""" chain_net = Chain_net() if A['load_net']: #best_path = find_best_net(A['net_path']) best_path = most_recent_file_in_folder(A['net_path']) cg("Loading net from",best_path) chain_net.load_state_dict(torch.load(best_path)) #chain_net = torch.nn.DataParallel(chain_net) chain_net.to(device) cg('chain_net.to(device)') criterion = nn.MSELoss() optimizer = optim.Adam(chain_net.parameters(), A['learning_rate']) #, lr=0.001) os_system('mkdir -p',A['net_path']) A['ctr0'] = 0 cg('starting training loop') #k200 = nn.Upsample((200,200),mode='nearest') data_manager = utils.DataManager(A['data_path']) kprint(data_manager.D,r=0,title='data_manager')
modes = ['train', 'val'] chain_net = Chain_net() if A['load_net']: #best_path = find_best_net(A['net_path']) best_path = most_recent_file_in_folder(A['net_path']) cg("Loading net from", best_path) chain_net.load_state_dict(torch.load(best_path)) #chain_net = torch.nn.DataParallel(chain_net) chain_net.to(device) criterion = nn.MSELoss() optimizer = optim.Adam(chain_net.parameters(), A['learning_rate']) #, lr=0.001) os_system('mkdir -p', A['net_path']) A['ctr0'] = 0 while not A['time']['to_exit'].rcheck(): # A['ctr0'] < A['max_steps']: # for mode in ['train', 'train', 'train', 'val']: #modes: A['ctr0'] += 1 t0 = time.time() if len(C[mode]['current_indicies']) < A['batch_size'] * 2:
chain_net = torch.quantization.prepare_qat(chain_net_fused) #print(chain_net.state_dict()) if A['load_net']: best_path = most_recent_file_in_folder(A['net_path']) cg("Loading net from", best_path) chain_net.load_state_dict(torch.load(best_path)) chain_net.to(device) chain_net_original.to(device) cg('chain_net.to(device)') criterion = nn.MSELoss() optimizer_Q = optim.Adam(chain_net.parameters(), A['learning_rate']) #, lr=0.001) optimizer = optim.Adam(chain_net_original.parameters(), A['learning_rate']) #, lr=0.001) os_system('mkdir -p', A['net_path']) A['ctr0'] = 0 cg('starting training loop') data_manager = utils.DataManager(A['data_path']) kprint(data_manager.D, r=0, title='data_manager') all_done = False while not A['time']['to_exit'].rcheck() and not all_done: