def main(config): os.makedirs('cache', exist_ok=True) os.makedirs(config.logdir, exist_ok=True) print("Logging to: %s" % config.logdir) if not os.path.exists(config.train_dir): print("KERNEL ENV") config.train_dicom_dir = '../input/siim-train-test/siim/dicom-images-train' config.test_dicom_dir = '../input/siim-train-test/siim/dicom-images-test' config.train_dir = '../input/l2-images/l2-images/l2-images-train' config.test_dir = '../input/l2-images/l2-images/l2-images-test' config.sample_submission = '../input/siim-acr-pneumothorax-segmentation/' \ 'sample_submission.csv' config.train_rle = '../input/siim-train-test/siim/train-rle.csv' train_image_fns = sorted(glob(os.path.join(config.train_dir, '*.png'))) test_image_fns = sorted(glob(os.path.join(config.test_dir, '*.png'))) assert len(train_image_fns) == 10675, len(train_image_fns) assert len(test_image_fns) in (1372, 1377), len(test_image_fns) gt = load_gt(config.train_rle) # create folds if not config.stratify: # random folds np.random.shuffle(train_image_fns) else: # folds stratified by mask size train_mask_sizes = [ L2DicomDataset.rles_to_mask(gt[L2DicomDataset.fn_to_id(fn)]).sum() for fn in tqdm(train_image_fns) ] sorted_inds = [ k for k in sorted(range(len(train_image_fns)), key=lambda k: train_mask_sizes[k]) ] train_image_fns = [train_image_fns[k] for k in sorted_inds] folds = np.arange(len(train_image_fns)) % config.num_folds val_image_fns = [ fn for k, fn in enumerate(train_image_fns) if folds[k] == config.fold ] train_image_fns = [ fn for k, fn in enumerate(train_image_fns) if folds[k] != config.fold ] # remove not-used files: # https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/discussion/98478#latest-572385 # noqa train_image_fns = [ fn for fn in train_image_fns if L2DicomDataset.fn_to_id(fn) in gt ] val_image_fns = [ fn for fn in val_image_fns if L2DicomDataset.fn_to_id(fn) in gt ] if config.drop_empty: # remove empty masks from training data non_empty_gt = {k: v for k, v in gt.items() if v[0] != ' -1'} train_image_fns = [ fn for fn in train_image_fns if L2DicomDataset.fn_to_id(fn) in non_empty_gt ] print("[Non-EMPTY] TRAIN: ", len(train_image_fns), os.path.basename(train_image_fns[0])) print("VAL: ", len(val_image_fns), os.path.basename(val_image_fns[0])) print("TRAIN: ", len(train_image_fns), os.path.basename(train_image_fns[0])) train_ds = L2DicomDataset(train_image_fns, gt_rles=gt, height=config.height, width=config.height, to_ram=True, augment=True, write_cache=not config.is_kernel, train_dicom_dir=config.train_dicom_dir, test_dicom_dir=config.test_dicom_dir) val_ds = L2DicomDataset(val_image_fns, gt_rles=gt, height=config.height, width=config.height, to_ram=True, write_cache=not config.is_kernel, train_dicom_dir=config.train_dicom_dir, test_dicom_dir=config.test_dicom_dir) val_loader = data.DataLoader(val_ds, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=config.pin, drop_last=False) model = FPNSegmentation(config.slug, num_input_channels=2) if config.weight is not None: model.load_state_dict(th.load(config.weight)) model = model.to(config.device) optimizer = th.optim.Adam(model.parameters(), lr=config.lr, weight_decay=config.weight_decay) if config.apex: model, optimizer = apex.amp.initialize(model, optimizer, opt_level="O1", verbosity=0) updates_per_epoch = len(train_ds) // config.batch_size num_updates = int(config.epochs * updates_per_epoch) scheduler = WarmupLinearSchedule(warmup=config.warmup, t_total=num_updates) # training loop smooth = 0.1 best_dice = 0.0 best_fn = None global_step = 0 for epoch in range(config.epochs): smooth_loss = None smooth_accuracy = None model.train() train_loader = data.DataLoader(train_ds, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=config.pin, drop_last=True) progress = tqdm(total=len(train_ds), smoothing=0.01) for i, (X, y_true) in enumerate(train_loader): X = X.to(config.device) y_true = y_true.to(config.device) y_pred = model(X) loss = siim_loss(y_true, y_pred, weights=None) if config.apex: with apex.amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() lr_this_step = None if (i + 1) % config.accumulation_step == 0: optimizer.step() optimizer.zero_grad() lr_this_step = config.lr * scheduler.get_lr( global_step, config.warmup) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step global_step += 1 smooth_loss = loss.item() if smooth_loss is None else \ smooth * loss.item() + (1. - smooth) * smooth_loss # print((y_true >= 0.5).sum().item()) accuracy = th.mean( ((y_pred >= 0.5) == (y_true >= 0.5)).to(th.float)).item() smooth_accuracy = accuracy if smooth_accuracy is None else \ smooth * accuracy + (1. - smooth) * smooth_accuracy progress.set_postfix( loss='%.4f' % smooth_loss, accuracy='%.4f' % (smooth_accuracy), lr='%.6f' % (config.lr if lr_this_step is None else lr_this_step)) progress.update(len(X)) # validation loop model.eval() thresholds = np.arange(0.1, 0.7, 0.1) dice_coeffs = [[] for _ in range(len(thresholds))] progress = tqdm(enumerate(val_loader), total=len(val_loader)) with th.no_grad(): for i, (X, y_trues) in progress: X = X.to(config.device) y_trues = y_trues.to(config.device) y_preds = model(X) for yt, yp in zip(y_trues, y_preds): yt = (yt.squeeze().cpu().numpy() >= 0.5).astype('uint8') yp = yp.squeeze().cpu().numpy() for dind, threshold in enumerate(thresholds): yp_ = (yp >= threshold).astype(np.uint8) sc = score(yt, yp_) dice_coeffs[dind].append(sc) best_threshold_ind = -1 dice_coeff = -1 for dind, threshold in enumerate(thresholds): dc = np.mean( [x[0] for x in dice_coeffs[dind] if x[1] == 'non-empty']) # progress.write("Dice @%.2f: %.4f" % (threshold, dc)) if dc > dice_coeff: dice_coeff = dc best_threshold_ind = dind dice_coeffs = dice_coeffs[best_threshold_ind] num_empty = sum(1 for x in dice_coeffs if x[1] == 'empty') num_total = len(dice_coeffs) num_non_empty = num_total - num_empty empty_sum = np.sum([d[0] for d in dice_coeffs if d[1] == 'empty']) non_empty_sum = np.sum( [d[0] for d in dice_coeffs if d[1] == 'non-empty']) dice_coeff_empty = empty_sum / num_empty dice_coeff_non_empty = non_empty_sum / num_non_empty progress.write( '[Empty: %d]: %.3f | %.3f, [Non-Empty: %d]: %.3f | %.3f' % (num_empty, dice_coeff_empty, empty_sum / num_total, num_non_empty, dice_coeff_non_empty, non_empty_sum / num_total)) dice_coeff = float(dice_coeff) summary_str = 'f%02d-ep-%04d-val_dice-%.4f@%.2f' % ( config.fold, epoch, dice_coeff, thresholds[best_threshold_ind]) progress.write(summary_str) if dice_coeff > best_dice: weight_fn = os.path.join(config.logdir, summary_str + '.pth') th.save(model.state_dict(), weight_fn) best_dice = dice_coeff best_fn = weight_fn fns = sorted( glob(os.path.join(config.logdir, 'f%02d-*.pth' % config.fold))) for fn in fns[:-config.n_keep]: os.remove(fn) # create submission test_ds = L2DicomDataset(test_image_fns, height=config.height, width=config.height, write_cache=not config.is_kernel, train_dicom_dir=config.train_dicom_dir, test_dicom_dir=config.test_dicom_dir) test_loader = data.DataLoader(test_ds, batch_size=config.batch_size, shuffle=False, num_workers=0, pin_memory=False, drop_last=False) if best_fn is not None: model.load_state_dict(th.load(best_fn)) model.eval() sub = create_submission(model, test_loader, test_image_fns, config, pred_zip=config.pred_zip) sub.to_csv(config.submission_fn, index=False) print("Wrote to: %s" % config.submission_fn) # create val submission val_fn = config.submission_fn.replace('.csv', '_VAL.csv') model.eval() sub = [] sub = create_submission(model, val_loader, val_image_fns, config, pred_zip=config.pred_zip.replace( '.zip', '_VAL.zip')) sub.to_csv(val_fn, index=False) print("Wrote to: %s" % val_fn)
def main(config): seed_all() os.makedirs('cache', exist_ok=True) os.makedirs(config.logdir, exist_ok=True) print("Logging to: %s" % config.logdir) src_files = sorted(glob('*.py')) for src_fn in src_files: dst_fn = os.path.join(config.logdir, src_fn) copyfile(src_fn, dst_fn) train_image_fns = sorted(glob(os.path.join(config.train_dir, '*/*/*.dcm'))) test_image_fns = sorted(glob(os.path.join(config.test_dir, '*/*/*.dcm'))) # assert len(train_image_fns) == 10712 # assert len(test_image_fns) == 1377 gt = load_gt(config.train_rle) # create folds np.random.shuffle(train_image_fns) if config.subset > 0: train_image_fns = train_image_fns[:config.subset] folds = np.arange(len(train_image_fns)) % config.num_folds val_image_fns = [fn for k, fn in enumerate(train_image_fns) if folds[k] == config.fold] train_image_fns = [fn for k, fn in enumerate(train_image_fns) if folds[k] != config.fold] # remove not-used files: # https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/discussion/98478#latest-572385 # noqa train_image_fns = [fn for fn in train_image_fns if DicomDataset.fn_to_id(fn) in gt] val_image_fns = [fn for fn in val_image_fns if DicomDataset.fn_to_id(fn) in gt] print("VAL: ", len(val_image_fns), os.path.basename(val_image_fns[0])) print("TRAIN: ", len(train_image_fns), os.path.basename(train_image_fns[0])) train_ds = DicomDataset(train_image_fns, gt_rles=gt, augment=True) val_ds = DicomDataset(val_image_fns, gt_rles=gt) if config.cache: train_ds.cache() val_ds.cache() val_loader = data.DataLoader(val_ds, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=config.pin, drop_last=False) model = FPNSegmentation(config.slug, ema=config.ema) if config.weight is not None: print("Loading: %s" % config.weight) model.load_state_dict(th.load(config.weight)) model = model.to(config.device) no_decay = ['mean', 'std', 'bias'] + ['.bn%d.' % i for i in range(100)] grouped_parameters = [{'params': [], 'weight_decay': config.weight_decay}, {'params': [], 'weight_decay': 0.0}] for n, p in model.named_parameters(): if not any(nd in n for nd in no_decay): print("Decay: %s" % n) grouped_parameters[0]['params'].append(p) else: print("No Decay: %s" % n) grouped_parameters[1]['params'].append(p) optimizer = AdamW(grouped_parameters, lr=config.lr) if config.apex: model, optimizer = apex.amp.initialize(model, optimizer, opt_level="O1", verbosity=0) updates_per_epoch = len(train_ds) // config.batch_size num_updates = int(config.epochs * updates_per_epoch) scheduler = WarmupLinearSchedule(warmup=config.warmup, t_total=num_updates) # training loop smooth = 0.1 best_dice = 0.0 best_fn = None global_step = 0 for epoch in range(1, config.epochs + 1): smooth_loss = None smooth_accuracy = None model.train() train_loader = data.DataLoader(train_ds, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=config.pin, drop_last=True) progress = tqdm(total=len(train_ds), smoothing=0.01) for i, (X, _, y_true) in enumerate(train_loader): X = X.to(config.device).float() y_true = y_true.to(config.device) y_pred = model(X) loss = siim_loss(y_true, y_pred, weights=None) if config.apex: with apex.amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() lr_this_step = None if (i + 1) % config.accumulation_step == 0: optimizer.step() optimizer.zero_grad() lr_this_step = config.lr * scheduler.get_lr(global_step, config.warmup) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step global_step += 1 smooth_loss = loss.item() if smooth_loss is None else \ smooth * loss.item() + (1. - smooth) * smooth_loss # print((y_true >= 0.5).sum().item()) accuracy = th.mean(((y_pred >= 0.5) == (y_true == 1)).to( th.float)).item() smooth_accuracy = accuracy if smooth_accuracy is None else \ smooth * accuracy + (1. - smooth) * smooth_accuracy progress.set_postfix(ep='%d/%d' % (epoch, config.epochs), loss='%.4f' % smooth_loss, accuracy='%.4f' % (smooth_accuracy), lr='%.6f' % (config.lr if lr_this_step is None else lr_this_step)) progress.update(len(X)) if epoch <= 12: continue # validation loop model.eval() thresholds = [0.1, 0.2] dice_coeffs = [[] for _ in range(len(thresholds))] progress = tqdm(enumerate(val_loader), total=len(val_loader)) with th.no_grad(): for i, (X, _, y_trues) in progress: X = X.to(config.device).float() y_trues = y_trues.to(config.device) y_preds = model(X) y_preds_flip = th.flip(model(th.flip(X, (-1, ))), (-1, )) y_preds = 0.5 * (y_preds + y_preds_flip) y_trues = y_trues.cpu().numpy() y_preds = y_preds.cpu().numpy() for yt, yp in zip(y_trues, y_preds): yt = (yt.squeeze() >= 0.5).astype('uint8') yp = yp.squeeze() for dind, threshold in enumerate(thresholds): yp_ = (yp >= threshold).astype(np.uint8) sc = score(yt, yp_) dice_coeffs[dind].append(sc) best_threshold_ind = -1 dice_coeff = -1 for dind, threshold in enumerate(thresholds): dc = np.mean([x[0] for x in dice_coeffs[dind] if x[1] == 'non-empty']) # progress.write("Dice @%.2f: %.4f" % (threshold, dc)) if dc > dice_coeff: dice_coeff = dc best_threshold_ind = dind dice_coeffs = dice_coeffs[best_threshold_ind] num_empty = sum(1 for x in dice_coeffs if x[1] == 'empty') num_total = len(dice_coeffs) num_non_empty = num_total - num_empty empty_sum = np.sum([d[0] for d in dice_coeffs if d[1] == 'empty']) non_empty_sum = np.sum([d[0] for d in dice_coeffs if d[1] == 'non-empty']) dice_coeff_empty = empty_sum / num_empty dice_coeff_non_empty = non_empty_sum / num_non_empty progress.write('[Empty: %d]: %.3f | %.3f, [Non-Empty: %d]: %.3f | %.3f' % ( num_empty, dice_coeff_empty, empty_sum / num_total, num_non_empty, dice_coeff_non_empty, non_empty_sum / num_total)) dice_coeff = float(dice_coeff) summary_str = 'f%02d-ep-%04d-val_dice-%.4f@%.2f' % (config.fold, epoch, dice_coeff, thresholds[best_threshold_ind]) progress.write(summary_str) if dice_coeff > best_dice: weight_fn = os.path.join(config.logdir, summary_str + '.pth') th.save(model.state_dict(), weight_fn) best_dice = dice_coeff best_fn = weight_fn fns = sorted(glob(os.path.join(config.logdir, 'f%02d-*.pth' % config.fold))) for fn in fns[:-config.n_keep]: os.remove(fn) # create submission test_ds = DicomDataset(test_image_fns) test_loader = data.DataLoader(test_ds, batch_size=config.batch_size, shuffle=False, num_workers=0, pin_memory=False, drop_last=False) if best_fn is not None: model.load_state_dict(th.load(best_fn)) model.eval() sub = create_submission(model, test_loader, config, pred_zip=config.pred_zip) sub.to_csv(config.submission_fn, index=False) print("Wrote to: %s" % config.submission_fn) # create val submission val_fn = config.submission_fn.replace('.csv', '_VAL.csv') model.eval() sub = [] sub = create_submission(model, val_loader, config, pred_zip=config.pred_zip.replace('.zip', '_VAL.zip')) sub.to_csv(val_fn, index=False) print("Wrote to: %s" % val_fn)