Esempio n. 1
0
 def _generate_all_path_coords(self, waypoints, raster_indices):
     # Snap the line string nodes to the raster grid
     snapped_points = [
         snap_coords_to_grid(raster_indices, *coords)
         for coords in waypoints
     ]
     # Generate pairs of consecutive (x,y) coords
     path_pairs = list(map(list, zip(snapped_points, snapped_points[1:])))
     headings = []
     for i in range(1, len(waypoints)):
         prev = waypoints[i - 1]
         next = waypoints[i]
         x = np.sin(next[0] - prev[0]) * np.cos(next[1])
         y = np.cos(prev[1]) * np.sin(next[1]) - np.sin(prev[1]) * np.cos(
             next[1]) * np.cos(next[0] - prev[0])
         angle = (np.arctan2(x, y) + (2 * np.pi)) % (2 * np.pi)
         headings.append(angle)
     # Feed these pairs into the Bresenham algo to find the intermediate points
     path_grid_points = [
         bresenham.make_line(*pair[0], *pair[1]) for pair in path_pairs
     ]
     for idx, segment in enumerate(path_grid_points):
         n = len(segment)
         point_headings = np.full(n, headings[idx])
         path_grid_points[idx] = np.column_stack(
             (np.array(segment), point_headings))
     # Bring all these points together and remove duplicate coords
     # Flip left to right as bresenham spits out in (y,x) order
     path_grid_points = np.unique(np.concatenate(path_grid_points, axis=0),
                                  axis=0)
     return path_grid_points, headings
Esempio n. 2
0
 def get_path_sum(nx, ny, tx, ty, grid):
     line = bresenham.make_line(nx, ny, tx, ty)
     line_points = grid[line[:, 0], line[:, 1]]
     # If the new line crosses any blocked areas the cost is inf
     if -1 in line_points:
         return np.inf
     else:
         return line_points.sum()
Esempio n. 3
0
    def test_bounds(self):
        start = [2, 0]
        end = [4, 4]

        path = make_line(*start, *end)
        flat_points = np.ravel(path)
        result = (flat_points <= 4).all() and (flat_points >= 0).all()
        self.assertTrue(result, "Points not bounded within endpoints")
Esempio n. 4
0
    def test_first_quadrant(self):
        start = [0, 1]  # x, y
        end = [6, 4]  # x, y

        path = make_line(*start, *end)

        expected = np.array([[1, 0], [1, 1], [2, 2], [2, 3], [3, 4], [3, 5],
                             [4, 6]])
        result = (path == expected).all() or (path
                                              == np.flipud(expected)).all()
        self.assertTrue(result, 'First Quadrant path incorrect')
Esempio n. 5
0
    def test_high_gradient(self):
        start = [0, 6]  # x, y
        end = [6, 0]  # x, y

        path = make_line(*start, *end)

        expected = np.array([[0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [5, 1],
                             [6, 0]])
        result = (path == expected).all() or (path
                                              == np.flipud(expected)).all()
        self.assertTrue(result, 'First Quadrant path incorrect')
Esempio n. 6
0
    def test_fourth_quadrant(self):
        start = [0, -1]  # x, y
        end = [6, -4]  # x, y

        path = make_line(*start, *end)

        expected = np.array([[-1, 0], [-1, 1], [-2, 2], [-2, 3], [-3, 4],
                             [-3, 5], [-4, 6]])
        result = (path == expected).all() or (path
                                              == np.flipud(expected)).all()
        self.assertTrue(result, 'Fourth Quadrant path incorrect')
Esempio n. 7
0
    def test_third_quadrant(self):
        start = [0, -1]  # x, y
        end = [-6, -4]  # x, y

        path = make_line(*start, *end)

        expected = np.array([[-1, 0], [-2, -1], [-2, -2], [-3, -3], [-3, -4],
                             [-4, -5], [-4, -6]])
        result = (path == expected).all() or (path
                                              == np.flipud(expected)).all()
        self.assertTrue(result, 'Third Quadrant path incorrect')
    def h(self, node: Tuple[int, int], goal: Tuple[int, int]):
        if node == goal:
            return 0

        dist = abs((node[1] - goal[1])) + abs((node[0] - goal[0]))
        line = bresenham.make_line(node[1], node[0], goal[1], goal[0])
        integral_val = self.environment.grid[line[:, 0], line[:, 1]].sum()

        if integral_val > 1:
            return self.k * np.log10(integral_val) + dist
        else:
            return dist
    def annotate(self,
                 data: List[gpd.GeoDataFrame],
                 raster_data: Tuple[Dict[str, np.array], np.array],
                 resolution=20,
                 **kwargs) -> Overlay:
        import geoviews as gv
        import scipy.stats as ss
        import joblib as jl

        bounds = (raster_data[0]['Longitude'].min(),
                  raster_data[0]['Latitude'].min(),
                  raster_data[0]['Longitude'].max(),
                  raster_data[0]['Latitude'].max())

        line_coords = list(self.dataframe.iloc[0].geometry.coords)
        # Snap the line string nodes to the raster grid
        snapped_points = [
            snap_coords_to_grid(raster_data[0], *coords)
            for coords in line_coords
        ]
        # Generate pairs of consecutive (x,y) coords
        path_pairs = list(map(list, zip(snapped_points, snapped_points[1:])))
        headings = []
        for i in range(1, len(line_coords)):
            prev = line_coords[i - 1]
            next = line_coords[i]
            x = np.sin(next[0] - prev[0]) * np.cos(next[1])
            y = np.cos(prev[1]) * np.sin(next[1]) - np.sin(prev[1]) * np.cos(
                next[1]) * np.cos(next[0] - prev[0])
            angle = (np.arctan2(x, y) + (2 * np.pi)) % (2 * np.pi)
            headings.append(angle)
        # Feed these pairs into the Bresenham algo to find the intermediate points
        path_grid_points = [
            bresenham.make_line(*pair[0], *pair[1]) for pair in path_pairs
        ]
        for idx, segment in enumerate(path_grid_points):
            n = len(segment)
            point_headings = np.full(n, headings[idx])
            path_grid_points[idx] = np.column_stack(
                (np.array(segment), point_headings))
        # Bring all these points together and remove duplicate coords
        # Flip left to right as bresenham spits out in (y,x) order
        path_grid_points = np.unique(np.concatenate(path_grid_points, axis=0),
                                     axis=0)

        bm = BallisticModel(self.aircraft)

        samples = 1000
        # Conjure up our distributions for various things
        alt = ss.norm(self.alt, 5).rvs(samples)
        vel = ss.norm(self.vel, 2.5).rvs(samples)
        wind_vels = ss.norm(self.wind_vel, 1).rvs(samples)
        wind_dirs = bearing_to_angle(
            ss.norm(self.wind_dir, np.deg2rad(5)).rvs(samples))
        wind_vel_y = wind_vels * np.sin(wind_dirs)
        wind_vel_x = wind_vels * np.cos(wind_dirs)

        # Create grid on which to evaluate each point of path with its pdf
        raster_shape = raster_data[1].shape
        x, y = np.mgrid[0:raster_shape[0], 0:raster_shape[1]]
        eval_grid = np.vstack((x.ravel(), y.ravel())).T

        def wrap_hdg_dists(alt, vel, hdg, wind_vel_y, wind_vel_x):
            (mean, cov), v_i, a_i = bm.transform(
                alt, vel,
                ss.norm(hdg, np.deg2rad(2)).rvs(samples), wind_vel_y,
                wind_vel_x, 0, 0)
            return hdg, (mean / resolution, cov / resolution, v_i, a_i)

        njobs = 1 if len(headings) < 3 else -1

        # Hardcode backend to prevent Qt freaking out
        res = jl.Parallel(n_jobs=njobs, backend='threading', verbose=1)(
            jl.delayed(wrap_hdg_dists)(alt, vel, hdg, wind_vel_y, wind_vel_x)
            for hdg in headings)
        dists_for_hdg = dict(res)

        def point_distr(c):
            dist_params = dists_for_hdg[c[2]]
            pdf = np.array(ss.multivariate_normal(
                dist_params[0] + np.array([c[0], c[1]]),
                dist_params[1]).pdf(eval_grid),
                           dtype=np.longdouble)
            return pdf

        sm = StrikeModel(raster_data[1].ravel(), resolution * resolution,
                         self.aircraft.width)
        fm = FatalityModel(0.5, 1e6, 34)
        ac_mass = self.aircraft.mass

        def wrap_pipeline(path_point_state):
            impact_pdf = point_distr(path_point_state)
            impact_vel = dists_for_hdg[path_point_state[2]][2]
            impact_angle = dists_for_hdg[path_point_state[2]][3]
            impact_ke = velocity_to_kinetic_energy(ac_mass, impact_vel)

            strike_pdf = sm.transform(impact_pdf, impact_angle=impact_angle)
            fatality_pdf = fm.transform(strike_pdf, impact_ke=impact_ke)

            return fatality_pdf, fatality_pdf.max(), strike_pdf.max()

        res = jl.Parallel(n_jobs=-1, backend='threading',
                          verbose=1)(jl.delayed(wrap_pipeline)(c)
                                     for c in path_grid_points)
        fatality_pdfs = [r[0] for r in res]
        # PDFs come out in input order so sorting not required
        pathwise_fatality_maxs = np.array([r[1] for r in res],
                                          dtype=np.longdouble)
        pathwise_strike_maxs = np.array([r[2] for r in res],
                                        dtype=np.longdouble)

        import matplotlib.pyplot as mpl
        import tempfile
        import subprocess
        fig, ax = mpl.subplots(1, 1)
        path_dist = self.dataframe.to_crs('EPSG:27700').iloc[0].geometry.length
        ax.set_yscale('log')
        ax.set_ylim(bottom=1e-18)
        x = np.linspace(0, path_dist, len(pathwise_fatality_maxs))
        ax.axhline(
            y=np.median(pathwise_fatality_maxs),
            c='y',
            label='Fatality Median')  # This seems to be as stable as fsum
        ax.plot(x, pathwise_fatality_maxs[::-1], c='r', label='Fatality Risk')
        ax.axhline(y=np.median(pathwise_strike_maxs),
                   c='g',
                   label='Strike Median')  # This seems to be as stable as fsum
        ax.plot(x, pathwise_strike_maxs[::-1], c='b', label='Strike Risk')
        ax.legend()
        ax.set_ylabel('Risk [$h^{-1}$]')
        ax.set_xlabel('Path Distance [m]')
        ax.set_title('Casualty Risk along path')

        tmppath = tempfile.mkstemp()[1] + '.png'
        fig.savefig(tmppath)
        subprocess.run("explorer " + tmppath)

        risk_map = np.sum(fatality_pdfs,
                          axis=0).reshape(raster_shape) * self.event_prob

        risk_raster = gv.Image(risk_map,
                               vdims=['fatality_risk'],
                               bounds=bounds).options(
                                   alpha=0.7,
                                   cmap='viridis',
                                   tools=['hover'],
                                   clipping_colors={'min': (0, 0, 0, 0)})
        risk_raster = risk_raster.redim.range(fatality_risk=(risk_map.min() +
                                                             1e-15,
                                                             risk_map.max()))
        print('Max probability of fatality: ', risk_map.max())

        return Overlay([
            gv.Contours(self.dataframe).opts(line_width=4,
                                             line_color='magenta'), risk_raster
        ])