from semcplogic.cpcompiler import CPCompiler from semcplogic.problogresult import GnuplotDrawer from semcplogic.dataset import Dataset from semcplogic.cpmodel import TableResultInterpreter from experiments.latexreport import LatexTableResultInterpreter b = ModelBuilder() b.addNode("a") b.addNode("b") b.addNode("c") b.setInfluence("a","c",1) b.setInfluence("b","c",1) m = b.consume() d = Dataset(["a","b","c"]) d.addData(["laag","laag","hoog"]) d.addData(["laag","hoog","laag"]) d.addData(["hoog","laag","laag"]) d.addData(["hoog","hoog","hoog"]) def runCode(generator): cpcode = generator.generate(m) cc = CPCompiler() runmodel = cc.compileCode(cpcode,d) runmodel.iterations = 1000 result = runmodel.run() return result resnonlin = runCode(NonLinearCPLogicGenerator()) reslin = runCode(LinearCPLogicGenerator())
b = ModelBuilder() b.addNode("a") b.addNode("b") b.setInfluence("a","b",1) m = b.consume() levels = ["l1","l2","l3","l4","l5"] m.nodes["a"].setLevels(levels) m.nodes["b"].setLevels(levels) d = m.sample(200) newdata = [[a,b - a + a*a] for [a,b] in d.data] d2 = Dataset(["a","b"]) for p in newdata: d2.addData(p) d2 = d2.makeDiff() d2 = d2.discretise({"a":levels,"b":levels}) def runCode(generator): cpcode = generator.generate(m) cc = CPCompiler() runmodel = cc.compileCode(cpcode,d2) runmodel.iterations = 500 result = runmodel.run() return result resnonlin = runCode(NonLinearCPLogicGenerator()) reslin = runCode(LinearCPLogicGenerator()) print "Niet-lineair:"