Esempio n. 1
0
def test_misfit_preprocessor_with_scaling(test_data_root):
    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "workflow": {
            "type": "custom_scale",
            "clustering": {
                "fcluster": {
                    "threshold": 1.0
                },
            },
        }
    }
    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    misfit_preprocessor.MisfitPreprocessorJob(ert).run(config_file)

    # assert that this arbitrarily chosen cluster gets scaled as expected
    obs = ert.getObservations()["FOPR"]
    for index in [13, 14, 15, 16, 17, 18, 19, 20]:
        assert obs.getNode(index).getStdScaling() == 2.8284271247461903

    for index in (38, 39, 40, 41, 42, 43, 44):
        assert obs.getNode(index).getStdScaling() == 2.6457513110645907
Esempio n. 2
0
def test_misfit_preprocessor_passing_scaling_parameters(
        monkeypatch, test_data_root):
    run_mock = Mock()
    scal_job = Mock(return_value=Mock(run=run_mock))
    monkeypatch.setattr(
        misfit_preprocessor,
        "CorrelatedObservationsScalingJob",
        scal_job,
    )

    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "workflow": {
            "type": "custom_scale",
            "pca": {
                "threshold": 0.5
            },
        },
    }

    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    misfit_preprocessor.MisfitPreprocessorJob(ert).run(config_file)

    for scaling_config in list(run_mock.call_args)[0][0]:
        assert 0.5 == scaling_config["CALCULATE_KEYS"]["threshold"]
Esempio n. 3
0
def test_misfit_preprocessor_invalid_config(test_data_root):
    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "unknown_key": [],
        "workflow": {
            "type": "custom_scale",
            "clustering": {
                "threshold": 1.0
            }
        },
    }
    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    expected_err_msg = (
        "Invalid configuration of misfit preprocessor\n"
        "  - extra fields not permitted (workflow.clustering.threshold)\n"
        # There are two clustering functions, and this is invalid in both
        "  - extra fields not permitted (workflow.clustering.threshold)\n"
        "  - extra fields not permitted (unknown_key)\n")
    job = misfit_preprocessor.MisfitPreprocessorJob(ert)
    with pytest.raises(
            semeio.workflows.misfit_preprocessor.ValidationError) as err:
        job.run(config_file)
    assert str(err.value) == expected_err_msg
Esempio n. 4
0
def test_misfit_preprocessor_invalid_config(test_data_root):
    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "unknown_key": [],
        "clustering": {
            "method": "spearman_correlation",
            "spearman_correlation": {
                "fcluster": {
                    "threshold": 1.0
                }
            },
        },
    }
    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    job = misfit_preprocessor.MisfitPreprocessorJob(ert)
    with pytest.raises(
            semeio.workflows.misfit_preprocessor.ValidationError) as ve:
        job.run(config_file)

    expected_err_msg = (
        "Invalid configuration of misfit preprocessor\n"
        "  - Unknown key: unknown_key (root level)\n"
        "  - Unknown key: threshold (clustering.spearman_correlation.fcluster)\n"
    )
    assert expected_err_msg == str(ve.value)
Esempio n. 5
0
def test_misfit_preprocessor_with_scaling(test_data_root):
    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "clustering": {
            "method": "spearman_correlation",
            "spearman_correlation": {
                "fcluster": {
                    "t": 1.0
                }
            },
        }
    }
    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    misfit_preprocessor.MisfitPreprocessorJob(ert).run(config_file)

    # assert that this arbitrarily chosen cluster gets scaled as expected
    obs = ert.getObservations()["FOPR"]
    for index in [13, 14, 15, 16, 17, 18, 19, 20]:
        assert obs.getNode(index).getStdScaling() == 2.8284271247461903
Esempio n. 6
0
def test_misfit_preprocessor_skip_clusters_yielding_empty_data_matrixes(
        monkeypatch, test_data_root):
    def raising_scaling_job(data):
        if data == {
                "CALCULATE_KEYS": {
                    "keys": [{
                        "index": [88, 89],
                        "key": "FOPR"
                    }]
                }
        }:
            raise EmptyDatasetException("foo")

    scaling_mock = Mock(return_value=Mock(
        **{"run.side_effect": raising_scaling_job}))
    monkeypatch.setattr(misfit_preprocessor,
                        "CorrelatedObservationsScalingJob", scaling_mock)

    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "workflow": {
            "type": "custom_scale",
            "clustering": {
                "fcluster": {
                    "threshold": 1.0
                }
            },
        },
    }
    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    job = misfit_preprocessor.MisfitPreprocessorJob(ert)

    try:
        job.run(config_file)
    except EmptyDatasetException:
        pytest.fail(
            "EmptyDatasetException was not handled by misfit preprocessor")
Esempio n. 7
0
def test_misfit_preprocessor_main_entry_point_gen_data(monkeypatch,
                                                       test_data_root,
                                                       observation,
                                                       expected_nr_clusters):
    run_mock = Mock()
    scal_job = Mock(return_value=Mock(run=run_mock))
    monkeypatch.setattr(
        misfit_preprocessor,
        "CorrelatedObservationsScalingJob",
        scal_job,
    )

    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    config = {
        "observations": [observation],
        "workflow": {
            "type": "custom_scale",
            "clustering": {
                "fcluster": {
                    "threshold": 1.0
                }
            },
        },
    }
    config_file = "my_config_file.yaml"
    with open(config_file, "w") as f:
        yaml.dump(config, f)

    misfit_preprocessor.MisfitPreprocessorJob(ert).run(config_file)

    # call_args represents the clusters, we expect the snake_oil
    # observations to generate this amount of them
    # call_args is a call object, which itself is a tuple of args and kwargs.
    # In this case, we want args, and the first element of the arguments, which
    # again is a tuple containing the configuration which is a list of configs.
    assert (len(list(run_mock.call_args)[0][0]) == expected_nr_clusters
            ), "wrong number of clusters"
Esempio n. 8
0
def test_misfit_preprocessor_main_entry_point_no_config(
        monkeypatch, test_data_root):
    run_mock = Mock()
    scal_job = Mock(return_value=Mock(run=run_mock))
    monkeypatch.setattr(
        misfit_preprocessor,
        "CorrelatedObservationsScalingJob",
        scal_job,
    )

    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    misfit_preprocessor.MisfitPreprocessorJob(ert).run()

    assert len(run_mock.call_args[0][0]) > 1  # pylint: disable=unsubscriptable-object
Esempio n. 9
0
def test_misfit_preprocessor_all_obs(test_data_root, monkeypatch):
    from unittest.mock import MagicMock
    from semeio.workflows.correlated_observations_scaling import cos

    test_data_dir = os.path.join(test_data_root, "snake_oil")

    shutil.copytree(test_data_dir, "test_data")
    os.chdir(os.path.join("test_data"))

    res_config = ResConfig("snake_oil.ert")
    ert = EnKFMain(res_config)

    monkeypatch.setattr(cos.ObservationScaleFactor, "get_scaling_factor",
                        MagicMock(return_value=1.234))

    misfit_preprocessor.MisfitPreprocessorJob(ert).run()

    scaling_factors = []

    obs = ert.getObservations()
    for key in [
            "FOPR",
            "WOPR_OP1_9",
            "WOPR_OP1_36",
            "WOPR_OP1_72",
            "WOPR_OP1_108",
            "WOPR_OP1_144",
            "WOPR_OP1_190",
            "WPR_DIFF_1",
    ]:
        obs_vector = obs[key]
        for index, node in enumerate(obs_vector):
            scaling_factors.append((index, key, node.getStdScaling(index)))

    for index, key, scaling_factor in scaling_factors:
        assert scaling_factor == 1.234, f"{index}, {key}"