochs
            Number of passes through the dataset.
        lr
            Learning rate for optimization.
        use_gpu
            Use default GPU if available (if None or True), or index of GPU to use (if int),
            or name of GPU (if str), or use CPU (if False).
        train_size
            Size of training set in the range [0.0, 1.0].
        validation_size
            Size of the test set. If `None`, defaults to 1 - `train_size`. If
            `train_size + validation_size < 1`, the remaining cells belong to a test set.
        batch_size
            Minibatch size to use during training.
        weight_decay
            weight decay regularization term for optimization
        eps
            Optimizer eps
        early_stopping
            Whether to perform early stopping with respect to the validation set.
        save_best
            Save the best model state with respect to the validation loss, or use the final
            state in the training procedure
        check_val_every_n_epoch
            Check val every n train epochs. By default, val is not checked, unless `early_stopping` is `True`.
            If so, val is checked every epoch.
        n_steps_kl_warmup
            Number of training steps (minibatches) to scale weight on KL divergences from 0 to 1.
            Only activated when `n_epochs_kl_warmup` is set to None. If `None`, defaults
            to `floor(0.75 * adata.n_obs)`.
        n_epochs_kl_warmup
            Number of epochs to scale weight on KL divergences from 0 to 1.
            Overrides `n_steps_kl_warmup` when both are not `None`.
        adversarial_mixing
            Whether to use adversarial training to penalize the model for umbalanced mixing of modalities.
        plan_kwargs
            Keyword args for :class:`~scvi.train.TrainingPlan`. Keyword arguments passed to
            `train()` will overwrite values present in `plan_kwargs`, when appropriate.
        **kwargs
            Other keyword args for :class:`~scvi.train.Trainer`.
        """
        update_dict = dict(
            lr=lr,
            adversarial_classifier=adversarial_mixing,
            weight_decay=weight_decay,
            eps=eps,
            n_epochs_kl_warmup=n_epochs_kl_warmup,
            n_steps_kl_warmup=n_steps_kl_warmup,
            check_val_every_n_epoch=check_val_every_n_epoch,
            early_stopping=early_stopping,
            early_stopping_monitor="reconstruction_loss_validation",
            early_stopping_patience=50,
            optimizer="AdamW",
            scale_adversarial_loss=1,
        )
        if plan_kwargs is not None:
            plan_kwargs.update(update_dict)
        else:
            plan_kwargs = update_dict

        if save_best:
            if "callbacks" not in kwargs.keys():
                kwargs["callbacks"] = []
            kwargs["callbacks"].append(
                SaveBestState(monitor="reconstruction_loss_validation"))

        data_splitter = DataSplitter(
            self.adata,
            train_size=train_size,
            validation_size=validation_size,
            batch_size=batch_size,
            use_gpu=use_gpu,
        )
        training_plan = AdversarialTrainingPlan(self.module, **plan_kwargs)
        runner = TrainRunner(
            self,
            training_plan=training_plan,
            data_splitter=data_splitter,
            max_epochs=max_epochs,
            use_gpu=use_gpu,
            early_stopping=early_stopping,
            **kwargs,
        )
        return runner()
Esempio n. 7
0
    def train(
        self,
        max_epochs: Optional[int] = 400,
        lr: float = 4e-3,
        use_gpu: Optional[Union[str, int, bool]] = None,
        train_size: float = 0.9,
        validation_size: Optional[float] = None,
        batch_size: int = 256,
        early_stopping: bool = True,
        check_val_every_n_epoch: Optional[int] = None,
        reduce_lr_on_plateau: bool = True,
        n_steps_kl_warmup: Union[int, None] = None,
        n_epochs_kl_warmup: Union[int, None] = None,
        adversarial_classifier: Optional[bool] = None,
        plan_kwargs: Optional[dict] = None,
        **kwargs,
    ):
        """
        Trains the model using amortized variational inference.

        Parameters
        ----------
        max_epochs
            Number of passes through the dataset.
        lr
            Learning rate for optimization.
        use_gpu
            Use default GPU if available (if None or True), or index of GPU to use (if int),
            or name of GPU (if str), or use CPU (if False).
        train_size
            Size of training set in the range [0.0, 1.0].
        validation_size
            Size of the test set. If `None`, defaults to 1 - `train_size`. If
            `train_size + validation_size < 1`, the remaining cells belong to a test set.
        batch_size
            Minibatch size to use during training.
        early_stopping
            Whether to perform early stopping with respect to the validation set.
        check_val_every_n_epoch
            Check val every n train epochs. By default, val is not checked, unless `early_stopping` is `True`
            or `reduce_lr_on_plateau` is `True`. If either of the latter conditions are met, val is checked
            every epoch.
        reduce_lr_on_plateau
            Reduce learning rate on plateau of validation metric (default is ELBO).
        n_steps_kl_warmup
            Number of training steps (minibatches) to scale weight on KL divergences from 0 to 1.
            Only activated when `n_epochs_kl_warmup` is set to None. If `None`, defaults
            to `floor(0.75 * adata.n_obs)`.
        n_epochs_kl_warmup
            Number of epochs to scale weight on KL divergences from 0 to 1.
            Overrides `n_steps_kl_warmup` when both are not `None`.
        adversarial_classifier
            Whether to use adversarial classifier in the latent space. This helps mixing when
            there are missing proteins in any of the batches. Defaults to `True` is missing proteins
            are detected.
        plan_kwargs
            Keyword args for :class:`~scvi.train.AdversarialTrainingPlan`. Keyword arguments passed to
            `train()` will overwrite values present in `plan_kwargs`, when appropriate.
        **kwargs
            Other keyword args for :class:`~scvi.train.Trainer`.
        """
        if adversarial_classifier is None:
            imputation = (
                True if "totalvi_batch_mask" in self.scvi_setup_dict_.keys() else False
            )
            adversarial_classifier = True if imputation else False
        n_steps_kl_warmup = (
            n_steps_kl_warmup
            if n_steps_kl_warmup is not None
            else int(0.75 * self.adata.n_obs)
        )
        if reduce_lr_on_plateau:
            check_val_every_n_epoch = 1

        update_dict = {
            "lr": lr,
            "adversarial_classifier": adversarial_classifier,
            "reduce_lr_on_plateau": reduce_lr_on_plateau,
            "n_epochs_kl_warmup": n_epochs_kl_warmup,
            "n_steps_kl_warmup": n_steps_kl_warmup,
            "check_val_every_n_epoch": check_val_every_n_epoch,
        }
        if plan_kwargs is not None:
            plan_kwargs.update(update_dict)
        else:
            plan_kwargs = update_dict

        if max_epochs is None:
            n_cells = self.adata.n_obs
            max_epochs = np.min([round((20000 / n_cells) * 400), 400])

        plan_kwargs = plan_kwargs if isinstance(plan_kwargs, dict) else dict()

        data_splitter = DataSplitter(
            self.adata,
            train_size=train_size,
            validation_size=validation_size,
            batch_size=batch_size,
            use_gpu=use_gpu,
        )
        training_plan = AdversarialTrainingPlan(
            self.module, len(data_splitter.train_idx), **plan_kwargs
        )
        runner = TrainRunner(
            self,
            training_plan=training_plan,
            data_splitter=data_splitter,
            max_epochs=max_epochs,
            use_gpu=use_gpu,
            early_stopping=early_stopping,
            **kwargs,
        )
        return runner()
Esempio n. 8
0
    def train(
        self,
        max_epochs: Optional[int] = None,
        use_gpu: Optional[Union[str, int, bool]] = None,
        train_size: float = 0.9,
        validation_size: Optional[float] = None,
        batch_size: int = 128,
        early_stopping: bool = False,
        lr: Optional[float] = None,
        plan_kwargs: Optional[dict] = None,
        **trainer_kwargs,
    ):
        """
        Train the model.

        Parameters
        ----------
        max_epochs
            Number of passes through the dataset. If `None`, defaults to
            `np.min([round((20000 / n_cells) * 400), 400])`
        use_gpu
            Use default GPU if available (if None or True), or index of GPU to use (if int),
            or name of GPU (if str, e.g., `'cuda:0'`), or use CPU (if False).
        train_size
            Size of training set in the range [0.0, 1.0].
        validation_size
            Size of the test set. If `None`, defaults to 1 - `train_size`. If
            `train_size + validation_size < 1`, the remaining cells belong to a test set.
        batch_size
            Minibatch size to use during training. If `None`, no minibatching occurs and all
            data is copied to device (e.g., GPU).
        early_stopping
            Perform early stopping. Additional arguments can be passed in `**kwargs`.
            See :class:`~scvi.train.Trainer` for further options.
        lr
            Optimiser learning rate (default optimiser is :class:`~pyro.optim.ClippedAdam`).
            Specifying optimiser via plan_kwargs overrides this choice of lr.
        plan_kwargs
            Keyword args for :class:`~scvi.train.TrainingPlan`. Keyword arguments passed to
            `train()` will overwrite values present in `plan_kwargs`, when appropriate.
        **trainer_kwargs
            Other keyword args for :class:`~scvi.train.Trainer`.
        """
        if max_epochs is None:
            n_obs = self.adata.n_obs
            max_epochs = np.min([round((20000 / n_obs) * 1000), 1000])

        plan_kwargs = plan_kwargs if isinstance(plan_kwargs, dict) else dict()
        if lr is not None and "optim" not in plan_kwargs.keys():
            plan_kwargs.update({"optim_kwargs": {"lr": lr}})

        if batch_size is None:
            # use data splitter which moves data to GPU once
            data_splitter = DeviceBackedDataSplitter(
                self.adata,
                train_size=train_size,
                validation_size=validation_size,
                batch_size=batch_size,
                use_gpu=use_gpu,
            )
        else:
            data_splitter = DataSplitter(
                self.adata,
                train_size=train_size,
                validation_size=validation_size,
                batch_size=batch_size,
                use_gpu=use_gpu,
            )
        training_plan = PyroTrainingPlan(pyro_module=self.module, **plan_kwargs)

        es = "early_stopping"
        trainer_kwargs[es] = (
            early_stopping if es not in trainer_kwargs.keys() else trainer_kwargs[es]
        )

        if "callbacks" not in trainer_kwargs.keys():
            trainer_kwargs["callbacks"] = []
        trainer_kwargs["callbacks"].append(PyroJitGuideWarmup())

        runner = TrainRunner(
            self,
            training_plan=training_plan,
            data_splitter=data_splitter,
            max_epochs=max_epochs,
            use_gpu=use_gpu,
            **trainer_kwargs,
        )
        return runner()