Esempio n. 1
0
def test_bfs_4steps():
    global goal_state

    print "Testing BFS in 4 steps..."

    hp_0  = HuarongPass(initial_state)
    hp_24 = HuarongPass(step_24_state)
    hp_41 = HuarongPass(step_41_state)
    hp_59 = HuarongPass(step_59_state)

    goal_state = step_24_state
    acts_0_24 = search.breadth_first_search(hp_0).solution()

    goal_state = step_41_state
    acts_24_41 = search.breadth_first_search(hp_24).solution()               

    goal_state = step_59_state
    acts_41_59 = search.breadth_first_search(hp_41).solution()   

    goal_state = None
    acts_59_81 = search.breadth_first_search(hp_59).solution()


    print len(acts_0_24), acts_0_24
    print len(acts_24_41), acts_24_41
    print len(acts_41_59), acts_41_59
    print len(acts_59_81), acts_59_81

    acts = acts_0_24 + acts_24_41 + acts_41_59 + acts_59_81
    print "Total steps: ", len(acts)

    audit_state(hp_0.state_given(initial_state, acts))

    print "BFS test complete. (4 step)"
Esempio n. 2
0
def huarong_pass_search(search_name):
    goal_actions = []

    hp = HuarongPass()

    if search_name == 'BFS':
        # print "Breadth first search...good choice. ", time.asctime()
        goal_actions = search.breadth_first_search(hp).solution()

    elif search_name == 'DFS':
        # print "Depth first search...really?", time.asctime()
        goal_actions = search.depth_first_graph_search(hp).solution()

    elif search_name == 'IDS':
        # print "Iterative deepening search...great choice!", time.asctime()
        goal_actions = search.iterative_deepening_search(hp).solution()

    elif search_name == 'BID':
        # print "Bidirectional search...not required...using BFS instead..."
        goal_actions = huarong_pass_search('BFS')

    elif search_name == 'DLS':
        # print "Depth limited search...", time.asctime()
        goal_actions = search.depth_limited_search(hp, DEPTH_LIMIT).solution()

    else:
        print "Invalid search_name given. Exiting..."

    return goal_actions
Esempio n. 3
0
def test_breadth_first_search_four_step():
    # plan of length 4
    task = dummy_task.get_simple_search_space_2()
    solution = breadth_first_search(task)
    print(solution)
    assert solution != None
    assert len(solution) == 4
Esempio n. 4
0
def test_breadth_first_search_at_goal():
    # plan of length 0, start == goal
    task = dummy_task.get_search_space_at_goal()
    solution = breadth_first_search(task)
    print(solution)
    assert solution != None
    assert len(solution) == 0
Esempio n. 5
0
def test_bfs():

    print "Testing BFS..."

    # test_bfs_7steps()

    # test_bfs_4steps()


    hp_0  = HuarongPass(initial_state)
    hp_57 = HuarongPass(step_57_state)


    goal_state = None
    acts_57_81 = search.breadth_first_search(hp_57).solution()


    print len(acts_57_81), acts_57_81

    acts = acts_57_81
    print "Total steps: ", len(acts)

    audit_state(hp_0.state_given(step_57_state, acts))

    print "BFS test complete."
Esempio n. 6
0
def length_of_shortest_cycle(incidents, vert1, vert2):
    """Returns the length of the shortest cycle in a graph
    with given INCIDENTS through the edge VERT1 --> VERT2. 
    Assumes this edge is not contained in incidents."""
    problem = GraphSearchProblem(vert1, vert2, graph_path_goal_test, incidents)
    x = breadth_first_search(problem)
    return x[3]
Esempio n. 7
0
def main():
    game = solitaire([['O', '_', '_', 'O', '_'], ['O', '_', 'O', '_', 'O'],
                      ['_', 'O', '_', 'O', '_'], ['O', '_', 'O', '_', '_'],
                      ['_', 'O', '_', '_', '_']])
    p = InstrumentedProblem(game)

    resultBreadthFirstSearch = breadth_first_search(p)
    print(resultBreadthFirstSearch.solution())
    print(resultBreadthFirstSearch.path()[0].state.board)
def main():

    print("MAIN")

    prob1 = Calculator()
    prob2 = Calculator((2, 6, 0), (2, 6, 15))
    prob3 = Calculator((3, 7, 11), (3, 7, 100))

    # Resolviendo el problema 1:
    print("Problema 1: (2, 3, 0) -> 13")
    print("Solución del Problema 1 mediante búsqueda primero en anchura")
    meta1 = breadth_first_search(prob1)
    if meta1:
        despliega_solucion(meta1)
    else:
        print("Falla: no se encontró una solución")

    # Resolviendo el problema 2:
    print("Problema 2: (2, 6, 0) -> 15")
    print("Solución del Problema 2 mediante búsqueda primero en anchura")
    meta2 = breadth_first_search(prob2)
    if meta2:
        despliega_solucion(meta2)
    else:
        print("Falla: no se encontró una solución")

    # Resolviendo el problema 3:
    print("Problema 3: (3, 7, 11) -> 100")
    print("Solución del Problema 3 mediante búsqueda primero en anchura")
    meta3 = breadth_first_search(prob3)
    if meta3:
        despliega_solucion(meta3)
    else:
        print("Falla: no se encontró una solución")

    # Resolviendo el problema 3:
    print("\nProblema 3: (3, 7, 11) -> 100")
    print("Solución del Problema 3 mediante A*")
    meta4 = astar_search(prob3)
    if meta3:
        despliega_solucion(meta4)
    else:
        print("Falla: no se encontró una solución")
Esempio n. 9
0
def bfs_tests(breadth_first_search):

    romania = pickle.load(open('romania_graph.pickle', 'rb'))

    bfs_paths = pickle.load(
        open('solution_files/romania_bfs_test_paths.pickle', 'rb'))

    for key, value in bfs_paths.items():

        start, goal = key

        right_path, right_closed = value

        romania.reset_search()

        path = breadth_first_search(romania, start, goal)

        closed = list(romania.get_explored_nodes())

        path_is_valid = is_path_correct(romania, start, goal, path)

        max_nodes_explored = max(int(len(right_closed) * 1.2),
                                 len(right_closed) + 3)
        node_exploration_valid = len(closed) <= max_nodes_explored

        path_is_correct = True

        if path and right_path:
            path_is_correct = len(path) <= len(right_path)

        if (path and not right_path) or (not path and right_path):
            path_is_correct = False

        if not (path_is_valid and node_exploration_valid and path_is_correct):
            print(
                'Breadth first search fails benchmarks searching from %s to %s: '
                % (start, goal))

            if not path_is_valid:
                print('Path %s does not go from %s to %s' %
                      (str(path), str(start), str(goal)))

            if not node_exploration_valid:
                print(
                    'Nodes explored should be a valid frontier, and be no more than %d in number'
                    % (max_nodes_explored))

            if not path_is_correct:
                print('Path %s is longer than an optimal path %s' %
                      (str(path), str(right_path)))
            return

    print('BFS tests passed.')
Esempio n. 10
0
def main():
    # Runs the Family police thief problem, will provide a path to move all family members to the right side without
    # leaving the mom alone with the male children, the dad alone with the female children, and the thief with any of
    # the family members without the police officer
    print('Family Cop Thief Problem: ')
    print(
        ' Tuples are in this format --> [<Node (mom, dad, leftFemaleKid, leftMaleKid,rightFemaleKid, rightMaleKid,police, thief, boatSide)>]')
    goalState = (1, 1, 0, 0, 2, 2, 1, 1, 1)

    problem = FRP(goalState)
    goal = breadth_first_search(problem)
    # print("\nPath = ",goal.path(),"\n\nPath cost = ",goal.path_cost)
    print("      Steps = " + str(goal.path()), "\n      Cost = " + str(goal.path_cost))
    print()
Esempio n. 11
0
def main():
    """Default function to be called when the program executes."""

    # Create an instance of the Search class with arguments from argparse
    searcher = Search(start, stop, args.grid)

    # Return the correct searching algorithm for a given specification
    if args.alg == 'bfs':
        search = aima.breadth_first_search(searcher)
    elif args.alg == 'ucs':
        search = aima.uniform_cost_search(searcher)
    else:
        search = aima.astar_search(searcher)
    return search.path()
Esempio n. 12
0
def test_bfs_7steps():
    global goal_state

    print "Testing BFS in 7 steps..."

    hp_0  = HuarongPass()
    hp_0.set_initial_state(initial_state)

    hp_24 = HuarongPass(step_24_state)
    hp_30 = HuarongPass(step_30_state)
    hp_41 = HuarongPass(step_41_state)
    hp_48 = HuarongPass(step_48_state)
    hp_59 = HuarongPass(step_59_state)
    hp_72 = HuarongPass(step_72_state)
    hp_81 = HuarongPass(step_81_state)

    goal_state = step_24_state
    acts_0_24 = search.breadth_first_search(hp_0).solution()

    goal_state = step_30_state
    acts_24_30 = search.breadth_first_search(hp_24).solution()

    goal_state = step_41_state
    acts_30_41 = search.breadth_first_search(hp_30).solution()

    goal_state = step_48_state
    acts_41_48 = search.breadth_first_search(hp_41).solution()                 

    goal_state = step_59_state
    acts_48_59 = search.breadth_first_search(hp_48).solution()  

    goal_state = step_72_state
    acts_59_72 = search.breadth_first_search(hp_59).solution()  

    goal_state = None
    acts_72_81 = search.breadth_first_search(hp_72).solution()


    print len(acts_0_24), acts_0_24
    print len(acts_24_30), acts_24_30
    print len(acts_30_41), acts_30_41
    print len(acts_41_48), acts_41_48
    print len(acts_48_59), acts_48_59
    print len(acts_59_72), acts_59_72
    print len(acts_72_81), acts_72_81

    acts = acts_0_24 + acts_24_30 + acts_30_41 + acts_41_48 + acts_48_59 + acts_59_72 + acts_72_81
    print "Total steps: ", len(acts)

    audit_state(hp_0.state_given(initial_state, acts))

    print "BFS test complete. (7 step)"
Esempio n. 13
0
def main():
    #Runs the Water Jug problem, will provide a solution to fill the three jugs
    # to a 2,2,3 configuration without overfilling a jug and only by pouring
    # until the pouring jug is empty or the recieving jug is full
    print('Water Jug Problem: ')
    print(
        ' Tuples are in this format --> [<Node (Seven-liter, Four-liter,  Three-liter)>]'
    )
    goalState = (2, 2, 3)

    problem = WJP(goalState)
    goal = breadth_first_search(problem)
    print("\nPath = ", goal.path(), "\n\nPath cost = ", goal.path_cost)
    #print("      Steps = " + str(goal.path()), "\n      Cost = " + str(goal.path_cost))
    print()
Esempio n. 14
0
def get_all_states(dim=3):
    """ In order to get all possible states for an npuzzle, you can simply pass
    any valid n-puzzle state as the initial state, and an invalid n-puzzle
    state as the goal; the
    """
    # goal state should be a tuple of the the first dim*dim positive intgers
    goal_state = tuple(range(1, dim*dim + 1))

    invalid_state = invalid_init_state(dim)
    # invalid_state is easy to produce.
    npp = NPuzzleProblem(invalid_state, goal_state)

    allstates = search.breadth_first_search(npp)

    return allstates
Esempio n. 15
0
    def populate(self, projected_task, vars_maps, actions_maps):
        from itertools import product
        from search import breadth_first_search
        from model.generic.planning.task import State

        var_map, inv_var_map = vars_maps
        action_map, inv_action_map = actions_maps

        domains = [x.domain for x in projected_task.task.state_vars]

        value_index = 0

        self.unsolvable_count = 0
        self.num_non_zero_entries = 0
        self.max_value = 0
        for valuation in apply(product, map(tuple, domains)):
            value_index += 1
            # indexed with the original vars
            entry_index = tuple([(inv_var_map[x], v)
                                 for x, v in enumerate(valuation)])
            s0 = State(projected_task.task,
                       [(x, v) for x, v in enumerate(valuation)])
            projected_task.set_initial_state(s0)
            projected_task.initial_state.check_valid()
            if not projected_task.initial_state.valid:
                self.table[entry_index] = Entry(float('inf'), None)
                self.unsolvable_count += 1
                continue
            plan = breadth_first_search(projected_task, True)
            if plan is None:
                self.table[entry_index] = Entry(float('inf'), None)
                self.unsolvable_count += 1
                continue
            first_action_in_plan = None
            if len(plan) > 0:
                self.num_non_zero_entries += 1
                first_action_in_plan = inv_action_map[plan[0].index]
            self.table[entry_index] = Entry(len(plan), first_action_in_plan)
            self.max_value = max(self.max_value, len(plan))

        logging.info('# of infinite entries in pattern: {0}'.format(
            self.unsolvable_count))
        logging.info('# of entries with a value greater than 0: {0}'.format(
            self.num_non_zero_entries))
        logging.info('Maximum value in pattern: {0}'.format(self.max_value))
def bfs_tests(breadth_first_search):
    
    romania = pickle.load(open('romania_graph.pickle', 'rb'))

    bfs_paths = pickle.load(open('solution_files/romania_bfs_test_paths.pickle', 'rb' ))

    for key, value in bfs_paths.items():
    
        start, goal = key

        right_path, right_closed = value
        
        romania.reset_search()

        path = breadth_first_search(romania, start, goal)

        closed = list(romania.get_explored_nodes())

        path_is_valid = is_path_correct(romania, start, goal, path)
        
        max_nodes_explored = max(int(len(right_closed) * 1.2), len(right_closed) + 3)
        node_exploration_valid = len(closed) <= max_nodes_explored
        
        path_is_correct = True
        
        if path and right_path:
            path_is_correct = len(path) <= len(right_path)

        if (path and not right_path) or (not path and right_path):
            path_is_correct = False

        if not (path_is_valid and node_exploration_valid and path_is_correct):
            print('Breadth first search fails benchmarks searching from %s to %s: '%(start, goal))
            
            if not path_is_valid:
                print('Path %s does not go from %s to %s'%(str(path),str(start), str(goal)))
        
            if not node_exploration_valid:
                print('Nodes explored should be a valid frontier, and be no more than %d in number'%(max_nodes_explored))

            if not path_is_correct:
                print('Path %s is longer than an optimal path %s'%(str(path),str(right_path)))
            return 

    print('BFS tests passed.')
Esempio n. 17
0
def main():
    """Run simple test using BFS to solve random puzzle."""
    puzzle = create_random_eight_puzzle(25)
    print('A random puzzle:')
    print(puzzle)

    problem = EightPuzzleSearchProblem(puzzle)
    path = search.breadth_first_search(problem)
    print(('BFS found a path of %d moves: %s' % (len(path), str(path))))
    curr = puzzle
    i = 1
    for a in path:
        curr = curr.result(a)
        print(('After %d move%s: %s' % (i, ("", "s")[i > 1], a)))
        print(curr)

        input("Press return for the next state...")   # wait for key stroke
        i += 1
    def test_breath_first_search(self):
        print(
            "Starting breath first search test",
            "If it cannot finish within 30s, "
            "please kill the job and review your code")
        print("---------------------------------------------")
        puzzle = EightPuzzleState([3, 0, 5, 6, 2, 4, 7, 8, 1])
        problem = PuzzleSearchProblem(puzzle)
        path, step = search.breadth_first_search(problem)
        print("Test BFS on: \n")
        print(puzzle)
        self.print_result("BFS", step, problem.get_costs(path), path)

        curr = puzzle
        for a in path:
            curr = curr.next_state(a)
        self.assertTrue(curr.is_goal(), "The final state is not goal test")
        print("=============================================")
Esempio n. 19
0
    def test_breath_first_search(self):
        print("Starting breath first search test")
        print("---------------------------------------------")
        with Timer(30,
                   error_message=
                   "Breath First Search cannot find the solution within 30s"):
            puzzle = EightPuzzleState([3, 0, 5, 6, 2, 4, 7, 8, 1])
            problem = PuzzleSearchProblem(puzzle)
            path, step = search.breadth_first_search(problem)
            print("Test BFS on: \n")
            print(puzzle)
            self.print_result("BFS", step, problem.get_costs(path), path)

            curr = puzzle
            for a in path:
                curr = curr.next_state(a)
            self.assertTrue(curr.is_goal(), "The final state is not goal test")
        print("=============================================")
Esempio n. 20
0
 def BuscaLargura(self):
     table = self.get_table()
     print(table)
     initial_state = StateNode(Game8(table), None, None, 0, 0)
     start = int(round(time.time() * 1000))
     path = breadth_first_search(initial_state)
     end = int(round(time.time() * 1000))
     for state in path:
         self.depth_label['text'] = 'Profundidade: ' + str(state.depth)
         b = state.game.get_b_position()
         state.game.table[b[0]][b[1]] = ''
         self.set_table(state.game.table)
         state.game.show_table()
         time.sleep(1)
     self.generated_nodes_label['text'] = 'Nós gerados: ' + str(
         s.generated_nodes)
     self.execution_time['text'] = 'Tempo de execução (ms): ' + str(end -
                                                                    start)
Esempio n. 21
0
    def find_path_to_closest_dot(self, game_state):
        """
        Returns a path (a list of actions) to the closest dot, starting from
        game_state.
        """
        # Here are some useful elements of the start_state
        start_position = game_state.get_pacman_position()
        food = game_state.get_food()
        walls = game_state.get_walls()
        problem = AnyFoodSearchProblem(game_state)

        "*** YOUR CODE HERE ***"
        """
        The Breadth First Search algorithm is guaranteed to find a path to the 
        closest dot and it is optimal in this scenario because the cost of each
        action is one
        """
        return search.breadth_first_search(problem)
Esempio n. 22
0
def run(algorithm, grid, start, stop):
    """Verify that the start and stop locations are valid then run the indicated search algorithms
    and return the final node. If no algorithm is indicated it will default to A_star search

    :param algorithm: The search algorithm to use
    :param grid: grid to find a path through
    :param start: starting location
    :param stop: goal location
    :return: The path taken
    """

    # Verify start and stop position are valid
    if not valid_position(grid, start):
        try:
            if grid[start] == 0:
                print(start,
                      'Is not a valid start position, it is in an obstacle.')
        except IndexError:
            print(
                start,
                'Is not a valid start position. Start position must be within the grid: ',
                grid.shape)
        exit()
    if not valid_position(grid, stop):
        try:
            if grid[stop] == 0:
                print(stop, 'Is not a valid stop position, it is an obstacle.')
        except IndexError:
            print(
                stop,
                'Is not a valid stop position. Stop position must be within the range of the grid shape:',
                grid.shape)
        exit()

    my_problem = PathingProblem(start, stop,
                                grid)  # Creating instance of PathingProblem

    if algorithm == 'breadth_first_search' or algorithm == 'b':
        return breadth_first_search(my_problem)
    elif algorithm == 'depth_first_graph_search' or algorithm == 'd':
        return depth_first_graph_search(my_problem)
    else:  # Defaults to a_star search
        return astar_search(my_problem)
Esempio n. 23
0
from board import buildGrid
from board import toggleCell
from board import buildGrid
from board import parseBoard
from cleanUpPuzzle import CleanUpPuzzle
from search import breadth_first_search
from search import uniform_cost_search
from display import displayProblemSolution
import time

BOARD_SIZE = 6

HARD_BOARD = [
    '0|1|0|0|0|1',
    '0|0|1|0|0|0',
    '0|0|0|1|0|1',
    '0|1|0|0|1|0',
    '0|0|1|0|0|0',
    '0|0|0|0|0|0'
]

start_time = time.time()
easy_goal = breadth_first_search(
    CleanUpPuzzle(
        '\n'.join(HARD_BOARD), 
        buildGrid(size = BOARD_SIZE)
    )
)
print(easy_goal)
displayProblemSolution(easy_goal, 'breadth_first_search', time.time() - start_time)
Esempio n. 24
0
from trees import Node
from search import (depth_first_search, breadth_first_search,
                    recursion_tree_traverse)

# Setup Tree
root = Node(0)
root.left = Node(1)
root.right = Node(2)
root.left.left = Node(3)
root.left.right = Node(4)
root.right.left = Node(5)
root.right.right = Node(6)

print('Depth First Search')
depth_first_search(root)
print('=' * 25)
print('Breadth First Search')
breadth_first_search(root)
print('Recursion Tree Traversal')
recursion_tree_traverse(root)
Esempio n. 25
0
    print()
    print('=' * 50)
    print('=' * 50)
    print("EIGHT-PUZZLE PROBLEM")
    print('=' * 50)
    print('=' * 50)

    ep = EightPuzzleProblem([[3, 1, 2], [7, 5, 0], [4, 6, 8]])

    print()
    print('-' * 50)
    print("Running BREADTH-FIRST-TREE-SEARCH")
    print('-' * 50)

    bfts = breadth_first_search(ep, search_type=uninformed_tree_search)

    print("Solution", bfts.solution())

    print()
    print('-' * 50)
    print("Running UNIFORM-COST-TREE-SEARCH")
    print('-' * 50)

    ucts = uniform_cost_search(ep, search_type=best_first_tree_search)

    print("Solution", ucts.solution())

    print()
    print('-' * 50)
    print(
Esempio n. 26
0
            result.append((x, y + 1))
        return result

    def push(self, x, y):
        adjacent_points = self.get_adjacent_nodes(x, y)
        for point in adjacent_points:
            if point in self.points:
                self.points.remove(point)
            else:
                self.points.append(point)


def print_solution(result):
    print("Initial board is: {}".format(result.path()[0].state))
    print("The sequence is:")
    for action in result.solution():
        print("Push tile {}".format(action))
    print("Resultant board is: {}".format(result.state))


initial_state = PuzzleState(
    points=[(0, 1), (1, 0), (9, 10), (10, 9), (5, 4), (5, 6), (4, 5), (6, 5)])

goal = PuzzleState(points=[])

puzzle = CleanUpPuzzle(initial_state, goal=goal)

result = breadth_first_search(puzzle)
if result:
    print_solution(result)
Esempio n. 27
0
      moves: number of random moves to apply

      Creates a random eight puzzle by applying
      a series of 'moves' random moves to a solved
      puzzle.
    """
    puzzle = EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8])
    for i in range(moves):
        # Execute a random legal move
        puzzle = puzzle.result(random.sample(puzzle.legal_moves(), 1)[0])
    return puzzle


if __name__ == '__main__':
    puzzle = create_random_eight_puzzle(25)
    print('A random puzzle:')
    print(puzzle)

    problem = EightPuzzleSearchProblem(puzzle)
    path = search.breadth_first_search(problem)
    print(('BFS found a path of %d moves: %s' % (len(path), str(path))))
    curr = puzzle
    i = 1
    for a in path:
        curr = curr.result(a)
        print(('After %d move%s: %s' % (i, ("", "s")[i > 1], a)))
        print(curr)

        input("Press return for the next state...")  # wait for key stroke
        i += 1
Esempio n. 28
0
def test_breadth_first_search_no_solution():
    # plan with no solution
    task = dummy_task.get_search_space_no_solution()
    solution = breadth_first_search(task)
    print(solution)
    assert solution == None
Esempio n. 29
0
'''
Created on Oct 2, 2016

@author: farida
'''
from search import romania_map, GraphProblem, breadth_first_tree_search,\
    depth_first_graph_search, iterative_deepening_search,\
    recursive_best_first_search, breadth_first_search, uniform_cost_search,\
    depth_limited_search

print("Romania Locations:")
print("==================")
print(romania_map.locations)

print("Romania Map:")
print("=============")
print(romania_map.dict)

romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)

print("Search Algorithms Results:")
print("==========================")
print(breadth_first_search(romania_problem).solution())
#print(breadth_first_search(romania_problem).path_cost)
print(uniform_cost_search(romania_problem).solution())
#print(uniform_cost_search(romania_problem).path_cost)
print(depth_first_graph_search(romania_problem).solution())
print(depth_first_graph_search(romania_problem).path_cost)
Esempio n. 30
0
'''
from search import romania_map, GraphProblem, breadth_first_tree_search,\
    depth_first_graph_search, iterative_deepening_search,\
    recursive_best_first_search, breadth_first_search, uniform_cost_search,\
    depth_limited_search


print("Romania Locations:")
print("==================")
print(romania_map.locations)

print("Romania Map:")
print("=============")
print(romania_map.dict)

romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)

print("Search Algorithms Results:")
print("==========================")
print(breadth_first_search(romania_problem).solution())
#print(breadth_first_search(romania_problem).path_cost)
print(uniform_cost_search(romania_problem).solution())
#print(uniform_cost_search(romania_problem).path_cost)
print(depth_first_graph_search(romania_problem).solution())
print(depth_first_graph_search(romania_problem).path_cost)





                if grid[i][j] == u'air':
                    grid[i][j] = 'a'
                elif grid[i][j] == u'diamond_block':
                    grid[i][j] = 'd'
                elif grid[i][j] == u'emerald_block':
                    grid[i][j] = 'E'
                elif grid[i][j] == u'redstone_block':
                    grid[i][j] = 'R'
                else:
                    grid[i][j] = '?'

        pretty_print_grid(grid)

        problem = MazeProblem(grid)
        if search_alg == 'bfs':
            plan = breadth_first_search(problem)
        elif search_alg == 'gs':
            plan = greedy_search(problem)
        if plan:
            for action in plan:
                print 'action: {0}'.format(action)
                command = commands[action]
                agent_host.sendCommand(command)
                time.sleep(0.5)

        world_state = agent_host.getWorldState()
        if world_state.is_mission_running or len(
                world_state.rewards
        ) == 0 or world_state.rewards[-1].getValue() < 100.0:
            print 'Mission failed: did not reach goal state.'
            break
Esempio n. 32
0
 def solve(self, start_status):
     start_node = self.nodes.index(start_status)
     shortest_path = breadth_first_search(start_node, self.node_edges,
                                          self.is_solved)
     return [self.nodes[node] for node in shortest_path]
Esempio n. 33
0
    
 print
 print '=' * 50
 print '=' * 50
 print "EIGHT-PUZZLE PROBLEM"
 print '=' * 50
 print '=' * 50
   
 ep = EightPuzzleProblem([[3, 1, 2], [7, 5, 0], [4, 6, 8]])
 
 print
 print '-' * 50
 print "Running BREADTH-FIRST-TREE-SEARCH"
 print '-' * 50
 
 bfts = breadth_first_search(ep, search_type=uninformed_tree_search)
 
 print "Solution", bfts.solution()
 
 print
 print '-' * 50
 print "Running UNIFORM-COST-TREE-SEARCH"
 print '-' * 50
 
 ucts = uniform_cost_search(ep, search_type=best_first_tree_search)
 
 print "Solution", ucts.solution()
 
 print
 print '-' * 50
 print "Running GREEDY-BEST-FIRST-TREE-SEARCH USING # MISPLACED TILES HEURISTIC"
            return 2
        elif node.state == 'F':
            return 10
        elif node.state == 'G':
            return 0
        elif node.state == 'S':
            return 8

    travel_problem = TravelProblem('S', 'G', city_map)

    print()
    print('-' * 50)
    print("Q2: BREADTH-FIRST-TREE-SEARCH")
    print('-' * 50)

    bfts = breadth_first_search(travel_problem,
                                search_type=uninformed_graph_search)

    print("Solution", bfts.solution())

    print()
    print('-' * 50)
    print("Q3: UNIFORM-COST-GRAPH-SEARCH")
    print('-' * 50)

    ucs = uniform_cost_search(travel_problem,
                              search_type=best_first_graph_search)

    print("Solution", ucs.solution())

    print()
    print('-' * 50)
Esempio n. 35
0


"""
python run_A_Star.py heuristicNo size steps
"""
arg = sys.argv

heuristic = int(arg[1])

p = puzzle(None, True, "inputState.txt", False, None)

startTime = time.time()

if heuristic == 0 :
    solution = breadth_first_search(p)
elif heuristic == 1 :
    solution = astar_search(p, lambda x : h1(x, p.goal))
elif heuristic == 2 :
    solution = astar_search(p, lambda x : h2(x, p.goal))
elif heuristic == 3 :
    solution = astar_search(p, lambda x : h3(x, p.goal))
elif heuristic == 4 :
    solution = astar_search(p, lambda x : h4(x, p.goal))


solution = solution.solution()

if solution != None:
    print "Actions made : ", len(solution)
    print "Time elapsed :  %.3f" % (time.time() - startTime)
Esempio n. 36
0
#-------------------------------------------------------------------
# EJEMPLOS DE USO

# Problema 1: (3,3,1) -> (0,0,0) para 3 misioneros y 3 caníbales
prob1 = MisionerosYCanibales()
# Problema 2: (2,2,0) -> (0,0,1) para 3 misioneros y 3 caníbales
prob2 = MisionerosYCanibales((2, 2, 0), (0, 0, 1))
# Problema 3: (4,4,1) -> (2,2,0) para 4 misioneros y 4 caníbales
prob3 = MisionerosYCanibales((4, 4, 1), (2, 2, 0), 4)
# Problema 4: (6,5,1) -> (6,0,0) para 6 misioneros y 6 caníbales
prob4 = MisionerosYCanibales((6, 5, 1), (6, 0, 0), 6)

# Resolviendo el problema 1:
print("Solución del Problema 1 mediante búsqueda primero en anchura")
meta1 = breadth_first_search(prob1)
if meta1:
    despliega_solucion(meta1)
else:
    print("Falla: no se encontró una solución")

# Resolviendo el problema 2:
print("Solución del Problema 2 mediante búsqueda primero en anchura")
meta2 = breadth_first_search(prob2)
if meta2:
    despliega_solucion(meta2)
else:
    print("Falla: no se encontró una solución")

# Resolviendo el problema 3:
print("Solución del Problema 3 mediante búsqueda primero en anchura")
if __name__ == '__main__':
    # TODO This should be unchanged in the final program you hand in, but it might be useful to make a copy,
    # comment out one copy, and modify the other to get things to run more quickly while you're debugging
    depths = (1, 2, 4, 8, 16)
    trials = 100
    path_lengths = {}
    state_counts = {}
    for depth in depths:
        print('Gathering data for depth ' + str(depth) + '...')
        path_lengths[depth] = {'BFS': [], 'IDS': [], 'A*-mis': [], 'A*-Man': []}
        state_counts[depth] = {'BFS': [], 'IDS': [], 'A*-mis': [], 'A*-Man': []}
        for trial in range(trials):
            puzzle = EightPuzzle(depth)
            p = search.InstrumentedProblem(puzzle)
            path_lengths[depth]['BFS'].append(len(search.breadth_first_search(p).path()))
            state_counts[depth]['BFS'].append(p.states)
            p = search.InstrumentedProblem(puzzle)
            path_lengths[depth]['IDS'].append(len(search.iterative_deepening_search(p).path()))
            state_counts[depth]['IDS'].append(p.states)
            p = search.InstrumentedProblem(puzzle)
            path_lengths[depth]['A*-mis'].append(len(search.astar_search(p, misplaced).path()))
            state_counts[depth]['A*-mis'].append(p.states)
            p = search.InstrumentedProblem(puzzle)
            path_lengths[depth]['A*-Man'].append(len(search.astar_search(p, manhattan).path()))
            state_counts[depth]['A*-Man'].append(p.states)
    print('Path lengths:')
    print('{:>5}  {:>8}  {:>8}  {:>8}  {:>8}'.format('Depth', 'BFS', 'IDS', 'A*-mis', 'A*-Man'))
    for depth in depths:
        print('{:>5}  {:>8}  {:>8}  {:>8}  {:>8}' \
              .format(depth,
Esempio n. 38
0
         'BFS': [],
         'IDS': [],
         'A*-mis': [],
         'A*-Man': []
     }
     state_counts[depth] = {
         'BFS': [],
         'IDS': [],
         'A*-mis': [],
         'A*-Man': []
     }
     for trial in range(trials):
         puzzle = EightPuzzle(depth)
         p = search.InstrumentedProblem(puzzle)
         path_lengths[depth]['BFS'].append(
             len(search.breadth_first_search(p).path()))
         state_counts[depth]['BFS'].append(p.states)
         p = search.InstrumentedProblem(puzzle)
         path_lengths[depth]['IDS'].append(
             len(search.iterative_deepening_search(p).path()))
         state_counts[depth]['IDS'].append(p.states)
         p = search.InstrumentedProblem(puzzle)
         path_lengths[depth]['A*-mis'].append(
             len(search.astar_search(p, misplaced).path()))
         state_counts[depth]['A*-mis'].append(p.states)
         p = search.InstrumentedProblem(puzzle)
         path_lengths[depth]['A*-Man'].append(
             len(search.astar_search(p, manhattan).path()))
         state_counts[depth]['A*-Man'].append(p.states)
 print('Path lengths:')
 print('{:>5}  {:>8}  {:>8}  {:>8}  {:>8}'.format('Depth', 'BFS', 'IDS',