Esempio n. 1
0
def test_pipe_transformation():
    # SegmentX transform pipe
    pipe = Pype([('seg', SegmentX()),
                 ('ftr', FeatureRep()),
                 ('scaler', StandardScaler())])
    Xt = [np.random.rand(1000, 10), np.random.rand(100, 10), np.random.rand(500, 10)]
    Xc = np.random.rand(3, 3)
    X = TS_Data(Xt, Xc)
    y = [1, 2, 3]
    transformation_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    transformation_test(pipe, X, y)

    # SegmentXY transform pipe
    pipe = Pype([('seg', SegmentXY()),
                 ('ftr', FeatureRep()),
                 ('scaler', StandardScaler())])
    Xt = [np.random.rand(1000, 10), np.random.rand(100, 10), np.random.rand(500, 10)]
    Xc = np.random.rand(3, 3)
    X = TS_Data(Xt, Xc)
    y = [np.random.rand(1000), np.random.rand(100), np.random.rand(500)]
    transformation_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    transformation_test(pipe, X, y)

    # Forecast transform pipe
    pipe = Pype([('seg', SegmentXYForecast()),
                 ('ftr', FeatureRep()),
                 ('scaler', StandardScaler())])
    Xt = [np.random.rand(1000, 10), np.random.rand(100, 10), np.random.rand(500, 10)]
    Xc = np.random.rand(3, 3)
    X = TS_Data(Xt, Xc)
    y = [np.random.rand(1000), np.random.rand(100), np.random.rand(500)]
    transformation_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    transformation_test(pipe, X, y)

    # Padtrunc transform pipe
    pipe = Pype([('trunc', PadTrunc()),
                 ('ftr', FeatureRep()),
                 ('scaler', StandardScaler())])
    Xt = [np.random.rand(1000, 10), np.random.rand(100, 10), np.random.rand(500, 10)]
    Xc = np.random.rand(3, 3)
    X = TS_Data(Xt, Xc)
    y = [1, 2, 3]
    transformation_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    transformation_test(pipe, X, y)
Esempio n. 2
0
def test_pipe_forecast():
    # no context data, single time series
    X = [np.random.rand(1000, 10)]
    y = [np.random.rand(1000)]

    pipe = Pype([('seg', SegmentXYForecast()), ('ftr', FeatureRep()),
                 ('ridge', Ridge())])

    forecast_test(pipe, X, y)

    # context data, single time seres
    Xt = [np.random.rand(1000, 10)]
    Xc = [np.random.rand(3)]
    X = TS_Data(Xt, Xc)
    y = [np.random.rand(1000)]

    forecast_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    forecast_test(pipe, X, y)

    # multiple time seres
    Xt = [
        np.random.rand(1000, 10),
        np.random.rand(100, 10),
        np.random.rand(500, 10)
    ]
    Xc = np.random.rand(3, 3)
    X = TS_Data(Xt, Xc)
    y = [np.random.rand(1000), np.random.rand(100), np.random.rand(500)]

    forecast_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    forecast_test(pipe, X, y)

    # cross val

    Xt = np.array([np.random.rand(1000, 10)] * 5)
    Xc = np.random.rand(5, 3)
    X = TS_Data(Xt, Xc)
    y = np.array([np.random.rand(1000)] * 5)

    cross_validate(pipe, X, y, cv=3)

    X = pd.DataFrame(Xc)
    Xt = [np.random.rand(1000, 10)] * 5
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    cross_validate(pipe, X, y, cv=3)
Esempio n. 3
0
def test_pipe_classification():
    # no context data, single time series
    X = [np.random.rand(1000, 10)]
    y = [5]

    pipe = Pype([('seg', SegmentX()), ('ftr', FeatureRep()),
                 ('rf', RandomForestClassifier(n_estimators=10))])

    classifier_test(pipe, X, y)

    # context data, single time seres
    Xt = [np.random.rand(1000, 10)]
    Xc = [np.random.rand(3)]
    X = TS_Data(Xt, Xc)
    y = [5]
    classifier_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    classifier_test(pipe, X, y)

    # multiple time series
    Xt = [
        np.random.rand(1000, 10),
        np.random.rand(100, 10),
        np.random.rand(500, 10)
    ]
    Xc = np.random.rand(3, 3)
    X = TS_Data(Xt, Xc)
    y = [1, 2, 3]
    classifier_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    classifier_test(pipe, X, y)

    # univariate data
    Xt = [np.random.rand(1000), np.random.rand(100), np.random.rand(500)]
    Xc = np.random.rand(3)
    X = TS_Data(Xt, Xc)
    y = [1, 2, 3]
    classifier_test(pipe, X, y)

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xt
    X = TS_Data.from_df(X)
    classifier_test(pipe, X, y)
Esempio n. 4
0
def test_pd():
    ts = np.array([np.random.rand(100, 10), np.random.rand(200, 10), np.random.rand(20, 10)], dtype=object)
    c = np.random.rand(3, 10)

    df = pd.DataFrame(c)
    df['ts_data'] = ts
    data = TS_Data.from_df(df)

    assert np.all([np.array_equal(data.ts_data[i], ts[i]) for i in range(len(ts))])
    assert np.array_equal(data.context_data, c)
Esempio n. 5
0
def test_trle():

    # Multivariate data
    Nt = 100
    nvars = 5
    X = [np.random.rand(Nt, nvars)]
    y = [
        np.concatenate(
            [np.full(3, 1),
             np.full(26, 2),
             np.full(1, 3),
             np.full(70, 4)])
    ]

    rle = TargetRunLengthEncoder(min_length=5)
    rle.fit(X)
    Xt, yt, _ = rle.transform(X, y)

    assert len(Xt) == len(yt) and len(yt) == 2
    assert yt[0] == 2 and yt[1] == 4
    assert len(Xt[0]) == 26 and len(Xt[1]) == 70

    # Nothing excluded
    Nt = 100
    nvars = 5
    X = [np.random.rand(Nt, nvars)]
    y = [np.concatenate([np.full(50, 1), np.full(50, 2)])]

    rle = TargetRunLengthEncoder(min_length=5)
    rle.fit(X, y)
    Xt, yt, _ = rle.transform(X, y)

    assert len(Xt) == len(yt) and len(yt) == 2
    assert np.all(np.concatenate(Xt) == X)
    assert yt[0] == 1 and yt[1] == 2
    assert len(Xt[0]) == 50 and len(Xt[1]) == 50

    # Univariate data with sample weight and context
    Nt = 100
    Xts = [np.random.rand(Nt)]
    Xc = [5]
    X = TS_Data(Xts, Xc)
    y = [
        np.concatenate(
            [np.full(3, 1),
             np.full(26, 2),
             np.full(1, 3),
             np.full(70, 4)])
    ]
    sw = [1]

    rle = TargetRunLengthEncoder(min_length=5)
    rle.fit(X)
    Xt, yt, swt = rle.transform(X, y, sw)
    Xtc = Xt.context_data

    assert len(Xt) == len(yt) and len(swt) == len(yt) and len(yt) == 2
    assert yt[0] == 2 and yt[1] == 4
    assert len(Xt[0]) == 26 and len(Xt[1]) == 70
    assert swt[0] == 1 and swt[1] == 1
    assert Xtc[0] == 5 and Xtc[1] == 5

    X = pd.DataFrame(Xc)
    X['ts_data'] = Xts
    X = TS_Data.from_df(X)

    rle = TargetRunLengthEncoder(min_length=5)
    rle.fit(X)
    Xt, yt, swt = rle.transform(X, y, sw)
    Xtc = Xt.context_data

    assert len(Xt) == len(yt) and len(swt) == len(yt) and len(yt) == 2
    assert yt[0] == 2 and yt[1] == 4
    assert len(Xt[0]) == 26 and len(Xt[1]) == 70
    assert swt[0] == 1 and swt[1] == 1
    assert Xtc[0] == 5 and Xtc[1] == 5