def __init__(self, vectorizer=None, model=None, x_train=None, y_train=None, x_test=None, y_test=None, feature_names=None, metadata=None, *args, **kwargs): if model: self._vectorizer = vectorizer self._model = model self._data = { 'x_train': x_train, 'x_train_vec': vectorizer.fit_transform(x_test), 'y_train': y_train, 'x_test': x_test, 'x_test_vec': vectorizer.transform(x_test), 'y_test': y_test, } now = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') if metadata: self.metadata = metadata else: pred = model.predict(self._data['x_test_vec']) precision, recall, fscore, support = precision_recall_fscore_support( y_test, pred) fpr, tpr, thresholds = roc_curve(y_test, pred) auc_score = auc(fpr, tpr) self.metadata = { 'vectorizer': vectorizer_to_str(vectorizer), 'model': str(model), 'created_at': now, 'feature_names': feature_names, 'git_hash': get_git_hash(), 'precision': [float(p) for p in precision], 'recall': [float(r) for r in recall], 'fscore': [float(f) for f in fscore], 'support': [int(s) for s in support], 'auc': auc_score } log.info('Initialized PackagedModel %s' % now)
def __init__(self, pipeline=None, feature_union=None, x_train=None, y_train=None, x_test=None, y_test=None, metadata=None, *args, **kwargs): if pipeline: self._feature_union = feature_union # will this maintain state? self._pipeline = pipeline self._data = { 'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test, } now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') if metadata: self.metadata = metadata else: x_test_vec = feature_union.transform(self._data['x_test']) pred = pipeline.predict(x_test_vec) precision, recall, fscore, support = precision_recall_fscore_support( y_test, pred) fpr, tpr, thresholds = roc_curve(y_test, pred) auc_score = auc(fpr, tpr) self.metadata = { 'pipeline': str(pipeline), 'feature_union': str(feature_union), 'created_at': now, 'git_hash': get_git_hash(), 'precision': [float(p) for p in precision], 'recall': [float(r) for r in recall], 'fscore': [float(f) for f in fscore], 'support': [int(s) for s in support], 'auc': auc_score } log.info('Initialized PackagedPipeline %s' % now)
def __init__( self, vectorizer=None, model=None, x_train=None, y_train=None, x_test=None, y_test=None, feature_names=None, metadata=None, *args, **kwargs ): if model: self._vectorizer = vectorizer self._model = model self._data = { 'x_train': x_train, 'x_train_vec': vectorizer.fit_transform(x_test), 'y_train': y_train, 'x_test': x_test, 'x_test_vec': vectorizer.transform(x_test), 'y_test': y_test, } now = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') if metadata: self.metadata = metadata else: pred = model.predict(self._data['x_test_vec']) precision, recall, fscore, support = precision_recall_fscore_support(y_test, pred) fpr, tpr, thresholds = roc_curve(y_test, pred) auc_score = auc(fpr, tpr) self.metadata = { 'vectorizer': vectorizer_to_str(vectorizer), 'model': str(model), 'created_at': now, 'feature_names': feature_names, 'git_hash': get_git_hash(), 'precision': [float(p) for p in precision], 'recall': [float(r) for r in recall], 'fscore': [float(f) for f in fscore], 'support': [int(s) for s in support], 'auc': auc_score } log.info('Initialized PackagedModel %s' % now)
def __init__( self, pipeline=None, feature_union=None, x_train=None, y_train=None, x_test=None, y_test=None, metadata=None, *args, **kwargs ): if pipeline: self._feature_union = feature_union # will this maintain state? self._pipeline = pipeline self._data = { 'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test, } now = datetime.datetime.now().strftime('%Y%m%d%H%M%S') if metadata: self.metadata = metadata else: x_test_vec = feature_union.transform(self._data['x_test']) pred = pipeline.predict(x_test_vec) precision, recall, fscore, support = precision_recall_fscore_support(y_test, pred) fpr, tpr, thresholds = roc_curve(y_test, pred) auc_score = auc(fpr, tpr) self.metadata = { 'pipeline': str(pipeline), 'feature_union': str(feature_union), 'created_at': now, 'git_hash': get_git_hash(), 'precision': [float(p) for p in precision], 'recall': [float(r) for r in recall], 'fscore': [float(f) for f in fscore], 'support': [int(s) for s in support], 'auc': auc_score } log.info('Initialized PackagedPipeline %s' % now)