def load_model_fpn(_model_weights, is_inference=False): print("Using weights {}".format(_model_weights)) if _model_weights == "imagenet": model = FPN(unet_encoder, encoder_weights="imagenet", classes=4, activation=None) if is_inference: model.eval() return model else: model = FPN(unet_encoder, encoder_weights=None, classes=4, activation=None) if is_inference: model.eval() if _model_weights is not None: device = torch.device("cuda") model.to(device) state = torch.load( _model_weights) # , map_location=lambda storage, loc: storage) model.load_state_dict(state["state_dict"]) # new_state_dict = OrderedDict() # # for k, v in state['state_dict'].items(): # if k in model.state_dict(): # new_state_dict[k] = v # model = model.load_state_dict(new_state_dict) return model
def get_model(config): if config.MODEL.NAME == 'hrnetv2': model = get_hrnetv2() print('model: hrnetv2') elif config.MODEL.NAME == 'resnet50_upernet': model = get_resnet50_upernet() print('model: resnet50_upernet') elif config.MODEL.NAME == 'resnet101_upernet': model = get_resnet101_upernet() print('model: resnet101_upernet') elif config.MODEL.NAME == 'acnet': model = ACNet(num_class=4, pretrained=True) print('model: acnet') elif config.MODEL.NAME == 'deeplabv3': model = get_deeplabv3() print('model: deeplabv3') elif config.MODEL.NAME == 'deeplab_xception': model = DeepLab(backbone='xception', output_stride=16, num_classes=4, sync_bn=False, freeze_bn=False) else: model_architecture = config.MODEL.ARCHITECTURE model_encoder = config.MODEL.ENCODER model_pretrained = config.MODEL.PRETRAINED if model_architecture == 'Unet': model = Unet(model_encoder, encoder_weights=model_pretrained, classes=4, attention_type='scse') elif model_architecture == 'Linknet': model = Linknet(model_encoder, encoder_weights=model_pretrained, classes=4) elif model_architecture == 'FPN' or model_architecture == 'PSPNet': model = FPN(model_encoder, encoder_weights=model_pretrained, classes=4) print('architecture:', model_architecture, 'encoder:', model_encoder, 'pretrained on:', model_pretrained) if config.PARALLEL: model = nn.DataParallel(model) print('[*] num parameters:', count_parameters(model)) return model
def fpn(backbone, pretrained_weights=None, classes=1, activation='sigmoid'): device = torch.device("cuda") model = FPN(encoder_name=backbone, encoder_weights=pretrained_weights, classes=classes, activation=activation) model.to(device) model.eval() # 위치 확인해볼것 return model
def get_model(config): model_architecture = config.ARCHITECTURE model_encoder = config.ENCODER # activation은 eval 모드일 때 적용해 주는 거라 train 때에는 직접 sigmoid 쳐야한다. if model_architecture == 'Unet': model = Unet(model_encoder, encoder_weights='imagenet', classes=4, attention_type='scse') elif model_architecture == 'FPN': model = FPN(model_encoder, encoder_weights='imagenet', classes=4) print('architecture:', model_architecture, 'encoder:', model_encoder) return model
limit_val_num_samples=100 if debug else None) accumulation_steps = 2 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images def img_denormalize(nimg): img = denormalize(nimg, mean=mean, std=std) return img[(0, 1, 2), :, :] #################### Model #################### model = FPN(in_channels=5, encoder_name='se_resnext50_32x4d', classes=2) #################### Solver #################### num_epochs = 75 criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.62, 1.45])) lr = 0.001 weight_decay = 1e-4 optimizer = optim.Adam(model.parameters(), lr=1.0, weight_decay=weight_decay) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a):
[A.Normalize(mean=mean, std=std, max_pixel_value=max_value), ToTensorV2()]) _, data_loader, _ = get_train_val_loaders( train_ds, val_ds, train_transforms=transforms, val_transforms=transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=batch_size, pin_memory=True, ) prepare_batch = inference_prepare_batch_f32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = FPN(encoder_name='se_resnext50_32x4d', classes=2, encoder_weights=None) run_uuid = "5230c20f609646cb9870a211036ea5cb" weights_filename = "best_model_67_val_miou_bg=0.7574240313552584.pth" has_targets = True tta_transforms = tta.Compose([ tta.Rotate90(angles=[90, -90, 180]), ])
val_batch_size=val_batch_size, pin_memory=True, train_sampler=train_sampler, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None) accumulation_steps = 3 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = FPN(encoder_name='efficientnet-b4', classes=num_classes) #################### Solver #################### num_epochs = 75 criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.75, 1.5])) lr = 0.001 weight_decay = 1e-4 optimizer = optim.Adam(model.parameters(), lr=1.0, weight_decay=weight_decay) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a):
val_batch_size=val_batch_size, pin_memory=True, train_sampler=train_sampler, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None) accumulation_steps = 2 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = FPN(encoder_name='se_resnext50_32x4d', classes=num_classes) #################### Solver #################### num_epochs = 75 criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.75, 1.5])) lr = 0.001 weight_decay = 1e-4 optimizer = optim.Adam(model.parameters(), lr=1.0, weight_decay=weight_decay) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a):
def __init__(self): super(HuBMAPModel, self).__init__() self.model = FPN(encoder_name = ENCODER_NAME, encoder_weights = 'imagenet', classes = 1, activation = None)
unet_resnet34 = unet_resnet34.eval() device = torch.device("cuda") model_senet = Unet('se_resnext50_32x4d', encoder_weights=None, classes=4, activation=None) model_senet.to(device) model_senet.eval() state = torch.load( '../input/senetmodels/senext50_30_epochs_high_threshold.pth', map_location=lambda storage, loc: storage) model_senet.load_state_dict(state["state_dict"]) model_fpn91lb = FPN(encoder_name="se_resnext50_32x4d", classes=4, activation=None, encoder_weights=None) model_fpn91lb.to(device) model_fpn91lb.eval() #state = torch.load('../input/fpnseresnext/model_se_resnext50_32x4d_fold_0_epoch_7_dice_0.935771107673645.pth', map_location=lambda storage, loc: storage) state = torch.load( '../input/fpnse50dice944/model_se_resnext50_32x4d_fold_0_epoch_26_dice_0.94392.pth', map_location=lambda storage, loc: storage) model_fpn91lb.load_state_dict(state["state_dict"]) model_fpn91lb_pseudo = FPN(encoder_name="se_resnext50_32x4d", classes=4, activation=None, encoder_weights=None) model_fpn91lb_pseudo.to(device) model_fpn91lb_pseudo.eval()
def predict_valid(): inputdir = "/data/Thoracic_OAR/" transform = valid_aug(image_size=512) # nii_files = glob.glob(inputdir + "/*/data.nii.gz") folds = [0, 1, 2, 3, 4] for fold in folds: print(fold) outdir = f"/data/Thoracic_OAR_predict/FPN-seresnext50/" log_dir = f"/logs/ss_miccai/FPN-se_resnext50_32x4d-fold-{fold}" # model = VNet( # encoder_name='se_resnext50_32x4d', # encoder_weights=None, # classes=7, # # activation='sigmoid', # group_norm=False, # center='none', # attention_type='scse', # reslink=True, # multi_task=False # ) model = FPN(encoder_name='se_resnext50_32x4d', encoder_weights=None, classes=7) ckp = os.path.join(log_dir, "checkpoints/best.pth") checkpoint = torch.load(ckp) model.load_state_dict(checkpoint['model_state_dict']) model = nn.DataParallel(model) model = model.to(device) df = pd.read_csv(f'./csv/5folds/valid_{fold}.csv') patient_ids = df.patient_id.unique() for patient_id in patient_ids: print(patient_id) nii_file = f"{inputdir}/{patient_id}/data.nii.gz" image_slices, ct_image = extract_slice(nii_file) dataset = TestDataset(image_slices, transform) dataloader = DataLoader(dataset=dataset, num_workers=4, batch_size=8, drop_last=False) pred_mask, pred_logits = predict(model, dataloader) # import pdb # pdb.set_trace() pred_mask = np.argmax(pred_mask, axis=1).astype(np.uint8) pred_mask = SimpleITK.GetImageFromArray(pred_mask) pred_mask.SetDirection(ct_image.GetDirection()) pred_mask.SetOrigin(ct_image.GetOrigin()) pred_mask.SetSpacing(ct_image.GetSpacing()) # patient_id = nii_file.split("/")[-2] patient_dir = f"{outdir}/{patient_id}" os.makedirs(patient_dir, exist_ok=True) patient_pred = f"{patient_dir}/predict.nii.gz" SimpleITK.WriteImage(pred_mask, patient_pred)
val_batch_size=val_batch_size, pin_memory=True, train_sampler=train_sampler, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None) accumulation_steps = 2 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = FPN(encoder_name='dpn92', classes=num_classes) #################### Solver #################### num_epochs = 75 criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.75, 1.5])) lr = 0.001 weight_decay = 1e-4 optimizer = optim.Adam(model.parameters(), lr=1.0, weight_decay=weight_decay) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a):