Esempio n. 1
0
    def test__anonymize_data(self):
        """Anonymoze data in tables with pii fields"""

        # Setup
        def side_effect_get_pii(ht_meta):
            if ht_meta['ht'] == 'a':
                return ['a_fields']

        anonymized_table = pd.DataFrame({'a_fields': [1, 2, 3]})
        anonymized_another_table = pd.DataFrame({'a_fields': [4, 5, 6]})

        ht_mock = Mock()
        ht_mock.table_dict = {
            'a_table': (anonymized_table, {
                'ht': 'a'
            }),
            'another_table': (anonymized_another_table, {
                'ht': 'b'
            })
        }

        ht_mock._get_pii_fields.side_effect = side_effect_get_pii

        a_table = pd.DataFrame({'a_fields': [1, 2, 3]})
        another_table = Table(pd.DataFrame(), {'another': 'metadata'})
        tables = {
            'a_table': Table(a_table, {'some': 'metadata'}),
            'another_table': another_table,
        }

        # Run
        data_navigator_mock = Mock()
        data_navigator_mock.tables = tables
        data_navigator_mock.ht = ht_mock

        DataNavigator._anonymize_data(data_navigator_mock)

        # Asserts
        exp_call_args_list = [
            call({'ht': 'a'}),
            call({'ht': 'b'}),
        ]
        exp_a_table_dataframe = pd.DataFrame({'a_fields': [1, 2, 3]})
        exp_another_dataframe = pd.DataFrame()

        pd.testing.assert_frame_equal(tables['a_table'].data,
                                      exp_a_table_dataframe)
        pd.testing.assert_frame_equal(tables['another_table'].data,
                                      exp_another_dataframe)

        for arg_item in ht_mock._get_pii_fields.call_args_list:
            assert arg_item in exp_call_args_list
Esempio n. 2
0
    def test_model_database_vine_modeler_single_table(self):
        """model_database works fine with vine modeler."""
        # Setup
        data_navigator = MagicMock(spec=DataNavigator)
        modeler = Modeler(data_navigator=data_navigator, model=VineCopula)

        # Setup - Mock
        data = pd.DataFrame({
            'column_A': list('abdc'),
            'column_B': range(4)
        })
        meta = {
            'name': 'table_name',
            'fields': {
                'column_A': {
                    'name': 'A',
                    'type': 'categorical'
                },
                'column_B': {
                    'name': 'B',
                    'type': 'number',
                    'subtype': 'integer'
                }
            }
        }

        data_navigator.tables = {
            'table_name': Table(data, meta)
        }
        data_navigator.get_parents.return_value = set()
        data_navigator.get_children.return_value = set()
        data_navigator.transformed_data = {
            'table_name': pd.DataFrame({
                'column_A': [0.1, 0.2, 0.5, 1.0],
                'column_B': range(4)
            })
        }
        data_navigator.meta = {
            'tables': [
                {
                    'name': meta
                }
            ]
        }
        data_navigator.ht = MagicMock()
        data_navigator.ht.transformers = {
            ('table_name', 'column_A'): None,
            ('table_name', 'column_B'): None
        }

        # Run
        modeler.model_database()

        # Check
        assert 'table_name' in modeler.models

        sampler = Sampler(data_navigator, modeler)
        samples = sampler.sample_all()
        assert 'table_name' in samples
Esempio n. 3
0
    def test__get_extensions(self, get_foreign_mock, extension_mock):
        """_get_extensions return the conditional modelling parameters for each children."""
        # Setup
        data_navigator = MagicMock()

        first_table_data = pd.DataFrame({'foreign_key': [0, 1]})
        first_table_meta = {'fields': []}

        data_navigator.tables = {
            'first_children': Table(first_table_data, first_table_meta),
            'second_children': Table(first_table_data, first_table_meta),
        }
        data_navigator.get_children.return_value = {}
        modeler = Modeler(data_navigator)
        modeler.tables = {}

        extension_mock.side_effect = lambda x, y, z: None

        get_foreign_mock.return_value = 'foreign_key'

        pk = 'primary_key'
        children = ['first_children', 'second_children']

        expected_result = [
            pd.DataFrame([{
                '__first_children_column_1': 1,
                '__first_children_column_2': 2
            }]),
            pd.DataFrame([{
                '__second_children_column_1': 1,
                '__second_children_column_2': 2
            }])
        ]

        # Run
        result = modeler._get_extensions(pk, children)

        # Check
        assert all([
            result[index].equals(expected_result[index])
            for index in range(len(result))
        ])
Esempio n. 4
0
    def test__fill_text_columns(self):
        """Fill columns"""

        # Setup
        data_navigator_mock = Mock()
        data_navigator_mock.tables = {
            'DEMO':
            Table(
                pd.DataFrame(), {
                    'fields': {
                        'a_field': {
                            'name': 'a_field',
                            'type': 'id',
                            'ref': {
                                'table': 'table_ref',
                                'field': 'table_ref_id'
                            }
                        },
                        'b_field': {
                            'name': 'b_field',
                            'type': 'id',
                            'regex': '^[0-9]{10}$'
                        },
                        'c_field': {
                            'name': 'c_field',
                            'type': 'text',
                            'regex': '^[a-z]{10}$'
                        }
                    }
                })
        }

        sample_rows_mock = Mock()
        sample_rows_mock.return_value = {
            'table_ref_id': {
                'name': 'table_ref_id'
            }
        }

        # Run
        sampler_mock = Mock()
        sampler_mock.dn = data_navigator_mock
        sampler_mock.sample_rows = sample_rows_mock

        row = pd.DataFrame({'c_field': ['foo', 'bar', 'tar']})
        labels = ['a_field', 'b_field', 'c_field']
        table_name = 'DEMO'

        Sampler._fill_text_columns(sampler_mock, row, labels, table_name)

        # Asserts
        sample_rows_mock.assert_called_once_with('table_ref', 1)
Esempio n. 5
0
    def test_get_meta_data(self):
        """Retrieve table meta"""

        # Setup
        tables = {'DEMO': Table(None, 'meta')}

        # Run
        data_navigator_mock = Mock()
        data_navigator_mock.tables = tables

        result = DataNavigator.get_meta_data(data_navigator_mock, 'DEMO')

        # Asserts
        expect = 'meta'

        assert result == expect
Esempio n. 6
0
    def test_get_data(self):
        """Retrieve table data"""

        # Setup
        data = pd.DataFrame({'foo': [0, 1]})
        tables = {'DEMO': Table(data, 'meta')}

        # Run
        data_navigator_mock = Mock()
        data_navigator_mock.tables = tables

        result = DataNavigator.get_data(data_navigator_mock, 'DEMO')

        # Asserts
        expect = pd.DataFrame({'foo': [0, 1]})

        pd.testing.assert_frame_equal(result, expect)
Esempio n. 7
0
    def test_CPA(self, extensions_mock, merge_mock):
        """CPA will append extensions to the original table."""
        # Setup
        data_navigator = MagicMock(spec=DataNavigator)
        table = Table(pd.DataFrame({'table_pk': range(5)}),
                      {'primary_key': 'table_pk'})
        data_navigator.tables = {'table': table}

        transformed_table = pd.DataFrame({'table_pk': range(5)})
        data_navigator.transformed_data = {'table': transformed_table}

        data_navigator.get_children.return_value = 'children of table'
        modeler = Modeler(data_navigator)

        extension = MagicMock()
        extensions_mock.return_value = [extension]
        extended_table = MagicMock()
        merge_mock.return_value = extended_table

        table_name = 'table'

        # Run
        modeler.CPA(table_name)

        # Check
        assert modeler.tables[table_name] == extended_table

        extensions_mock.assert_called_once_with(modeler, 'table_pk',
                                                'children of table')
        merge_mock.assert_called_once_with(transformed_table,
                                           extension.reset_index.return_value,
                                           how='left',
                                           on='table_pk')

        data_navigator.get_children.assert_called_once_with('table')
        extension.reset_index.assert_called_once_with()
        extended_table.drop.assert_not_called()
        call_args_list = extended_table.__setitem__.call_args_list
        assert len(call_args_list) == 1
        args, kwargs = call_args_list[0]
        assert kwargs == {}
        assert len(args) == 2
        assert args[0] == 'table_pk'
        assert args[1].equals(transformed_table['table_pk'])
Esempio n. 8
0
    def test_sample_all_with_reset_primary_key(self):
        """Check sample_all with reset_primary_keys True"""

        # Setup
        reset_primary_keys_generators_mock = Mock()

        dn_mock = Mock()
        dn_mock.tables = {'DEMO': Table(pd.DataFrame(), {'some': 'meta'})}
        dn_mock.get_parents.return_value = True

        # Run
        sampler_mock = Mock()
        sampler_mock._reset_primary_keys_generators = reset_primary_keys_generators_mock
        sampler_mock.dn = dn_mock

        Sampler.sample_all(sampler_mock, reset_primary_keys=True)

        # Asserts
        reset_primary_keys_generators_mock.assert_called_once_with()
Esempio n. 9
0
    def test__get_relashionships(self):
        """_get_relashionships returns parents, children and foreign_keys dicts."""

        # Setup
        meta = {
            'fields': {
                'a_field': {
                    'name': 'a_field',
                    'ref': {
                        'table': 'DEMO_2',
                        'field': 'DEMO_2_ID'
                    }
                }
            }
        }

        tables = {'DEMO': Table('data', meta)}

        update_mock = Mock()
        update_mock.side_effect = ['child', 'parent']

        # Run
        data_navigator_mock = Mock()
        data_navigator_mock.update_mapping = update_mock

        result = DataNavigator._get_relationships(data_navigator_mock, tables)

        # Asserts
        expect = 'child', 'parent', {
            ('DEMO', 'DEMO_2'): ('DEMO_2_ID', 'a_field')
        }
        exp_args_list = [
            call({}, 'DEMO_2', 'DEMO'),
            call({}, 'DEMO', 'DEMO_2')
        ]

        assert result == expect
        update_mock.call_args_list == exp_args_list
Esempio n. 10
0
    def test_model_database_gaussian_copula_single_table(self):
        """model_database can model a single table using the gausian copula model."""
        # Setup
        data_navigator = MagicMock(spec=DataNavigator)
        modeler = Modeler(data_navigator=data_navigator,
                          model=GaussianMultivariate)

        # Setup - Mocks - DataNavigator
        table_data = pd.DataFrame({
            'column_A': list('abdc'),
            'column_B': range(4)
        })
        table_metadata = {
            'name': 'table_name',
            'fields': {
                'column_A': {
                    'name': 'column_A',
                    'type': 'categorical'
                },
                'column_B': {
                    'name': 'column_B',
                    'type': 'number',
                    'subtype': 'integer'
                }
            }
        }

        data_navigator.tables = {
            'table_name': Table(table_data, table_metadata)
        }
        data_navigator.get_parents.return_value = set()
        data_navigator.get_children.return_value = set()
        data_navigator.transformed_data = {
            'table_name':
            pd.DataFrame({
                'column_A': [0.1, 0.2, 0.5, 1.0],
                'column_B': range(4)
            })
        }
        metadata = {
            'name':
            'table_name',
            'fields': [{
                'name': 'column_A',
                'type': 'categorical'
            }, {
                'name': 'column_B',
                'type': 'number',
                'subtype': 'integer'
            }]
        }

        data_navigator.meta = {'tables': [metadata]}
        data_navigator.ht = MagicMock()
        data_navigator.ht.transformers = {
            ('table_name', 'column_A'): None,
            ('table_name', 'column_B'): None
        }

        # Run
        modeler.model_database()

        # Check
        assert 'table_name' in modeler.models

        sampler = Sampler(data_navigator, modeler)
        samples = sampler.sample_all()
        assert 'table_name' in samples
Esempio n. 11
0
    def test_CPA_transformed_index(self, extension_mock):
        """CPA is able to merge extensions in tables with transformed index. """
        # Setup
        data_navigator = MagicMock(spec=DataNavigator)
        modeler = Modeler(data_navigator)

        # Setup - Mock
        parent_data = pd.DataFrame([
            {
                'parent_id': 'A',
                'values': 1
            },
            {
                'parent_id': 'B',
                'values': 2
            },
            {
                'parent_id': 'C',
                'values': 3
            },
        ])
        parent_meta = {
            'name': 'parent',
            'primary_key': 'parent_id',
            'fields': {
                'parent_id': {
                    'name': 'parent_id',
                    'type': 'categorical',
                    'regex': '^[A-Z]$'
                },
                'values': {
                    'name': 'values',
                    'type': 'number',
                    'subtype': 'integer'
                }
            }
        }

        child_data = pd.DataFrame([
            {
                'child_id': 1,
                'parent_id': 'A',
                'value': 0.1
            },
            {
                'child_id': 2,
                'parent_id': 'A',
                'value': 0.2
            },
            {
                'child_id': 3,
                'parent_id': 'A',
                'value': 0.3
            },
            {
                'child_id': 4,
                'parent_id': 'B',
                'value': 0.4
            },
            {
                'child_id': 5,
                'parent_id': 'B',
                'value': 0.5
            },
            {
                'child_id': 6,
                'parent_id': 'B',
                'value': 0.6
            },
            {
                'child_id': 7,
                'parent_id': 'C',
                'value': 0.7
            },
            {
                'child_id': 8,
                'parent_id': 'C',
                'value': 0.8
            },
            {
                'child_id': 9,
                'parent_id': 'C',
                'value': 0.9
            },
        ])
        child_meta = {
            'name': 'child',
            'primary_key': 'child_id',
            'fields': {
                'child_id': {
                    'name': 'child_id',
                    'type': 'number'
                },
                'parent_id': {
                    'name': 'parent_id',
                    'type': 'category',
                    'ref': {
                        'table': 'parent',
                        'field': 'parent_id'
                    }
                },
                'value': {
                    'name': 'value',
                    'type': 'number'
                }
            }
        }

        data_navigator.tables = {
            'parent': Table(parent_data, parent_meta),
            'child': Table(child_data, child_meta)
        }

        children_map = {'parent': {'child'}}
        parent_map = {'child': {'parent'}}

        data_navigator.get_children.side_effect = lambda x: children_map.get(
            x, set())
        data_navigator.get_parents.side_effect = lambda x: parent_map.get(
            x, set())

        transformed_parent = pd.DataFrame([
            {
                'parent_id': 0.1,
                'values': 1
            },
            {
                'parent_id': 0.4,
                'values': 2
            },
            {
                'parent_id': 0.8,
                'values': 3
            },
        ])
        transformed_child = pd.DataFrame([
            {
                'child_id': 1,
                'parent_id': 0.15,
                'value': 0.1
            },
            {
                'child_id': 2,
                'parent_id': 0.10,
                'value': 0.2
            },
            {
                'child_id': 3,
                'parent_id': 0.20,
                'value': 0.3
            },
            {
                'child_id': 4,
                'parent_id': 0.35,
                'value': 0.4
            },
            {
                'child_id': 5,
                'parent_id': 0.50,
                'value': 0.5
            },
            {
                'child_id': 6,
                'parent_id': 0.55,
                'value': 0.6
            },
            {
                'child_id': 7,
                'parent_id': 0.70,
                'value': 0.7
            },
            {
                'child_id': 8,
                'parent_id': 0.80,
                'value': 0.8
            },
            {
                'child_id': 9,
                'parent_id': 0.85,
                'value': 0.9
            },
        ])

        data_navigator.transformed_data = {
            'parent': transformed_parent,
            'child': transformed_child
        }
        extension = pd.DataFrame(
            **{
                'data': [
                    {
                        'param_1': 0.5,
                        'param_2': 0.4
                    },
                    {
                        'param_1': 0.7,
                        'param_2': 0.2
                    },
                    {
                        'param_1': 0.2,
                        'param_2': 0.1
                    },
                ],
                'index':
                list('ABC')
            })
        extension.index.name = 'parent_id'
        extension_mock.return_value = [extension]

        expected_extended_parent = pd.DataFrame(
            [
                {
                    'parent_id': 0.1,
                    'values': 1,
                    'param_1': 0.5,
                    'param_2': 0.4
                },
                {
                    'parent_id': 0.4,
                    'values': 2,
                    'param_1': 0.7,
                    'param_2': 0.2
                },
                {
                    'parent_id': 0.8,
                    'values': 3,
                    'param_1': 0.2,
                    'param_2': 0.1
                },
            ],
            columns=['parent_id', 'values', 'param_1', 'param_2'])

        # Run
        modeler.CPA('parent')

        # Check
        'parent' in modeler.tables
        assert modeler.tables['parent'].equals(expected_extended_parent)

        data_navigator.get_children.assert_called_once_with('parent')
        extension_mock.assert_called_once_with('parent_id', {'child'})
Esempio n. 12
0
    def test_load_data(self, read_mock, dn_mock):
        """load_data to build a DataNavigator"""

        # SetUp
        meta = {
            'path':
            '',
            'tables': [{
                'use': True,
                'name': 'DEMO',
                'path': 'some_path.csv',
                'fields': [{
                    'name': 'a_field',
                    'foo': 'foo'
                }]
            }]
        }
        meta_filename = 'meta_filename.json'

        dn_mock.return_value = Mock()

        format_mock = Mock()
        format_mock.return_value = {'some': 'meta'}

        read_mock.return_value = pd.DataFrame({'foo': [0, 1]})

        # Run
        csv_data_loader_mock = Mock()
        csv_data_loader_mock.meta = meta
        csv_data_loader_mock.meta_filename = meta_filename
        csv_data_loader_mock._format_table_meta = format_mock

        CSVDataLoader.load_data(csv_data_loader_mock)

        # Asserts
        exp_format_args = {
            'use': True,
            'name': 'DEMO',
            'path': 'some_path.csv',
            'fields': [{
                'name': 'a_field',
                'foo': 'foo'
            }]
        }

        exp_data_navigator_meta = {
            'path':
            '',
            'tables': [{
                'use': True,
                'name': 'DEMO',
                'path': 'some_path.csv',
                'fields': [{
                    'name': 'a_field',
                    'foo': 'foo'
                }]
            }]
        }

        exp_data_navigator_tables = {
            'DEMO': Table(pd.DataFrame({'foo': [0, 1]}), {'some': 'meta'})
        }

        assert_meta_filename, assert_meta, assert_tables = dn_mock.call_args[0]

        format_mock.assert_called_once_with(exp_format_args)

        assert assert_meta_filename == 'meta_filename.json'
        assert assert_meta == exp_data_navigator_meta
        assert assert_tables.keys() == exp_data_navigator_tables.keys()

        pd.testing.assert_frame_equal(assert_tables['DEMO'].data,
                                      exp_data_navigator_tables['DEMO'].data)
Esempio n. 13
0
    def test_transform_synthesized_rows_no_pk(self, get_table_meta_mock,
                                              fill_mock):
        """transform_synthesized_rows will update internal state and reverse transform rows."""
        # Setup - Class Instantiation
        data_navigator = MagicMock()
        modeler = MagicMock()
        sampler = Sampler(data_navigator, modeler)

        # Setup - Mock configuration
        table_metadata = {
            'fields': {
                'column_A': {
                    'type': 'number',
                    'subtype': 'integer'
                },
                'column_B': {
                    'name': 'column',
                    'type': 'number'
                }
            },
            'primary_key': None
        }
        table_data = pd.DataFrame(columns=['column_A', 'column_B'])
        test_table = Table(table_data, table_metadata)
        data_navigator.tables = {'table': test_table}

        data_navigator.ht.transformers = {
            ('table', 'column_A'): None,
            ('table', 'column_B'): None
        }

        data_navigator.ht.reverse_transform_table.return_value = pd.DataFrame({
            'column_A': ['some', 'transformed values'],
            'column_B': ['another', 'transformed column']
        })

        get_table_meta_mock.return_value = {'original': 'meta', 'fields': []}

        fill_mock.return_value = pd.DataFrame(
            {
                'column_A': ['filled', 'text_values'],
                'column_B': ['nothing', 'numerical']
            },
            columns=[column[1] for column in data_navigator.ht.transformers])

        # Setup - Method arguments / expected result
        synthesized_rows = pd.DataFrame({
            'column_A': [1.7, 2.5],
            'column_B': [4.7, 5.1],
            'model_parameters': ['some', 'parameters']
        })
        table_name = 'table'

        expected_result = pd.DataFrame({
            'column_A': ['some', 'transformed values'],
            'column_B': ['another', 'transformed column']
        })

        # Run
        result = sampler._transform_synthesized_rows(synthesized_rows,
                                                     table_name)

        # Check - Result
        assert result.equals(expected_result)

        # Check - Mock calls
        get_table_meta_mock.assert_called_once_with(sampler,
                                                    data_navigator.meta,
                                                    'table')
        fill_mock.assert_called_once_with(sampler, synthesized_rows,
                                          ['column_A', 'column_B'], 'table')

        call_args = data_navigator.ht.reverse_transform_table.call_args_list
        assert len(call_args) == 1
        assert len(call_args[0][0]) == 2
        assert call_args[0][0][0].equals(fill_mock.return_value)
        assert call_args[0][0][1] == get_table_meta_mock.return_value
        assert call_args[0][1] == {}
Esempio n. 14
0
    def test_model_database_vine_modeler_single_table(self):
        """model_database works fine with vine modeler."""
        # Setup
        data_navigator = MagicMock(spec=DataNavigator)
        modeler = Modeler(data_navigator=data_navigator, model=VineCopula)

        # Setup - Mock
        data = pd.DataFrame({'column_A': list('abdc'), 'column_B': range(4)})
        meta = {
            'name': 'table_name',
            'fields': {
                'column_A': {
                    'name': 'column_A',
                    'type': 'categorical'
                },
                'column_B': {
                    'name': 'column_B',
                    'type': 'number',
                    'subtype': 'integer'
                }
            }
        }

        data_navigator.tables = {'table_name': Table(data, meta)}
        data_navigator.get_parents.return_value = set()
        data_navigator.get_children.return_value = set()
        data_navigator.transformed_data = {
            'table_name':
            pd.DataFrame({
                'column_A': [0.1, 0.2, 0.5, 1.0],
                'column_B': range(4)
            })
        }
        metadata = {
            'name':
            'table_name',
            'fields': [{
                'name': 'column_A',
                'type': 'categorical'
            }, {
                'name': 'column_B',
                'type': 'number',
                'subtype': 'integer'
            }]
        }

        data_navigator.meta = {'tables': [metadata]}

        ht = MagicMock(spec=HyperTransformer)
        ht.transformers = {
            ('table_name', 'column_A'): None,
            ('table_name', 'column_B'): None
        }

        reverse_transform_dataframe = pd.DataFrame(
            {
                'column_A': list('bcda'),
                'column_B': [1.0, 2.0, 3.0, 4.0]
            },
            columns=['column_A', 'column_B'])
        ht.reverse_transform_table.return_value = reverse_transform_dataframe

        data_navigator.ht = ht

        # Run
        modeler.model_database()

        # Check
        assert len(modeler.models) == 1
        model = modeler.models['table_name']
        assert isinstance(model, VineCopula)
        assert model.fitted is True

        assert data_navigator.get_parents.call_args_list == [
            (('table_name', ), )
        ]
        assert data_navigator.get_children.call_args_list == [
            (('table_name', ), ), (('table_name', ), )
        ]
        assert modeler.tables['table_name'].equals(
            modeler.dn.transformed_data['table_name'])
Esempio n. 15
0
    def test_model_database_kde_distribution(self):
        """model_database works fine with kde distribution."""
        # Setup
        data_navigator = MagicMock(spec=DataNavigator)
        modeler = Modeler(data_navigator=data_navigator,
                          distribution=KDEUnivariate)

        # Setup - Mocks - DataNavigator
        table_data = pd.DataFrame({
            'column_A': list('abdc'),
            'column_B': range(4)
        })
        table_metadata = {
            'name': 'table_name',
            'fields': {
                'column_A': {
                    'name': 'column_A',
                    'type': 'categorical'
                },
                'column_B': {
                    'name': 'column_B',
                    'type': 'number',
                    'subtype': 'integer'
                }
            }
        }

        data_navigator.tables = {
            'table_name': Table(table_data, table_metadata)
        }
        data_navigator.get_parents.return_value = set()
        data_navigator.get_children.return_value = set()
        data_navigator.transformed_data = {
            'table_name':
            pd.DataFrame({
                'column_A': [0.1, 0.2, 0.5, 1.0],
                'column_B': range(4)
            })
        }
        metadata = {
            'name':
            'table_name',
            'fields': [{
                'name': 'column_A',
                'type': 'categorical'
            }, {
                'name': 'column_B',
                'type': 'number',
                'subtype': 'integer'
            }]
        }

        data_navigator.meta = {'tables': [metadata]}
        ht = MagicMock(spec=HyperTransformer)
        ht.transformers = {
            ('table_name', 'column_A'): None,
            ('table_name', 'column_B'): None
        }

        reverse_transform_dataframe = pd.DataFrame(
            {
                'column_A': list('bcda'),
                'column_B': [1.0, 2.0, 3.0, 4.0]
            },
            columns=['column_A', 'column_B'])
        ht.reverse_transform_table.return_value = reverse_transform_dataframe

        data_navigator.ht = ht

        # Run
        modeler.model_database()

        # Check
        assert len(modeler.models) == 1
        assert 'table_name' in modeler.models
        model = modeler.models['table_name']

        assert isinstance(model, GaussianMultivariate)
        assert model.distribution == 'copulas.univariate.kde.KDEUnivariate'
        assert model.fitted is True

        assert data_navigator.get_parents.call_args_list == [
            (('table_name', ), )
        ]
        assert data_navigator.get_children.call_args_list == [
            (('table_name', ), ), (('table_name', ), )
        ]