def check_tags(tags_file, segment_task, text_type):
    with open(tags_file, "r", encoding="utf8") as fr:
        lines = [line.strip() for line in fr.readlines()]
    
    save_path = os.path.join(SEGMENT_BOOK_PAGE_ROOT_DIR, "samples")
    check_or_makedirs(save_path)
    
    for i, line in enumerate(lines):
        np_img, split_pos = get_image_and_split_pos(line, segment_task="book_page")

        text_type = text_type[0].lower()
        if (segment_task, text_type) in (("book_page", "h"), ("double_line", "h"), ("text_line", "v"), ("mix_line", "v")):
            np_img, split_pos = rotate_90_degrees(np_img, split_pos)

        np_img = draw_split_lines(np_img, split_pos)
        PIL_img = Image.fromarray(np_img)
        PIL_img.save(os.path.join(save_path, str(i) + ".jpg"))
Esempio n. 2
0
def segment_predict(images=None,
                    img_paths=None,
                    dest_dir=None,
                    segment_model=None,
                    segment_task="book_page",
                    text_type="horizontal",
                    model_struc="densenet_gru",
                    weights=""):
    
    # images
    if images is not None:
        np_img_list = convert_images(images)
        img_name_list = [str(i)+".jpg" for i in range(len(np_img_list))]
    else:
        assert img_paths is not None
        np_img_list, img_name_list = load_images(img_paths)
    
    # book page pre-processing
    if segment_task == "book_page":
        np_img_list = book_page_pre_processing(np_img_list)
    
    # model
    if segment_model is None:
        K.set_learning_phase(False)
        weights_path = model_weights_path(weights, segment_task, model_struc)
        
        # 加载模型
        segment_model = work_net(stage="predict", segment_task=segment_task, text_type=text_type, model_struc=model_struc)
        segment_model.load_weights(weights_path, by_name=True)
        print("\nLoad model weights from %s\n" % weights_path)
        # segment_model.summary()
    
    # predict
    batch_size, fixed_h, feat_stride = get_segment_task_params(segment_task)
    text_type = text_type[0].lower()
    split_positions_list, scores_list = [], []
    for i in range(0, len(np_img_list), batch_size):
        _images_list, _scale_ratio_list = [], []
        for np_img in np_img_list[i:i+batch_size]:
            np_img, _, scale_ratio = adjust_img_to_fixed_height(np_img, None, fixed_h, segment_task, text_type)
            _images_list.append(np_img)
            _scale_ratio_list.append(scale_ratio)
        batch_images, real_images_width, _ = pack_a_batch(_images_list, None, feat_stride, background="white")

        nms_split_positions, nms_scores = segment_model.predict(x=[batch_images, real_images_width])  # 模型预测
        
        for j in range(len(batch_images)):
            scores = remove_pad_np(nms_scores[j])[:, 0]
            split_positions = remove_pad_np(nms_split_positions[j])
            split_positions = split_positions / _scale_ratio_list[j]
            if (segment_task, text_type) in (("book_page", "h"), ("double_line", "h"), ("text_line", "v"), ("mix_line", "v")):
                _, split_positions = restore_original_angle(np_img=None, pred_split_positions=split_positions)
            split_positions_list.append(split_positions)
            scores_list.append(scores)
    
    # draw
    if dest_dir is not None:
        check_or_makedirs(dest_dir)
        for i in range(len(np_img_list)):
            if (segment_task, text_type) in (("book_page", "h"), ("double_line", "h"), ("text_line", "v"), ("mix_line", "v")):
                np_img, split_positions = rotate_90_degrees(np_img_list[i], split_positions_list[i])
            else:
                np_img, split_positions = np_img_list[i], split_positions_list[i]
            
            np_img = visualize.draw_split_lines(np_img, split_positions, scores_list[i])  # 可视化

            if (segment_task, text_type) in (("book_page", "h"), ("double_line", "h"), ("text_line", "v"), ("mix_line", "v")):
                np_img, _ = restore_original_angle(np_img)
            
            PIL_img = Image.fromarray(np_img)
            dest_path = os.path.join(dest_dir, os.path.splitext(img_name_list[i])[0] + ".jpg")
            PIL_img.save(dest_path, format="jpeg")
            print(i, "Finished: " + dest_path)
    
    return np_img_list, img_name_list, split_positions_list, scores_list