def main_wrap(): """Wrap function call in main.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'tcat_tcorrelate')) logfile.info('Started 18.tcat_tcorrelate_z_transform.py') subj_list = ['VREA'] __, clip, __ = tc.get_timings(logfile) segments = set(c.split('_')[0] for c in clip) for subject in subj_list: os.chdir(os.path.join(os.environ['decor'], subject, '6mmblur_results')) for m in ['AV', 'A', 'V', 'lowlev']: get_condition_mean(logfile, segments, m, subject, '6mmblur_tcorr_out_spearman') tr.setnames_call_funcs(logfile, subject, m, '6mmblur_tcorr_out_spearman_v2') for funcseg in ['abouthalf', 'twothirds']: segments = set(c.split('_')[0] for c in clip) sub_segments = tc.subsettter(segments, funcseg) for m in ['AV', 'A', 'V', 'lowlev']: get_condition_mean(logfile, sub_segments, m, subject, '6mmblur_tcorr_out_spearman_%s' % funcseg) tr.setnames_call_funcs(logfile, subject, m, '6mmblur_tcorr_out_spearman_%s_v2' % funcseg)
def main(): """Execute afni_anova.""" subjectlist = [s for s in range(1, 20)] subjectlist.remove(3) subjectlist.remove(11) workdir = os.path.join(os.environ['avp'], 'nii/group_effects_trad') logfile = setup_log(os.path.join(workdir, 'do_anova_grouptrad')) logfile.info('Doing main call') outname = os.path.join(workdir, 'anova2_grouptrad') afni_anova(logfile, subjectlist, outname)
def main(): """Wrap the methods to do both main call.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'transform_corr')) logfile.info('Started 9.transform_corr.py') subj_list = ['RSDE', 'VREA'] for subject in subj_list: os.chdir(os.path.join(os.environ['decor'], subject, '6mmblur_results')) for m in ['AV', 'A', 'V', 'lowlev']: tcorr_suf = '6mmblur_tcorr_out_spearman' setnames_call_funcs(logfile, subject, m, tcorr_suf)
def main(subjectlist, anatlist): """Wrap methods in main call.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'fsl_anat')) logfile.info('started 4.fsl_anat.py') for subject in subjectlist: os.chdir(os.path.join(os.environ['decor'], subject)) for mprage in anatlist: anat = '{}.{}.gert_reco'.format(subject, mprage) fsla = FslAnat(anat) fsla.afni_to_nifti(logfile) fsla.fslanat(logfile)
def main(): """Set names to call vol2surf_mni.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'project_to_surf')) os.chdir(os.path.join(os.environ['decor'], 'randomise_repmeas')) pndiff = '1.0' # No clusters survive tstat4 so do only the first 3 for i in range(1, 4): for h in ['lh', 'rh']: parnt = os.path.join(os.environ['decor'], 'randomise_repmeas', '%s_clustere_corrp_tstat%d_thr005fwe05' % ('repmeas_randomise_out_n5000', i)) vol_to_surf_mni(logfile, h, '%s.nii.gz' % parnt, pndiff, '%s_%s_pn%s_MNI_N27.1D' % (parnt, h, pndiff))
def main(): """Wrap funciton calls to main.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'anova')) logfile.info('Started 17.anova.py') conditions_list = ['AV', 'A', 'V', 'lowlev'] subjects_list = ['NNPT', 'SSGO', 'LSRS', 'SEKI', 'LNSE', 'JNWL', 'PMBI', 'LNDR', 'GOPR', 'DAHL', 'RSDE', 'VREA'] anova_afni(logfile, subjects_list, conditions_list) for seg in ['twothirds', 'abouthalf']: anova_afni(logfile, subjects_list, conditions_list, seg)
def main(): """Call methods to get randomise.""" randomise_dir = os.path.join(os.environ['decor'], 'randomise_repmeas') conditions = ['AV', 'A', 'V', 'lowlev'] subjects = ['NNPT', 'SSGO', 'LSRS', 'SEKI', 'LNSE', 'JNWL', 'PMBI', 'LNDR', 'GOPR', 'DAHL', 'RSDE', 'VREA'] logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'do_randomise')) setup_randomise(logfile, randomise_dir, subjects, conditions) os.chdir(randomise_dir) logfile.info('Now in working directory: %s', os.getcwd()) nreps = 5000 fsl_randomise(logfile, nreps, os.path.join(randomise_dir, 'repmeas_4Dfile'), os.path.join(randomise_dir, 'repmeas_randomise_out_main2tailp005_n%d' % nreps))
def main(): """Do methods above via this wrapper.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'tcat_tcorrelate')) logfile.info('Started 8.tcat_tcorrelate.py') subj_list = ['RSDE', 'VREA'] # Below is for full time series. __, clip, __ = get_timings(logfile) segments = set(c.split('_')[0] for c in clip) tcorr_suf = '6mmblur_tcorr_out_spearman' for subject in subj_list: tcorr_main(logfile, subject, segments, tcorr_suf) # Below is for subset of time series. # When run either 'twothirds' or 'abouthalf'. """
def main(): """Wrap funciton call.""" randomise_dir = os.path.join(os.environ['decor'], 'randomise_repmeas') conditions = ['AV', 'A', 'V', 'lowlev'] subjects = ['NNPT', 'SSGO', 'LSRS', 'SEKI', 'LNSE', 'JNWL', 'PMBI', 'LNDR', 'GOPR', 'DAHL', 'RSDE', 'VREA'] logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'indivcond_randomise')) nreps = 10 os.chdir(randomise_dir) logfile.info('Now in working directory: %s', os.getcwd()) make_condition_file(logfile, randomise_dir, conditions, subjects) for cond in conditions: indiv_t_randomise(logfile, nreps, os.path.join(randomise_dir, '%s_4Dfile' % cond), os.path.join(randomise_dir, '%s_out_2tailp005_n%d' % (cond, nreps)))
def main(): """Wrap funciton calls to main.""" logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'epi_reg')) logfile.info('Started 10.epi_reg.py') subj_list = ['NNPT'] for subject in subj_list: basedir = os.path.join(os.environ['decor'], subject) os.chdir(os.path.join(basedir, '6mmblur_results')) print os.getcwd() outpref = 'epi2anat_%s_sess1_6mmblur_meanepi_mprage2' % subject # converttoNIFTI(logfile, '%s_sess1_6mmblur_meanepi+orig' % subject) # epi_reg(logfile, '%s_sess1_6mmblur_meanepi.nii.gz' % subject, # os.path.join(basedir, '%s.mprage2.gert_reco.anat' % subject, # 'T1_biascorr.nii.gz'), # os.path.join(basedir, '%s.mprage2.gert_reco.anat' % subject, # 'T1_biascorr_brain.nii.gz'), # outpref) for modal in ['AV', 'A', 'V', 'lowlev']: # below runs full time series segment out_flirt = 'highres_flirted_MNI2mm_%s_%s_6mmblur_v2__Z' % \ (subject, modal) apply_transforms(logfile, subject, '%s_%s_6mmblur_tcorr_out_spearman_v2_mean_Z.nii.gz' % (modal, subject), out_flirt, '%s.nii.gz' % out_flirt, 'highres_fnirted_MNI2mm_%s_%s_6mmblur_v2_Z' % (subject, modal), '%s.mat' % outpref) # below runs shorter time series segments for seg in ['twothirds', 'abouthalf']: out_flirt = 'highres_flirted_MNI2mm_%s_%s_%s_6mmblur_v2__Z' % \ (subject, modal, seg) apply_transforms(logfile, subject, '%s_%s_6mmblur_tcorr_out_spearman_%s_v2_mean_Z.nii.gz' % (modal, subject, seg), out_flirt, '%s.nii.gz' % out_flirt, 'highres_fnirted_MNI2mm_%s_%s_%s_6mmblur_v2_Z' % (subject, modal, seg), '%s.mat' % outpref)
def main(): """Wrap method to execute in main. high/high - mean(high/low, low/high) mean(high/low, low/high) - low/low """ subj_list = [s for s in range(1, 20)] subj_list.remove(3) subj_list.remove(11) logfile = setup_log(os.path.join(os.environ['avp'], 'logs', 'do_regularity_gradient_grptest')) logfile.info('Doing regularity_gradient_grptest.') logfile.info('Doing 3dMEMA.') for lvl in ['high', 'low']: mema_out = os.path.join(os.environ['avp'], 'nii', 'regularity_gradient', '{}_grad_flt2_msk_mema'.format(lvl)) mema(logfile, lvl, subj_list, mema_out)
def main(): """Wrap all the methods to execute.""" subject_list = ['RSDE', 'VREA'] subjectstim_dict = build_subject_dict(subject_list) logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'align_epis')) logfile.info('started 5.align_epis.py') for subject in subject_list: resultsdir = os.path.join(os.environ['decor'], subject, '6mmblur_results') dir_check(resultsdir) os.chdir(resultsdir) print(os.getcwd()) do_avg_mean_epis(logfile, subjectstim_dict, subject) align_epis(logfile, subject) for run in subjectstim_dict[subject]['sess2']: allineate(logfile, subject, run) for run in subjectstim_dict[subject]['sess1']: copyn(logfile, subject, run)
def main(): """Call methods for thresholding and clustering.""" lname = 'thresh_cluster_twocond_contr_conj' logfile = setup_log(os.path.join(os.environ['decor'], 'logs', lname)) logfile.info('Do threshold and cluster.') os.chdir(os.path.join(os.environ['decor'], 'randomise_twocond_contr_conj')) pref = 'out_1tailp001_n5000' for ctype in ['clustere', 'clusterm', 'tfce']: for pref in ['AVvA_randomise_out_n5000_p005', 'AVvV_randomise_out_n5000_p005']: for i in range(1, 3): fsl_maths(logfile, '{}_{}_corrp_tstat{}'.format(pref, ctype, i), '{}_tstat{}.nii.gz'.format(pref, i), '{}_{}_corrp_tstat{}_fwe05'.format(pref, ctype, i)) cluster(logfile, '{}_{}_corrp_tstat{}_fwe05.nii.gz'.format(pref, ctype, i), '{}_{}_corrp_tstat{}_fwe05_cluster_index'.format(pref, ctype, i), '{}_{}_corrp_tstat{}_fwe05lmax.txt'.format(pref, ctype, i), '{}_{}_corrp_tstat{}_fwe05omean'.format(pref, ctype, i), '{}_{}_corrp_tstat{}_fwe05cluster_size'.format(pref, ctype, i))
def main(): """Call methods to get randomise.""" randomise_dir = os.path.join(os.environ['decor'], 'randomise_twocond_contr_conj') subjects = ['NNPT', 'SSGO', 'LSRS', 'SEKI', 'LNSE', 'JNWL', 'PMBI', 'LNDR', 'GOPR', 'DAHL', 'RSDE', 'VREA'] logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'do_randomise_twocond_contr_conj')) os.chdir(randomise_dir) nreps = 5000 mergefsl(logfile, make_file_list(subjects, ['AV', 'A']), 'AVvA_4Dfile') fsl_randomise(logfile, nreps, os.path.join(randomise_dir, 'AVvA_4Dfile'), os.path.join(randomise_dir, 'AVvA_randomise_out_n%d_p005' % nreps)) mergefsl(logfile, make_file_list(subjects, ['AV', 'V']), 'AVvV_4Dfile') fsl_randomise(logfile, nreps, os.path.join(randomise_dir, 'AVvV_4Dfile'), os.path.join(randomise_dir, 'AVvV_randomise_out_n%d_p005' % nreps))
from pdfminer.pdfpage import PDFPage from lib.parse_helpers import parse_timecard_line_v2, timecard2dict, date_find from lib.parse_helpers import weekly_mapping from lib.parse_helpers import reform_produce from lib.parse_helpers import handle_buffer_entries from lib.regex_helper import filter_junk, clean_line_intake from lib.settings import key_page from lib.settings import last_timecard #read? import lib.settings from setlog import setup_log logger = setup_log() def extract_text_from_pdf(pdf_path): resource_manager = PDFResourceManager() fake_file_handle = io.StringIO() converter = TextConverter(resource_manager, fake_file_handle) page_interpreter = PDFPageInterpreter(resource_manager, converter) with open(pdf_path, 'rb') as fh: for page in PDFPage.get_pages(fh, caching=True, check_extractable=True): page_interpreter.process_page(page) text = fake_file_handle.getvalue()
run, subj, subj, run)) proc = Popen(cmdargs, stdout=PIPE, stderr=STDOUT) log.info(proc.stdout.read()) def splicer_localizer(subj, run): """Splice localizer series.""" stdf = open('stdout_files/stdout_from_Tcat_{}.txt'.format(run), 'w') cmdargs = split('3dTcat -prefix {}.{}.TRIM \ raw.{}.{}.gert_reco+orig.BRIK[14-405]'.format( run, subj, subj, run)) Popen(cmdargs, stdout=stdf, stderr=STDOUT) stdf.close() if __name__ == "__main__": SCRUNS = ['SC{}'.format(i) for i in range(1, 7)] AVRUNS = ['AV1.1', 'AV1.2', 'AV2.1', 'AV2.2', 'AV3.1', 'AV3.2'] RUNIDS = SCRUNS + AVRUNS SUBJECTLIST = ['RSDE', 'VREA'] logfile = setup_log(os.path.join(os.environ['decor'], 'logs/splicer')) logfile.info('started splicer.py') for ss in SUBJECTLIST: subjectdir = os.path.join(os.environ['decor'], ss) os.chdir(subjectdir) for rr in RUNIDS: splicer(logfile, ss, rr) splicer_rest(logfile, ss, 'Rest')
stimdict = {} for subj in subjectlist: seriesorder = pd.Series(df.loc[df.SSname == subj, 'stim_name']) subidx = list(seriesorder.iloc[[0, 6]]) subjitem = {subj: {subidx[0]: list(seriesorder.iloc[:6]), subidx[1]: list(seriesorder.iloc[6:]), 'Rest': ['Rest']}} stimdict.update(subjitem) return stimdict if __name__ == '__main__': SUBJECTLIST = ['RSDE', 'VREA'] STIMDICT = build_subject_dict(SUBJECTLIST) logfile = setup_log(os.path.join(os.environ['decor'], 'logs', 'afproc_withblur')) logfile.info('started 3.afproc_withblur.py') for subject in SUBJECTLIST: print('setting work dir: ') os.chdir(os.path.join(os.environ['decor'], subject)) print(os.getcwd()) for ref in STIMDICT[subject]: for runident in STIMDICT[subject][ref]: subjrun = '{}.{}.6mmblur'.format(subject, runident) afniproc(subject, runident, subjrun, ref) run_afniproc(logfile, subjrun) # this is separate