Esempio n. 1
0
def image_segmentation(path,
                       origin_path,
                       tolerance=14,
                       mode="Manhattan",
                       partition="quad"):

    #load the necessary information
    files = os.listdir(origin_path)
    print files
    for f in files:
        print f
        if not os.path.isdir(f):

            start = time.time()
            # read in the next image and process it
            image = cv.imread(path + "\\" + f)

            # make the segmentation
            testViewer = seg.Segmentation(image, tolerance, mode, partition)

            # save the fractalilzed output
            subpath = path + "\\processed\\" + fractal_subfolder
            cv.imwrite(subpath + "\\" + f, testViewer.Quadtree.toImage())

            # save the segmentation
            subpath = path + "\\processed\\" + segmented_subfolder
            cv.imwrite(subpath + "\\" + f, testViewer.displaySegments())

            # save the network graphic
            subpath = path + "\\processed\\" + network_subfolder

            testViewer.saveNetwork(subpath + "\\" + f)

            print time.time() - start
            del testViewer
def train(path, use_letters, used_classifier, dim):
    src = cv.imread("data\\" + path)
    train = src[:, :4 * src.shape[1] // 2]
    test = src[:, 4 * src.shape[1] // 5:]

    seg = sg.Segmentation(dim, dim, BIN_THRESHOLD)
    ext = fe.FeatureExtraction(EXTRACTION_STEP)

    training_input = preprocess(train, seg, ext, use_letters, dim)
    test_input = preprocess(test, seg, ext, use_letters, dim)

    if use_letters:
        out_layer_size = 26
    else:
        out_layer_size = 10

    classifier = cl.Classifier(used_classifier,
                               in_hidden_layer_size=IN_HIDDEN_LAYER_SIZE,
                               out_layer_size=out_layer_size)
    classifier.train(training_input)
    result = classifier.predict(test_input)

    count = 0
    for label, predicted in zip(test_input[1], result):
        if label == int(predicted[0]):
            count += 1
    print(count / len(test_input[1]))
    classifier.save(use_letters)
Esempio n. 3
0
def parse_seg(segfile):
    """Get segmentation info from a segfile and fill Segmentation object.

    Arguments:
    segfile - path to a Nuance segmentation file to be parsed

    Returns:
    seg - Segmentation object filled with seg info
    """
    # This base name will be used to match segmentations to wav files
    base = os.path.splitext(os.path.basename(segfile))[0]
    seg = segmentation.Segmentation(base)
    try:
        f = open(segfile, 'r')
        txt = f.readlines()
        f.close()
    except IOError as e:
        print "I/O error({0}): {1}".format(e.errno, e.strerror)
    table = False
    # Parse seg file line by line in a single pass
    for line in txt:
        e = line.split()
        if len(e) > 0:
            if e[0] == 'frame_rate':
                seg.set_frame_rate(float(e[2]))  # e.g. frame_rate = 100
            # adding an utterance updates the pointer to the current utterance
            elif e[0] == 'utterance_number':
                seg.add_utterance(e[2])  # e.g. utterance_number = 0
            elif e[0] == 'prompt':
                prompt = line.split('"')[1]
                seg.curr_utt.set_prompt(prompt)
            elif e[0] == 'transcription':
                transcript = line.split('"')[1]
                seg.curr_utt.set_transcript(transcript)
            elif e[0] == 'number_of_phonemes':
                seg.curr_utt.set_nphone(e[2])
            elif e[0] == 'number_of_pels':
                seg.curr_utt.set_npel(e[2])
            elif e[0] == 'score':
                seg.curr_utt.set_score(e[2])
            elif e[0] == 'TABLE':
                table = True
            elif e[0] == 'ENDTABLE':
                table = False
            elif table and e[0] != ';':
                curr_word = seg.curr_utt.curr_word
                # If this line is the start of a new word, create new Word
                # Initialization of a new Word, automatically creates a new
                # Phone and a new Pel
                if curr_word is None or curr_word.no != int(e[0]):
                    seg.curr_utt.add_word(e[0], e[1], e[2], e[3], e[4], e[5])
                # if this line is the start of a new phoneme, create new Phone
                # Initialization of a new Phone automatically creates a new Pel
                elif curr_word.curr_phn.no != int(e[1]):
                    curr_word.add_phone(e[1], e[2], e[3], e[4], e[5])
                # Each line of the table represents a new Pel
                else:
                    curr_word.curr_phn.add_pel(e[3], e[4], e[5])
    return seg
 def do_GET(self):
     if self.path == "/":
         sg = segmentation.Segmentation()
         sg.segment(filePath='../../data/舔狗日记.txt', label='舔狗')
         sg.segment(filePath='../../data/心灵鸡汤.txt', label='鸡汤')
         cf = classification.Classification()
         cf.train()
         cf.test()
         self.send_response(200)
         self.end_headers()
         self.wfile.write(b'success')
     else:
         self.send_response(404)
         self.end_headers()
         self.wfile.write(b'not found')
import segmentation
from glob import glob as ls
from shutil import move as mv

master = segmentation.Segmentation('datasets/dataset-main')
print('Loading master\'s cache')
master.Load('master-main')

total_sessions = len(ls('sessions/*.csv'))
for (filenum, session_path) in enumerate(ls('sessions/*.csv')):
    print('Learning session ' + str(filenum + 1) + '/' + str(total_sessions))
    session_file = session_path.split('/')[1]
    master.LearningSession(session_path)
    mv(session_path, './sessions/sessions.old')

print('Storing training to master\'s cache')
master.Store()
import segmentation
import tool
import volsunga

word_flag_freq_dic = tool.get_freq_dic("./data/word_flag_freq_dic.txt")
flag_freq_dic = tool.get_freq_dic("./data/flag_freq_dic.txt")
flag_relation_freq_dic = tool.get_freq_dic("./data/flag_relation_freq_dic.txt")
word_flag_dic = tool.get_flag_dic("./data/chineseDic.txt")
v = volsunga.Volsunga(word_flag_freq_dic, flag_freq_dic,
                      flag_relation_freq_dic, word_flag_dic)
s = segmentation.Segmentation()
Esempio n. 7
0
print tri2.simplices.size

start = time.time()
quad3 = qt.Quadtree(image,16,'Manhattan','shift_center')
end = time.time()-start

print quad3.nodecount(), end

output = quad3.toimage(quad3.RootNode, mode = "smooth")

#cv.imshow("Image",output)
cv.imwrite("output3.jpg",output)
"""

testViewer = seg.Segmentation(image, 14, 'Manhattan', 'quad')

testPic = testViewer.displaySegments()
"""#print len(testPics)
fs = np.zeros_like(testPic)

for pic in testPics:
	fs += pic
	#plt.imshow(pic)

	#plt.show()
"""
print testPic.shape, testPic
plt.imshow(testPic, cmap='nipy_spectral')
plt.show()
Esempio n. 8
0
print(args)

scale = lambda inVal, inMin, inMax, outMin, outMax: outMin + (
    inVal - inMin) / (inMax - inMin) * (outMax - outMin)

images = [
    cv2.imread(os.path.join(args.dir,
                            str(index).zfill(3) + '.jpg'),
               cv2.IMREAD_GRAYSCALE).astype(np.float).reshape(-1)
    for index in range(args.num)
]

if args.seg:

    changingIndices = segmentation.Segmentation().segment(
        sklearn.decomposition.PCA(args.var).fit_transform(images), args.lam)

    changingIndices.insert(0, 0)
    changingIndices.append(args.num)

    images = [
        np.mean(images[first:last], 0)
        for first, last in zip(changingIndices[0:], changingIndices[1:])
        for _ in range(first, last)
    ]

masks = [
    np.load(os.path.join(fileDir, 'masks',
                         str(index).zfill(3) + '.npy')) for index in range(111)
]