Esempio n. 1
0
def main():
    with open(sys.argv[1]) as file:
        data = json.load(file)

    # TODO: find and print winning action sequence

    start = time.time()

    board = data
    print_board(game.get_grid_format(board), "Start")

    solution = ai.search(data)

    for action, stack_from, stack_to in solution:
        if action == "move":
            board = game.move(stack_from, stack_to, board)
            if DEBUG: print_board(game.get_grid_format(board))
            else:
                print_move(stack_to[N_TOKENS], stack_from[X_POS],
                           stack_from[Y_POS], stack_to[X_POS], stack_to[Y_POS])

        if action == "boom":
            board = game.boom(stack_from, board)
            if DEBUG: print_board(game.get_grid_format(board))
            else: print_boom(stack_from[X_POS], stack_from[Y_POS])

    print("# Length of solution ", len(solution))
    print("# Execution time: ", time.time() - start)
Esempio n. 2
0
def boomAll(gs):
    """ Prints "boom" for every white token """
    if len(gs["white"]) > 0:
        token = gs["white"][0]
        print_boom(token[1], token[2])
        newGs = boom(gs, token[1], token[2], groupBlacks(gs))[0]
        boomAll(newGs)
Esempio n. 3
0
def print_history_behaviors(history_behaviors_list):
    for behavior in history_behaviors_list:
        if behavior:
            if behavior[0] == "boom":
                print_boom(behavior[1][0], behavior[1][1])
            else:
                print_move(behavior[3], behavior[1][0], behavior[1][1],
                           behavior[2][0], behavior[2][1])
Esempio n. 4
0
 def print_action(action):
     """
     print an action
     Args:
         action: action tuple
     """
     if action[0] == 0:
         print_boom(action[1], action[2])
     else:
         print_move(action[0], action[1], action[2], action[3], action[4])
Esempio n. 5
0
def expendibots(data):
    # Use A* algorithm to find optimal path
    # Have it return a path (list of actions either Move or Boom)
    # Print the actions
    path = a_star_search(data)

    for action in path:
        if action is not None:
            if action.name == "Move":
                util.print_move(action.n, action.x_a, action.y_a, action.x_b,
                                action.y_b)

            else:
                util.print_boom(action.x, action.y)
Esempio n. 6
0
def findPath(node, visited):
    """ This function prints all the moves made to go from the initial gamestate to the final one

    Arguments:
        node {node} -- the final node (containing the final gamestate)
        visited {list(node)} -- list of the nodes visited during the search

    Returns:
        list(node) -- list of the nodes from the initial one to the final one
    """
    if node[1] == 0:
        return []
    else:
        result = findPath(list(filter(lambda n: n[0][0] == node[3], visited))[0], visited) + [node[0]]
        if node[0][1][0] == "move":
            print_move(node[0][1][1:])
        elif node[0][1][0] == "boom":
            print_boom(node[0][1][1], node[0][1][2])
        return result
Esempio n. 7
0
 def print(self, **kwargs):
     print_boom(*self.square, **kwargs)
Esempio n. 8
0
def run_case(data):
    """ Run simulation
    :param data: JSON input
    :type data: Dictionary
    """

    emptys = generate_all_empty_squares(data)
    whites = [tuple(white) for white in data["white"]]
    blacks = [tuple(black) for black in data["black"]]

    layout = {"emptys": emptys, "whites": whites, "blacks": blacks}

    def get_exploded_dict(layout):
        def get_exploded_tokens(coordinate, exploded_tokens):

            _3x3_surrounding_white_tokens = get_3x3_surrounding_tokens(
                layout["whites"], find_3x3_surrounding_squares(coordinate))
            _3x3_surrounding_black_tokens = get_3x3_surrounding_tokens(
                layout["blacks"], find_3x3_surrounding_squares(coordinate))

            for token in _3x3_surrounding_black_tokens:
                if token not in exploded_tokens['blacks']:
                    exploded_tokens['blacks'].append(token)
                    coordinate = tuple(token[1:])
                    get_exploded_tokens(coordinate, exploded_tokens)
            for token in _3x3_surrounding_white_tokens:
                if token not in exploded_tokens['whites']:
                    exploded_tokens['whites'].append(token)
                    coordinate = tuple(token[1:])
                    get_exploded_tokens(coordinate, exploded_tokens)

        exploded_dict = {}
        non_black_squares = sorted(layout["emptys"] + layout["whites"])
        for non_black_square in non_black_squares:
            exploded_tokens = {"blacks": [], "whites": []}
            get_exploded_tokens(non_black_square[1:], exploded_tokens)
            exploded_dict[non_black_square] = exploded_tokens
        return exploded_dict

    def pick_up(white, layout):
        # A white token is picked up
        if white not in layout["emptys"]:
            layout["emptys"].append(white)

        if white in layout["whites"]:
            layout["whites"].remove(white)
        return layout

    def place(empty, layout):

        # A white token is placed
        if empty in layout["emptys"]:
            layout["emptys"].remove(empty)
        layout["whites"].append(empty)
        return layout

    # Recursively finding the destinations whites will move to
    def find_destinations(exploded_blacks, exploded_whites, destinations, n,
                          destinations_list, layout):
        if n >= 1:

            # Determine which white to move
            white = layout["whites"][0]

            # Pick up a token and Reset layout
            layout = pick_up(white, layout)
            # print(n, white, layout["whites"])
            # Obtain exploded dictionary
            exploded_dict = get_exploded_dict(layout)
            non_blacks = sorted(layout["emptys"] + layout["whites"])
            for empty in non_blacks:
                exploded_blacks_tmp = exploded_blacks.copy()
                exploded_whites_tmp = exploded_whites.copy()

                # Obtain list of exploded tokens
                token_dict = exploded_dict[empty]
                for black in token_dict['blacks']:
                    if black not in exploded_blacks:
                        exploded_blacks_tmp.append(black)
                for exploded_white in token_dict['whites']:
                    if exploded_white not in exploded_whites:
                        exploded_whites_tmp.append(exploded_white)

                # Place the token
                layout = place(empty, layout)

                # Recursively adding exploded blacks
                if len(
                        find_destinations(exploded_blacks_tmp,
                                          exploded_whites_tmp,
                                          destinations + [empty],
                                          n - 1 - len(exploded_whites_tmp),
                                          destinations_list,
                                          layout)) == len(blacks):
                    destinations_list.append(destinations + [empty])

                # Pick up placed token
                layout = pick_up(empty, layout)

            # Place the token back
            layout = place(white, layout)
            return exploded_blacks
        else:
            return exploded_blacks

    destinations = []
    destinations_list = []
    layout_copy = copy.deepcopy(layout)
    find_destinations([], [], destinations, len(whites), destinations_list,
                      layout_copy)
    destinations = destinations_list[0]
    # print("destinations", destinations)

    # Level 1-3
    for i in range(len(destinations)):
        white = layout["whites"][i]
        start = tuple(white)
        end = destinations[i]
        whites_adjacency_list = generate_adjacency_list(
            white, layout, find_adjacent_squares)
        # Check if end is accessible
        if end in dfs(whites_adjacency_list, start):
            shortest_path = bfs_shortest_path(blacks, whites_adjacency_list,
                                              start, end)
            print_move_actions(white, shortest_path)
            print_boom(end[1], end[2])
    return

    ###**************************************************************************************###
    ###                                     level 4                                          ###
    ###**************************************************************************************###
    # Determine if the whites are trapped
    reachable = {}
    for i in range(len(destinations)):
        for white in whites:
            start = tuple(white)
            end = destinations[i]
            whites_adjacency_list = generate_adjacency_list(
                white, layout, find_adjacent_squares)
            # Check if end is accessible
            if end in dfs(whites_adjacency_list, start):
                if white not in reachable.keys():
                    reachable[white] = [end]
                else:
                    reachable[white].append(end)
            else:
                reachable[white] = []

    reachable_copy = reachable.copy()
    for i in range(len(destinations)):
        for k, v in reachable_copy.items():
            if destinations[i] in v:
                reachable_copy.pop(k)
                break

    # Level 1-3
    if reachable_copy == {}:
        for i in range(len(destinations)):
            white = layout["whites"][i]
            start = tuple(white)
            end = destinations[i]
            whites_adjacency_list = generate_adjacency_list(
                white, layout, find_adjacent_squares)
            # Check if end is accessible
            if end in dfs(whites_adjacency_list, start):
                shortest_path = bfs_shortest_path(blacks,
                                                  whites_adjacency_list, start,
                                                  end)
                print_move_actions(white, shortest_path)
                print_boom(end[1], end[2])
        return

    # Level 4
    # Stacking
    trapped_whites = whites.copy()
    trapped_whites_copy = whites.copy()
    layout_copy = layout.copy()
    for i in range(len(trapped_whites)):
        for j in range(i + 1, len(trapped_whites)):
            start = trapped_whites[i]
            end = trapped_whites[j]
            whites_adjacency_list = generate_adjacency_list(
                start, layout_copy, find_adjacent_squares)
            if end in dfs(whites_adjacency_list, start):
                shortest_path = bfs_shortest_path(blacks,
                                                  whites_adjacency_list, start,
                                                  end)
                print_move_actions(start, shortest_path)

                # Stack
                moved = (str("W" + str(
                    int(trapped_whites[j][0][1:]) +
                    int(trapped_whites[i][0][1:]))), ) + tuple(
                        trapped_whites[j][1:])
                layout.remove(trapped_whites[i])
                layout.append(
                    ("E", trapped_whites[i][1], trapped_whites[i][2]))
                layout.remove(trapped_whites[j])
                layout.append(moved)
                # trapped_whites[j] = moved
                trapped_whites_copy[j] = moved
                trapped_whites_copy.remove(trapped_whites[i])
                break

    trapped_whites = trapped_whites_copy.copy()
    trapped_whites.sort(key=lambda x: int(x[0][1:]), reverse=True)
    for i in range(len(destinations)):
        white = trapped_whites[i]
        start = tuple(white)
        end = destinations[i]

        whites_adjacency_list = generate_adjacency_list(
            white, layout, find_adjacent_squares)

        # break
        # Check if end is accessible
        if end in dfs(whites_adjacency_list, start):
            shortest_path = bfs_shortest_path(blacks, whites_adjacency_list,
                                              start, end)
            print_move_actions(white, shortest_path)
            print_boom(end[1], end[2])

            # De-stack
            moved = ("W1", ) + tuple(trapped_whites[i][1:])
            layout.append(moved)
            trapped_whites.append(moved)

        else:
            trapped_whites.append(white)
Esempio n. 9
0
def main():
    with open(sys.argv[1]) as file:
        data = json.load(file)

    board_dict = {}

    whites = data['white']  # array of arrays
    number_of_whites = 0
    for piece in whites:
        number_of_whites += piece[0]
    print("number of whites: " + str(number_of_whites))

    blacks = data['black']  # array of arrays

    place_pieces(board_dict, whites, blacks)

    killZone = set()
    find_killZones(board_dict, whites, blacks, killZone)

    place_pieces(board_dict, whites, blacks)

    print_board(board_dict)
    print(killZone)

    # find a combination of white positions within the killzone that when they explode they kill every black piece
    # results gives us the positions for white pieces
    possible_white_positions = list(combinations(killZone, number_of_whites))
    for tupl in possible_white_positions:
        for piece in blacks:
            if ((piece[1], piece[2]) in tupl):
                possible_white_positions.remove(tupl)
                break

    combinations_success = set(
    )  # combinations of postiton that kill all blacks
    for tupl in possible_white_positions:
        if (kills_all_blacks(tupl, blacks)):
            combinations_success.add(tupl)

    print("combinations that killed all the black pieces:")
    print(combinations_success)
    print(combinations_success.issuperset({((1, 1), (1, 1), (1, 1))}))

    for e in combinations_success:
        for n in range(number_of_whites):
            board_dict[(e[n][0], e[n][1])] = "!"
    print_board(board_dict)

    # Finally, move whites to the optimum positions in the least amount of moves
    #1st find combination that is closest
    #2nd move peices there

    comb_dsitances = set()
    for ntuple in combinations_success:
        comb_dsitances.add(d_comb_whites(ntuple, whites, number_of_whites))

    print(comb_dsitances)
    print(min(comb_dsitances))

    mintuple = tuple()
    for ntuple in combinations_success:
        if (d_comb_whites(ntuple, whites,
                          number_of_whites) == (min(comb_dsitances))):
            mintuple = ntuple

    print(mintuple)

    #which picece is closest to which point?
    #goal_dict = closest(mintuple, whites, number_of_whites)
    goal_dict = closest(mintuple, whites)

    #last step is to actually move the pices to their optimum position and BOOM!
    endconfig = list()
    for piece in whites:
        spos = (piece[1], piece[2])
        endpos = goal_dict[(piece[1], piece[2])]
        # print("start position: {}, goal position: {}".format((piece[1],piece[2]),goal_dict[(piece[1],piece[2])]))
        # print(goal_dict[(piece[1],piece[2])][0])
        while (not (spos == endpos)):
            if (spos[0] > endpos[0] and
                (not (board_dict.get({(spos[0] - 1, spos[1])})[0] == 'b'))):
                print_move(1, spos[0], spos[1], spos[0] - 1, spos[1])
                spos = (spos[0] - 1, spos[1])
            if (spos[0] < endpos[0]):
                print_move(1, spos[0], spos[1], spos[0] + 1, spos[1])
                spos = (spos[0] + 1, spos[1])
            if (spos[1] > endpos[1]):
                print_move(1, spos[0], spos[1], spos[0], spos[1] - 1)
                spos = (spos[0], spos[1] - 1)
            if (spos[1] < endpos[1]):
                print_move(1, spos[0], spos[1], spos[0], spos[1] + 1)
                spos = (spos[0], spos[1] + 1)
        endconfig.append(spos)
    for spos in endconfig:
        print_boom(spos[0], spos[1])