Esempio n. 1
0
    def visitTransp(self, node: AST.Transp):

        (prog_in, expr_in) = self.visit(node.expr)

        expr_out = self.getTempVar()

        type_out = node.type
        [I, J] = type_out.shape

        scale_out = self.scales[expr_in.idf]
        intv_out = self.intvs[expr_in.idf]

        expr_in.inputVar = False
        expr_out.inputVar = False

        cmd0 = IR.Comment(expr_in.idf + "^T")

        funcCall = IR.FuncCall("Transpose", {
            expr_in: "A",
            expr_out: "B",
            IR.Int(I): "I",
            IR.Int(J): "J"
        })

        prog_transp = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in, prog_transp)

        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        return (prog_out, expr_out)
Esempio n. 2
0
    def visitArgMax(self, node: AST.Func):

        (prog_in, expr_in) = self.visit(node.expr)

        type_out = node.expr.type

        assert type_out.dim == 2

        [I, J] = type_out.shape

        expr_out = self.getTempVar()

        expr_in.inputVar = False

        cmd0 = IR.Comment('argmax(' + expr_in.idf + ')')

        funcCall = IR.FuncCall("ArgMax", {
            expr_in: "A",
            IR.Int(I): "I",
            IR.Int(J): "J",
            expr_out: "index"
        })

        prog_argmax = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in, prog_argmax)

        self.decls[expr_out.idf] = Type.Int()

        return (prog_out, expr_out)
Esempio n. 3
0
    def visitBopMul1DTensor(self, node: AST.Bop1):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        type_in_A, type_in_B = node.expr1.type, node.expr2.type
        type_out = node.type

        expr_out = self.getTempVar()

        scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
            expr_in_B.idf]
        intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
            expr_in_B.idf]

        [shr_A, shr_B] = self.getShrForMul(scale_in_A, scale_in_B)

        scale_out = self.getScaleForMul(scale_in_A, shr_A, scale_in_B, shr_B)
        intv_out = self.getIntvervalForMul(intv_in_A, shr_A, intv_in_B, shr_B)

        if type_in_A.dim == 0:
            a, b = expr_in_A, expr_in_B
            [I, J] = type_in_B.shape
            shr_a, shr_b = shr_A, shr_B
        else:
            a, b = expr_in_B, expr_in_A
            [I, J] = type_in_A.shape
            shr_a, shr_b = shr_B, shr_A

        shr_a = self.formatShr(shr_a)
        shr_b = self.formatShr(shr_b)

        a.inputVar = False
        b.inputVar = False
        expr_out.inputVar = False

        cmd0 = IR.Comment(expr_in_A.idf + ' * ' + expr_in_B.idf)

        funcCall = IR.FuncCall(
            "ScalarMul", {
                a: "A",
                b: "B",
                expr_out: "C",
                IR.Int(I): "I",
                IR.Int(J): "J",
                shr_a: "shr1",
                shr_b: "shr2"
            })

        prog_mul = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_mul)

        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        return (prog_out, expr_out)
Esempio n. 4
0
    def visitRelu(self, node: AST.Func):

        (prog_in, expr_in) = self.visit(node.expr)

        type_out = node.expr.type

        (m, M) = self.intvs[expr_in.idf]
        if m < 0:
            m = 0
        if M < 0:
            M = 0
        intv_out = (m, M)

        expr_in.inputVar = False

        cmd0 = IR.Comment("relu(" + expr_in.idf + ")")

        if node.type.dim == 4:
            [N, H, W, C] = node.type.shape
            funcCall = IR.FuncCall(
                "Relu4D", {
                    expr_in: "A",
                    IR.Int(N): "N",
                    IR.Int(H): "H",
                    IR.Int(W): "W",
                    IR.Int(C): "C"
                })
        elif node.type.dim == 2:
            [H, W] = node.type.shape
            funcCall = IR.FuncCall("Relu2D", {
                expr_in: "A",
                IR.Int(H): "H",
                IR.Int(W): "W"
            })
        else:
            assert False

        prog_relu = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in, prog_relu)

        self.intvs[expr_in.idf] = intv_out

        return (prog_out, expr_in)
Esempio n. 5
0
    def visitBopMulCir(self, node: AST.Bop1):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        type_in_A, type_in_B = node.expr1.type, node.expr2.type
        type_out = node.type

        expr_out = self.getTempVar()

        assert type_out.dim == 2

        [I, J] = type_out.shape

        scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
            expr_in_B.idf]
        intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
            expr_in_B.idf]

        [shr_A, shr_B] = self.getShrForMul(scale_in_A, scale_in_B)

        scale_out = self.getScaleForMul(scale_in_A, shr_A, scale_in_B, shr_B)
        intv_out = self.getIntvervalForMul(intv_in_A, shr_A, intv_in_B, shr_B)

        shr_A = self.formatShr(shr_A)
        shr_B = self.formatShr(shr_B)

        expr_in_A.inputVar = False
        expr_in_B.inputVar = False
        expr_out.inputVar = False

        cmd0 = IR.Comment(expr_in_A.idf + ' <*> ' + expr_in_B.idf)

        funcCall = IR.FuncCall(
            "MulCir", {
                expr_in_A: "A",
                expr_in_B: "B",
                expr_out: "C",
                IR.Int(I): "I",
                IR.Int(J): "J",
                shr_A: "shrA",
                shr_B: "shrB"
            })

        prog_mul = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_mul)

        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        return (prog_out, expr_out)
Esempio n. 6
0
    def visitFuncCall(self, node: AST.FuncCall):
        # Assumes that the output of the uninterpretted function call is stored in one of the arguments
        # Also assumes that the scale of the output is equal to the scale of
        # the first argument

        progs = []
        exprs = []
        for expr in node.exprList:
            (prog_in, expr_in) = self.visit(expr)
            progs.append(prog_in)
            exprs.append(expr_in)

        prog_out = IR.Prog([])
        for prog_funcCall in progs:
            prog_out = IRUtil.concatPrograms(prog_out, prog_funcCall)

        expr_out = self.getTempVar()

        args = dict()
        ch = 'A'
        for expr in exprs:
            args[expr] = ch
            ch = chr(ord(ch) + 1)
        args[expr_out] = expr_out.idf

        ch = 'I'
        for i in node.type.shape:
            args[IR.Int(i)] = ch
            ch = chr(ord(ch) + 1)

        str = [expr.idf for expr in exprs]
        cmd0 = IR.Comment(node.name + '(' + ', '.join(str) + ')')

        funcCall = IR.FuncCall(node.name, args)

        prog_funcCall = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_out, prog_funcCall)

        self.decls[expr_out.idf] = node.type
        self.scales[expr_out.idf] = self.scales[exprs[0].idf]
        self.intvs[expr_out.idf] = self.intvs[exprs[0].idf]

        return (prog_out, expr_out)
Esempio n. 7
0
    def visitMaxpool(self, node: AST.Maxpool):

        (prog_in, expr_in) = self.visit(node.expr)

        type_out = node.type
        stride = node.dim

        # Compute scaling factor
        scale_out = self.scales[expr_in.idf]
        intv_out = self.intvs[expr_in.idf]

        # Declare variables
        expr_out = self.getTempVar()

        [N, H, W, C] = node.expr.type.shape

        expr_in.inputVar = False
        expr_out.inputVar = False

        cmd0 = IR.Comment("maxpool(" + expr_in.idf + ", " + str(stride) + ")")

        funcCall = IR.FuncCall(
            "Maxpool", {
                expr_in: "A",
                expr_out: "B",
                IR.Int(N): "N",
                IR.Int(H): "H",
                IR.Int(W): "W",
                IR.Int(C): "C",
                IR.Int(stride): "stride"
            })

        prog_maxpool = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in, prog_maxpool)

        # Update declarations
        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        return (prog_out, expr_out)
Esempio n. 8
0
    def visitTanh(self, node: AST.Func):

        (prog_in, expr_in) = self.visit(node.expr)

        type_in = node.expr.type
        [I, J] = type_in.shape

        scale_in = self.scales[expr_in.idf]
        intv_in = self.intvs[expr_in.idf]

        # Scale tanh limit
        tanh_limit = int(np.ldexp(Common.tanh_limit, -scale_in))
        assert tanh_limit < np.iinfo(IR.DataType.getIntClass()).max
        tanh_limit = IR.DataType.getInt(tanh_limit)

        tanh_intv = self.getInterval(scale_in, Common.tanh_limit,
                                     Common.tanh_limit)
        intv_out = self.updateTanhIntv(intv_in, tanh_intv)

        expr_in.inputVar = False

        cmd0 = IR.Comment("tanh(" + expr_in.idf + ")")

        funcCall = IR.FuncCall(
            "TanH", {
                expr_in: "A",
                IR.Int(I): "I",
                IR.Int(J): "J",
                IR.Int(tanh_limit): "threshold"
            })

        prog_tanh = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in, prog_tanh)

        self.intvs[expr_in.idf] = intv_out
        expr_out = expr_in

        return (prog_out, expr_out)
Esempio n. 9
0
    def visitBop2(self, node: AST.Bop2):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        op = node.op
        if op == SeeDotParser.ADD:
            (op_ir, op_fn) = (IR.Op.Op['+'], operator.add)
            funcName = "MatAdd"
        elif op == SeeDotParser.SUB:
            (op_ir, op_fn) = (IR.Op.Op['-'], operator.sub)
            funcName = "MatSub"

        type_out = node.type

        # e : Int
        if Type.isInt(type_out):
            prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B)
            expr_out = IR.IntBop(expr_in_A, op_ir, expr_in_B)

        # e : Tensor(), or Tensor(..)
        else:
            expr_out = self.getTempVar()

            scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
                expr_in_B.idf]
            intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
                expr_in_B.idf]

            (scale_out, intv_out,
             [shr_A, shr_B, shr_out
              ]) = self.getScaleAndIntervalForAdd(scale_in_A, scale_in_B,
                                                  intv_in_A, intv_in_B, op_fn)

            assert type_out.dim == 2

            [I, J] = type_out.shape

            shr_A = self.formatShr(shr_A)
            shr_B = self.formatShr(shr_B)
            shr_out = self.formatShr(shr_out)

            expr_in_A.inputVar = False
            expr_in_B.inputVar = False
            expr_out.inputVar = False

            cmd0 = IR.Comment(expr_in_A.idf + ' ' + op_ir.name + ' ' +
                              expr_in_B.idf)

            funcCall = IR.FuncCall(
                funcName, {
                    expr_in_A: "A",
                    expr_in_B: "B",
                    expr_out: "C",
                    IR.Int(I): "I",
                    IR.Int(J): "J",
                    shr_A: "shrA",
                    shr_B: "shrB",
                    shr_out: "shrC"
                })

            prog_bop = IR.Prog([cmd0, funcCall])

            prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_bop)

            self.decls[expr_out.idf] = type_out
            self.scales[expr_out.idf] = scale_out
            self.intvs[expr_out.idf] = intv_out

        return (prog_out, expr_out)
Esempio n. 10
0
    def visitBopAddOrSubCir(self, node: AST.Bop1):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        op = node.op
        type_in_A, type_in_B = node.expr1.type, node.expr2.type
        type_out = node.type

        if op == SeeDotParser.ADDCIR:
            (op_ir, op_fn) = (IR.Op.Op['+'], operator.add)
            add = True
        elif op == SeeDotParser.SUBCIR:
            (op_ir, op_fn) = (IR.Op.Op['-'], operator.sub)
            add = False

        assert add == True

        scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
            expr_in_B.idf]
        intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
            expr_in_B.idf]

        (scale_out, intv_out,
         [shr_A, shr_B,
          shr_out]) = self.getScaleAndIntervalForAdd(scale_in_A, scale_in_B,
                                                     intv_in_A, intv_in_B,
                                                     op_fn)

        shr_A = self.formatShr(shr_A)
        shr_B = self.formatShr(shr_B)
        shr_out = self.formatShr(shr_out)

        expr_in_A.inputVar = False
        expr_in_B.inputVar = False

        cmd0 = IR.Comment(expr_in_A.idf + " <" + op_ir.name + "> " +
                          expr_in_B.idf)

        if node.type.dim == 4:
            [N, H, W, C] = node.type.shape
            funcCall = IR.FuncCall(
                "AddOrSubCir4D", {
                    expr_in_A: "A",
                    expr_in_B: "B",
                    IR.Int(N): "N",
                    IR.Int(H): "H",
                    IR.Int(W): "W",
                    IR.Int(C): "C",
                    shr_A: "shrA",
                    shr_B: "shrB",
                    shr_out: "shrC",
                    IR.Bool(True): "add"
                })
        elif node.type.dim == 2:
            [H, W] = node.type.shape
            funcCall = IR.FuncCall(
                "AddOrSubCir2D", {
                    expr_in_A: "A",
                    expr_in_B: "B",
                    IR.Int(H): "H",
                    IR.Int(W): "W",
                    shr_A: "shrA",
                    shr_B: "shrB",
                    shr_out: "shrC",
                    IR.Bool(True): "add"
                })
        else:
            assert False

        prog_cir = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_cir)

        self.scales[expr_in_A.idf] = scale_out
        self.intvs[expr_in_A.idf] = intv_out

        return (prog_out, expr_in_A)
Esempio n. 11
0
    def visitBopConv(self, node: AST.Bop1):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        [N, H, W, CI] = node.expr1.type.shape
        [HF, WF, CI, CO] = node.expr2.type.shape

        type_treeSum = Type.Tensor([HF * WF * CI])
        type_out = node.type

        # Compute padding
        padH = (HF - 1) // 2
        padW = (WF - 1) // 2

        # Declare variables
        [expr_treeSum, expr_out] = self.getTempVars(2)

        # Compute scale reductions and new scaling factors
        scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
            expr_in_B.idf]
        intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
            expr_in_B.idf]

        [shr_A, shr_B] = self.getShrForMul(scale_in_A, scale_in_B)

        scale_treeSum = self.getScaleForMul(scale_in_A, shr_A, scale_in_B,
                                            shr_B)
        intv_treeSum = self.getIntvervalForMul(intv_in_A, shr_A, intv_in_B,
                                               shr_B)

        (scale_out, height_shr,
         height_noshr) = self.getScaleForTreeSum(scale_treeSum, HF * WF * CI)
        intv_out = self.getIntervalForTreeSum(intv_treeSum, HF * WF * CI)

        shr_A = self.formatShr(shr_A)
        shr_B = self.formatShr(shr_B)

        expr_in_A.inputVar = False
        expr_in_B.inputVar = False
        expr_out.inputVar = False

        cmd0 = IR.Comment(expr_in_A.idf + ' # ' + expr_in_B.idf)

        funcCall = IR.FuncCall(
            "Conv", {
                expr_in_A: "A",
                expr_in_B: "B",
                expr_out: "C",
                expr_treeSum: "tmp",
                IR.Int(N): "N",
                IR.Int(H): "H",
                IR.Int(W): "W",
                IR.Int(CI): "CI",
                IR.Int(HF): "HF",
                IR.Int(WF): "WF",
                IR.Int(CO): "CO",
                shr_A: "shrA",
                shr_B: "shrB",
                IR.Int(height_shr): "H1",
                IR.Int(height_noshr): "H2"
            })

        prog_conv = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_conv)

        # Update context for output variable
        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        # Update declarations
        self.decls[expr_treeSum.idf] = type_treeSum

        return (prog_out, expr_out)
Esempio n. 12
0
    def visitBopSparseMul(self, node: AST.Bop1):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        [P, Q] = node.expr1.type.shape
        [Q, R] = node.expr2.type.shape
        assert R == 1

        expr_out = self.getTempVar()
        type_out = node.type

        scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
            expr_in_B.idf]
        intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
            expr_in_B.idf]

        [shr_A, shr_B] = self.getShrForMul(scale_in_A, scale_in_B)

        scale_treeSum = self.getScaleForMul(scale_in_A, shr_A, scale_in_B,
                                            shr_B)
        intv_treeSum = self.getIntvervalForMul(intv_in_A, shr_A, intv_in_B,
                                               shr_B)

        (scale_out, height_shr,
         height_noshr) = self.getScaleForTreeSum(scale_treeSum, Q)
        intv_out = self.getIntervalForTreeSum(intv_treeSum, Q)

        in_A_idx = IR.Var(expr_in_A.idf[0] + 'idx',
                          expr_in_A.idx,
                          inputVar=True)
        in_A_val = IR.Var(expr_in_A.idf[0] + 'val',
                          expr_in_A.idx,
                          inputVar=True)

        shr_A = self.formatShr(shr_A)
        shr_B = self.formatShr(shr_B)
        height_shr = self.formatShr(height_shr)

        in_A_idx.inputVar = False
        in_A_val.inputVar = False
        expr_in_B.inputVar = False
        expr_out.inputVar = False

        cmd0 = IR.Comment(expr_in_A.idf + ' |*| ' + expr_in_B.idf)
        cmd1 = IR.Memset(expr_out, type_out.size())

        funcCall = IR.FuncCall(
            "SparseMatMul", {
                in_A_idx: "Aidx",
                in_A_val: "Aval",
                expr_in_B: "B",
                expr_out: "C",
                IR.Int(Q): "K",
                shr_A: "shrA",
                shr_B: "shrB",
                height_shr: "shrC"
            })

        prog_mul = IR.Prog([cmd0, cmd1, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_mul)

        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        # Length of Aidx and Aval hard coded to 100
        # This is safe as it will be ignored in the generated code
        self.decls.update({
            in_A_idx.idf: Type.Tensor([100]),
            in_A_val.idf: Type.Tensor([100]),
        })
        self.globalVars.append(in_A_idx.idf)
        self.globalVars.append(in_A_val.idf)

        return (prog_out, expr_out)
Esempio n. 13
0
    def visitBopMul2DTensor(self, node: AST.Bop1):

        (prog_in_A, expr_in_A) = self.visit(node.expr1)

        (prog_in_B, expr_in_B) = self.visit(node.expr2)

        expr_treeSum = self.getTempVar()
        expr_out = self.getTempVar()

        # Compute scales
        scale_in_A, scale_in_B = self.scales[expr_in_A.idf], self.scales[
            expr_in_B.idf]
        intv_in_A, intv_in_B = self.intvs[expr_in_A.idf], self.intvs[
            expr_in_B.idf]

        [shr_A, shr_B] = self.getShrForMul(scale_in_A, scale_in_B)

        type_in_A, type_in_B = node.expr1.type, node.expr2.type
        type_out = node.type

        [I, J] = type_in_A.shape
        [J, K] = type_in_B.shape
        type_treeSum = Type.Tensor([J])

        scale_treeSum = self.getScaleForMul(scale_in_A, shr_A, scale_in_B,
                                            shr_B)
        intv_treeSum = self.getIntvervalForMul(intv_in_A, shr_A, intv_in_B,
                                               shr_B)

        (scale_out, height_shr,
         height_noshr) = self.getScaleForTreeSum(scale_treeSum, J)
        intv_out = self.getIntervalForTreeSum(intv_treeSum, J)

        shr_A = self.formatShr(shr_A)
        shr_B = self.formatShr(shr_B)

        c = ''
        if expr_in_A.idf in self.globalVars:
            c += 'C'
        else:
            c += 'N'
        if expr_in_B.idf in self.globalVars:
            c += 'C'
        else:
            c += 'N'

        expr_in_A.inputVar = False
        expr_in_B.inputVar = False
        expr_out.inputVar = False
        expr_treeSum.inputVar = False

        cmd0 = IR.Comment(expr_in_A.idf + ' * ' + expr_in_B.idf)

        funcCall = IR.FuncCall(
            "MatMul" + c, {
                expr_in_A: "A",
                expr_in_B: "B",
                expr_out: "C",
                expr_treeSum: "T",
                IR.Int(I): "I",
                IR.Int(J): "J",
                IR.Int(K): "K",
                shr_A: "shr1",
                shr_B: "shr2",
                IR.Int(height_shr): "H1",
                IR.Int(height_noshr): "H2"
            })

        prog_mul = IR.Prog([cmd0, funcCall])

        prog_out = IRUtil.concatPrograms(prog_in_A, prog_in_B, prog_mul)

        self.decls[expr_out.idf] = type_out
        self.scales[expr_out.idf] = scale_out
        self.intvs[expr_out.idf] = intv_out

        self.decls[expr_treeSum.idf] = type_treeSum

        return (prog_out, expr_out)