def refine_region(domain0, region0, region1):
    """
    Coarse cell sub_cells[ii, 0] in mesh0 is split into sub_cells[ii, 1:] in
    mesh1.

    The new fine cells are interleaved among the original coarse cells so that
    the indices of the coarse cells do not change.

    The cell groups are preserved. The vertex groups are preserved only in the
    coarse (non-refined) cells.
    """
    if region1 is None:
        return domain0, None

    mesh0 = domain0.mesh
    mesh1 = Mesh.from_region(region1, mesh0)
    domain1 = FEDomain('d', mesh1)
    domain1r = domain1.refine()
    mesh1r = domain1r.mesh

    n_cell = region1.shape.n_cell
    n_sub = 4 if mesh0.cmesh.tdim == 2 else 8

    sub_cells = nm.empty((n_cell, n_sub + 1), dtype=nm.uint32)
    sub_cells[:, 0] = region1.cells
    sub_cells[:, 1] = region1.cells
    aux = nm.arange((n_sub - 1) * n_cell, dtype=nm.uint32)
    sub_cells[:, 2:] = mesh0.n_el + aux.reshape((n_cell, -1))

    coors0, vgs0, conns0, mat_ids0, descs0 = mesh0._get_io_data()
    coors, vgs, _conns, _mat_ids, descs = mesh1r._get_io_data()

    # Preserve vertex groups of non-refined cells.
    vgs[:len(vgs0)] = vgs0

    def _interleave_refined(c0, c1):
        if c1.ndim == 1:
            c0 = c0[:, None]
            c1 = c1[:, None]

        n_row, n_col = c1.shape
        n_new = region0.shape.n_cell + n_row

        out = nm.empty((n_new, n_col), dtype=c0.dtype)
        out[region0.cells] = c0[region0.cells]
        out[region1.cells] = c1[::n_sub]
        aux = c1.reshape((-1, n_col * n_sub))
        out[mesh0.n_el:] = aux[:, n_col:].reshape((-1, n_col))

        return out

    conn = _interleave_refined(conns0[0], _conns[0])
    mat_id = _interleave_refined(mat_ids0[0], _mat_ids[0]).squeeze()

    mesh = Mesh.from_data('a', coors, vgs, [conn], [mat_id], descs)
    domain = FEDomain('d', mesh)

    return domain, sub_cells
Esempio n. 2
0
    def test_interpolation_two_meshes(self):
        from sfepy import data_dir
        from sfepy.discrete import Variables
        from sfepy.discrete.fem import Mesh, FEDomain, Field

        m1 = Mesh.from_file(data_dir + '/meshes/3d/block.mesh')

        m2 = Mesh.from_file(data_dir + '/meshes/3d/cube_medium_tetra.mesh')
        m2.coors[:] *= 2.0

        bbox = m1.get_bounding_box()
        dd = bbox[1, :] - bbox[0, :]
        data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])

        variables1 = {
            'u': ('unknown field', 'scalar_tp', 0),
            'v': ('test field', 'scalar_tp', 'u'),
        }

        variables2 = {
            'u': ('unknown field', 'scalar_si', 0),
            'v': ('test field', 'scalar_si', 'u'),
        }

        d1 = FEDomain('d1', m1)
        omega1 = d1.create_region('Omega', 'all')
        field1 = Field.from_args('scalar_tp',
                                 nm.float64, (1, 1),
                                 omega1,
                                 approx_order=1)
        ff1 = {field1.name: field1}

        d2 = FEDomain('d2', m2)
        omega2 = d2.create_region('Omega', 'all')
        field2 = Field.from_args('scalar_si',
                                 nm.float64, (1, 1),
                                 omega2,
                                 approx_order=0)
        ff2 = {field2.name: field2}

        vv1 = Variables.from_conf(transform_variables(variables1), ff1)
        u1 = vv1['u']
        u1.set_from_mesh_vertices(data)

        vv2 = Variables.from_conf(transform_variables(variables2), ff2)
        u2 = vv2['u']

        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)

        fname = in_dir(self.options.out_dir)
        u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
        u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))

        return True
Esempio n. 3
0
def do_interpolation(m2, m1, data, field_name, force=False):
    """Interpolate data from m1 to m2. """
    from sfepy.discrete import Variables
    from sfepy.discrete.fem import FEDomain, Field

    fields = {
        'scalar_si': ((1, 1), 'Omega', 2),
        'vector_si': ((3, 1), 'Omega', 2),
        'scalar_tp': ((1, 1), 'Omega', 1),
        'vector_tp': ((3, 1), 'Omega', 1),
    }

    d1 = FEDomain('d1', m1)

    omega1 = d1.create_region('Omega', 'all')

    f = fields[field_name]

    field1 = Field.from_args('f',
                             nm.float64,
                             f[0],
                             d1.regions[f[1]],
                             approx_order=f[2])
    ff = {field1.name: field1}

    vv = Variables.from_conf(transform_variables(variables), ff)
    u1 = vv['u']
    u1.set_from_mesh_vertices(data)

    d2 = FEDomain('d2', m2)
    omega2 = d2.create_region('Omega', 'all')

    field2 = Field.from_args('f',
                             nm.float64,
                             f[0],
                             d2.regions[f[1]],
                             approx_order=f[2])
    ff2 = {field2.name: field2}

    vv2 = Variables.from_conf(transform_variables(variables), ff2)
    u2 = vv2['u']

    if not force:
        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.5)

    else:
        coors = u2.field.get_coor()
        vals = u1.evaluate_at(coors, close_limit=0.5)
        u2.set_data(vals)

    return u1, u2
Esempio n. 4
0
def prepare_dgfield(approx_order, mesh):

    domain = FEDomain("test_domain", mesh)
    omega = domain.create_region('Omega', 'all')
    regions = {}
    if mesh.dim > 1:
        left = domain.create_region('left',
                                    'vertices in x == 0',
                                    'edge')

        right = domain.create_region('right',
                                     'vertices in x == 1',
                                     'edge')
        bottom = domain.create_region('bottom',
                                      'vertices in y == 0',
                                      'edge')
        top = domain.create_region('top',
                                   'vertices in y == 1',
                                   'edge')
        regions.update({"top": top, "bottom": bottom})
    else:
        left = domain.create_region('left',
                                    'vertices in x == 0',
                                    'vertex')
        right = domain.create_region('right',
                                     'vertices in x == 1',
                                     'vertex')

    regions.update({"left": left, "right": right, "omega" : omega})

    field = DGField('dgfu', nm.float64, 'scalar', omega,
                    approx_order=approx_order)

    return field, regions
Esempio n. 5
0
    def from_conf(conf, options):
        from sfepy.discrete import FieldVariable, Variables, Problem
        from sfepy.discrete.fem import Mesh, FEDomain, Field

        mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
        domain = FEDomain('domain', mesh)

        omega = domain.create_region('Omega', 'all')
        domain.create_region('Left', 'vertices in (x < -0.499)', 'facet')
        domain.create_region(
            'LeftStrip', 'vertices in (x < -0.499)'
            ' & (y > -0.199) & (y < 0.199)', 'facet')
        domain.create_region('LeftFix', 'r.Left -v r.LeftStrip', 'facet')
        domain.create_region('Right', 'vertices in (x > 0.499)', 'facet')
        domain.create_region(
            'RightStrip', 'vertices in (x > 0.499)'
            ' & (y > -0.199) & (y < 0.199)', 'facet')
        domain.create_region('RightFix', 'r.Right -v r.RightStrip', 'facet')

        fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
        u = FieldVariable('u', 'unknown', fu)

        fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
        p = FieldVariable('p', 'unknown', fp)

        pb = Problem('test', domain=domain, fields=[fu, fp], auto_conf=False)

        test = Test(problem=pb,
                    variables=Variables([u, p]),
                    conf=conf,
                    options=options)
        return test
Esempio n. 6
0
    def from_conf(conf, options):
        import sfepy
        from sfepy.discrete.fem import Mesh, FEDomain, Field
        mesh = Mesh.from_file('meshes/2d/rectangle_tri.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = FEDomain('domain', mesh)
        dim = domain.shape.dim

        min_x, max_x = domain.get_mesh_bounding_box()[:,0]
        eps = 1e-8 * (max_x - min_x)

        omega = domain.create_region('Omega', 'all')
        gamma1 = domain.create_region('Gamma1',
                                      'vertices in x < %.10f' % (min_x + eps),
                                      'facet')
        gamma2 = domain.create_region('Gamma2',
                                      'vertices in x > %.10f' % (max_x - eps),
                                      'facet')

        field = Field.from_args('fu', nm.float64, 'vector', omega,
                                approx_order=2)

        test = Test(conf=conf, options=options, dim=dim,
                    omega=omega, gamma1=gamma1, gamma2=gamma2,
                    field=field)
        return test
Esempio n. 7
0
def prepare_variable(filename, n_components):
    from sfepy.discrete import FieldVariable
    from sfepy.discrete.fem import Mesh, FEDomain, Field

    mesh = Mesh.from_file(filename)

    bbox = mesh.get_bounding_box()
    dd = bbox[1, :] - bbox[0, :]
    data = (nm.sin(4.0 * nm.pi * mesh.coors[:, 0:1] / dd[0]) *
            nm.cos(4.0 * nm.pi * mesh.coors[:, 1:2] / dd[1]))

    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('field',
                            nm.float64,
                            n_components,
                            omega,
                            approx_order=2)

    u = FieldVariable('u',
                      'parameter',
                      field,
                      primary_var_name='(set-to-None)')
    u.set_from_mesh_vertices(data * nm.arange(1, n_components + 1)[None, :])

    return u
Esempio n. 8
0
def refine_mesh(filename, level):
    """
    Uniformly refine `level`-times a mesh given by `filename`.

    The refined mesh is saved to a file with name constructed from base
    name of `filename` and `level`-times appended `'_r'` suffix.

    Parameters
    ----------
    filename : str
        The mesh file name.
    level : int
        The refinement level.
    """
    import os
    from sfepy.base.base import output
    from sfepy.discrete.fem import Mesh, FEDomain

    if level > 0:
        mesh = Mesh.from_file(filename)
        domain = FEDomain(mesh.name, mesh)
        for ii in range(level):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

        suffix = os.path.splitext(filename)[1]
        filename = domain.name + suffix

        domain.mesh.write(filename, io='auto')

    return filename
Esempio n. 9
0
def _get_bqp(geometry, order):
    from sfepy.discrete import Integral
    from sfepy.discrete.fem.geometry_element import GeometryElement
    from sfepy.discrete.fem import Mesh, FEDomain, Field

    gel = GeometryElement(geometry)

    mesh = Mesh.from_data('aux', gel.coors, None, [gel.conn[None, :]], [[0]],
                          [geometry])
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    surf = domain.create_region('Surf', 'vertices of surface', 'facet')
    field = Field.from_args('f',
                            nm.float64,
                            shape=1,
                            region=omega,
                            approx_order=1)
    field.setup_surface_data(surf)

    integral = Integral('aux', order=order)
    field.create_bqp('Surf', integral)

    sd = field.surface_data['Surf']
    qp = field.qp_coors[(integral.order, sd.bkey)]

    output('geometry:', geometry, 'order:', order, 'num. points:',
           qp.vals.shape[1], 'true_order:',
           integral.qps[gel.surface_facet_name].order)
    output('min. weight:', qp.weights.min())
    output('max. weight:', qp.weights.max())

    return (gel, qp.vals.reshape(
        (-1, mesh.dim)), nm.tile(qp.weights, qp.vals.shape[0]))
Esempio n. 10
0
    def test_refine_3_8(self):
        mesh = Mesh('3_8', data_dir + '/meshes/elements/3_8_1.mesh')
        domain = refine(FEDomain('domain', mesh), self.options.out_dir, 1)

        ok = compare_mesh('3_8', domain.mesh.coors, domain.mesh.conns[0])

        return ok
Esempio n. 11
0
    def from_conf(conf, options):
        from sfepy.discrete import Integral
        from sfepy.discrete.fem import Mesh, FEDomain

        domains = []
        for filename in filename_meshes:
            mesh = Mesh.from_file(filename)
            domain = FEDomain('domain_%s' % mesh.name.replace(data_dir, ''),
                              mesh)
            domain.create_region('Omega', 'all')
            domain.create_region('Gamma', 'vertices of surface', 'facet')

            domains.append(domain)

        integral = Integral('i', order=3)
        qp_coors, qp_weights = integral.get_qp('3_8')
        custom_integral = Integral('i',
                                   coors=qp_coors,
                                   weights=qp_weights,
                                   order='custom')

        test = Test(domains=domains,
                    integral=integral,
                    custom_integral=custom_integral,
                    conf=conf,
                    options=options)
        return test
Esempio n. 12
0
def main():
    parser = ArgumentParser(description=__doc__)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('filename')
    options = parser.parse_args()

    filename = options.filename

    mesh = Mesh.from_file(filename)
    output('Mesh:')
    output('  dimension: %d, vertices: %d, elements: %d'
           % (mesh.dim, mesh.n_nod, mesh.n_el))

    domain = FEDomain('domain', mesh)
    output(domain.cmesh)
    domain.cmesh.cprint(1)
    dim = domain.cmesh.dim

    entities_opts = [
        {'color' : 'k', 'label_global' : 12, 'label_local' : 8},
        {'color' : 'b', 'label_global' : 12, 'label_local' : 8},
        {'color' : 'g', 'label_global' : 12, 'label_local' : 8},
        {'color' : 'r', 'label_global' : 12},
    ]
    if dim == 2: entities_opts.pop(2)

    pc.plot_cmesh(None, domain.cmesh,
                  wireframe_opts = {'color' : 'k'},
                  entities_opts=entities_opts)

    plt.show()
Esempio n. 13
0
def solveLaplaceEquationTetrahedral(mesh, meshVTK, boundaryPoints,
                                    boundaryConditions):
    """
    mesh: path to a 3D mesh / sfepy mesh
    
    """
    if isinstance(mesh, str):
        mesh = Mesh.from_file(mesh)

    #Set domains
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    boundary = domain.create_region(
        'gamma',
        'vertex  %s' % ','.join(map(str, range(meshVTK.GetNumberOfPoints()))),
        'facet')

    #set fields
    field = Field.from_args('fu', np.float64, 1, omega, approx_order=1)
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    m = Material('m', val=[1.])

    #Define element integrals
    integral = Integral('i', order=3)

    #Equations defining
    t1 = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u)
    eq = Equation('balance', t1)
    eqs = Equations([eq])

    heatBoundary = boundaryConditions
    points = boundaryPoints

    #Boundary conditions
    c = ClosestPointStupid(points, heatBoundary, meshVTK)

    def u_fun(ts, coors, bc=None, problem=None, c=c):
        c.distances = []
        v = np.zeros(len(coors))
        for i, p in enumerate(coors):
            v[i] = c.interpolate(p)
            #c.findClosestPoint(p)
        return v

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('fix_u', boundary, {'u.all': bc_fun})

    #Solve problem
    ls = ScipyDirect({})
    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs)
    pb.set_bcs(ebcs=Conditions([fix1]))

    pb.set_solver(nls)
    state = pb.solve(verbose=False, save_results=False)
    u = state.get_parts()['u']
    return u
Esempio n. 14
0
    def test_refine_hexa(self):
        mesh = Mesh('mesh_hexa',
                    data_dir + '/meshes/various_formats/abaqus_hex.inp')
        domain = FEDomain('domain', mesh)

        refine(domain, self.options.out_dir)

        return True
Esempio n. 15
0
    def test_refine_3_4(self):
        mesh = Mesh.from_file(data_dir + '/meshes/elements/3_4_1.mesh')
        domain = refine(FEDomain('domain', mesh), self.options.out_dir, 1)

        ok = compare_mesh('3_4', domain.mesh.coors,
                          domain.mesh.get_conn('3_4'))

        return ok
Esempio n. 16
0
    def test_refine_hexa(self):
        filename = data_dir + '/meshes/various_formats/abaqus_hex.inp'
        mesh = Mesh.from_file(filename)
        domain = FEDomain('domain', mesh)

        refine(domain, self.options.out_dir)

        return True
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d',
                        '--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='[1.0, 1.0]',
                        help=helps['dims'])
    parser.add_argument('-c',
                        '--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='[0.0, 0.0]',
                        help=helps['centre'])
    parser.add_argument('-s',
                        '--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='[11, 11]',
                        help=helps['shape'])
    parser.add_argument('--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    options = parser.parse_args()

    dims = nm.array(eval(options.dims), dtype=nm.float64)
    centre = nm.array(eval(options.centre), dtype=nm.float64)
    shape = nm.array(eval(options.shape), dtype=nm.int32)

    output('dimensions:', dims)
    output('centre:    ', centre)
    output('shape:     ', shape)

    mesh = gen_block_mesh(dims, shape, centre, name='block-fem')
    fe_domain = FEDomain('domain', mesh)

    pb, state = run(fe_domain, 1)
    pb.save_state('laplace_shifted_periodic.vtk', state)

    if options.show:
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        view = Viewer('laplace_shifted_periodic.vtk')
        view(rel_scaling=1,
             domain_specific={
                 'u': DomainSpecificPlot('plot_warp_scalar', ['rel_scaling=1'])
             },
             is_scalar_bar=True,
             is_wireframe=True,
             opacity=0.3)
Esempio n. 18
0
    def test_projection_iga_fem(self):
        from sfepy.discrete import FieldVariable
        from sfepy.discrete.fem import FEDomain, Field
        from sfepy.discrete.iga.domain import IGDomain
        from sfepy.mesh.mesh_generators import gen_block_mesh
        from sfepy.discrete.iga.domain_generators import gen_patch_block_domain
        from sfepy.discrete.projections import (make_l2_projection,
                                                make_l2_projection_data)

        shape = [10, 12, 12]
        dims = [5, 6, 6]
        centre = [0, 0, 0]
        degrees = [2, 2, 2]

        nurbs, bmesh, regions = gen_patch_block_domain(dims, shape, centre,
                                                       degrees,
                                                       cp_mode='greville',
                                                       name='iga')
        ig_domain = IGDomain('iga', nurbs, bmesh, regions=regions)

        ig_omega = ig_domain.create_region('Omega', 'all')
        ig_field = Field.from_args('iga', nm.float64, 1, ig_omega,
                                   approx_order='iga', poly_space_base='iga')
        ig_u = FieldVariable('ig_u', 'parameter', ig_field,
                             primary_var_name='(set-to-None)')

        mesh = gen_block_mesh(dims, shape, centre, name='fem')
        fe_domain = FEDomain('fem', mesh)

        fe_omega = fe_domain.create_region('Omega', 'all')
        fe_field = Field.from_args('fem', nm.float64, 1, fe_omega,
                                   approx_order=2)
        fe_u = FieldVariable('fe_u', 'parameter', fe_field,
                             primary_var_name='(set-to-None)')

        def _eval_data(ts, coors, mode, **kwargs):
            return nm.prod(coors**2, axis=1)[:, None, None]

        make_l2_projection_data(ig_u, _eval_data)

        make_l2_projection(fe_u, ig_u) # This calls ig_u.evaluate_at().

        coors = 0.5 * nm.random.rand(20, 3) * dims

        ig_vals = ig_u.evaluate_at(coors)
        fe_vals = fe_u.evaluate_at(coors)

        ok = nm.allclose(ig_vals, fe_vals, rtol=0.0, atol=1e-12)
        if not ok:
            self.report('iga-fem projection failed!')
            self.report('coors:')
            self.report(coors)
            self.report('iga fem diff:')
            self.report(nm.c_[ig_vals, fe_vals, nm.abs(ig_vals - fe_vals)])

        return ok
Esempio n. 19
0
    def from_conf(conf, options):
        mesh = Mesh.from_file('meshes/2d/square_unit_tri.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = FEDomain('domain', mesh)

        omega = domain.create_region('Omega', 'all')

        field = Field.from_args('linear', nm.float64, 'scalar', omega,
                                approx_order=1)

        test = Test(conf=conf, options=options, omega=omega, field=field)
        return test
    def test_evaluate_at(self):
        from sfepy import data_dir
        from sfepy.discrete.fem import Mesh
        from sfepy.discrete import Variables
        from sfepy.discrete.fem import FEDomain, Field

        meshes = {
            'tp': Mesh.from_file(data_dir + '/meshes/3d/block.mesh'),
        }
        datas = gen_datas(meshes)

        fields = {
            'scalar_tp': ((1, 1), 'Omega', 1),
            'vector_tp': ((3, 1), 'Omega', 1),
        }

        ok = True
        for field_name in ['scalar_tp', 'vector_tp']:
            d = FEDomain('d', meshes['tp'])
            d.create_region('Omega', 'all')

            f = fields[field_name]
            field = Field.from_args('f',
                                    nm.complex128,
                                    f[0],
                                    d.regions[f[1]],
                                    approx_order=f[2])
            ff = {field.name: field}

            vv = Variables.from_conf(transform_variables(variables), ff)
            u = vv['u']

            bbox = d.get_mesh_bounding_box()
            t = nm.expand_dims(nm.linspace(0, 1, 100), 1)
            coors = nm.expand_dims(bbox[1] - bbox[0], 0) * t + bbox[0]

            data_r = datas[field_name]
            data_i = 2. / (1 + datas[field_name])

            u.set_from_mesh_vertices(data_r)
            vals_r = u.evaluate_at(coors)
            u.set_from_mesh_vertices(data_i)
            vals_i = u.evaluate_at(coors)
            u.set_from_mesh_vertices(data_r + data_i * 1j)
            vals = u.evaluate_at(coors)

            _ok = nm.allclose(vals_r + vals_i * 1j, vals, rtol=0.0, atol=1e-12)
            _ok = _ok and nm.abs(vals).sum() > 1
            self.report('evaluating complex field %s: %s' % (field_name, _ok))

            ok = ok and _ok

        return ok
Esempio n. 21
0
    def test_normals(self):
        """
        Check orientations of surface normals on the reference elements.
        """
        import sfepy
        from sfepy.discrete import Integral
        from sfepy.discrete.fem import Mesh, FEDomain
        from sfepy.discrete.fem.poly_spaces import PolySpace
        from sfepy.discrete.fem.mappings import SurfaceMapping
        from sfepy.linalg import normalize_vectors

        ok = True

        for geom in ['2_3', '2_4', '3_4', '3_8']:
            mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom,
                                  prefix_dir=sfepy.data_dir)
            domain = FEDomain('domain', mesh)
            surface = domain.create_region('Surface', 'vertices of surface',
                                           'facet')
            domain.create_surface_group(surface)

            sd = domain.surface_groups[surface.name]

            coors = domain.get_mesh_coors()
            gel = domain.geom_els[geom].surface_facet
            ps = PolySpace.any_from_args('aux', gel, 1)

            mapping = SurfaceMapping(coors, sd.get_connectivity(), ps)

            integral = Integral('i', order=1)
            vals, weights = integral.get_qp(gel.name)

            # Evaluate just in the first quadrature point...
            geo = mapping.get_mapping(vals[:1], weights[:1])

            expected = expected_normals[geom].copy()
            normalize_vectors(expected)

            _ok = nm.allclose(expected,
                              geo.normal[:, 0, :, 0],
                              rtol=0.0,
                              atol=1e-14)
            self.report('%s: %s' % (geom, _ok))

            if not _ok:
                self.report('expected:')
                self.report(expected)
                self.report('actual:')
                self.report(geo.normal[:, 0, :, 0])

            ok = ok and _ok

        return ok
def make_domain(dims, shape, transform=None):
    """
    Generate a 2D rectangle domain in 3D space, define regions.
    """
    xmin = (-0.5 + 1e-12) * dims[0]
    xmax = (0.5 - 1e-12) * dims[0]

    mesh = make_mesh(dims, shape, transform=transform)
    domain = FEDomain('domain', mesh)
    domain.create_region('Omega', 'all')
    domain.create_region('Gamma1', 'vertices in (x < %.14f)' % xmin, 'facet')
    domain.create_region('Gamma2', 'vertices in (x > %.14f)' % xmax, 'facet')

    return domain
Esempio n. 23
0
def main():
    parser = OptionParser(usage=usage, version='%prog')
    options, args = parser.parse_args()

    if len(args) == 1:
        filename = args[0]
    else:
        parser.print_help(),
        return

    mesh = Mesh.from_file(filename)
    output('Mesh:')
    output('  dimension: %d, vertices: %d, elements: %d' %
           (mesh.dim, mesh.n_nod, mesh.n_el))

    domain = FEDomain('domain', mesh)
    output(domain.cmesh)
    domain.cmesh.cprint(1)
    dim = domain.cmesh.dim

    entities_opts = [
        {
            'color': 'k',
            'label_global': 12,
            'label_local': 8
        },
        {
            'color': 'b',
            'label_global': 12,
            'label_local': 8
        },
        {
            'color': 'g',
            'label_global': 12,
            'label_local': 8
        },
        {
            'color': 'r',
            'label_global': 12
        },
    ]
    if dim == 2: entities_opts.pop(2)

    pc.plot_cmesh(None,
                  domain.cmesh,
                  wireframe_opts={'color': 'k'},
                  entities_opts=entities_opts)

    plt.show()
Esempio n. 24
0
    def test_projection_tri_quad(self):
        from sfepy.discrete.projections import make_l2_projection

        source = FieldVariable('us', 'unknown', self.field)

        coors = self.field.get_coor()
        vals = nm.sin(2.0 * nm.pi * coors[:, 0] * coors[:, 1])
        source.set_data(vals)

        name = op.join(self.options.out_dir,
                       'test_projection_tri_quad_source.vtk')
        source.save_as_mesh(name)

        mesh = Mesh.from_file('meshes/2d/square_quad.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = FEDomain('domain', mesh)

        omega = domain.create_region('Omega', 'all')

        field = Field.from_args('bilinear',
                                nm.float64,
                                'scalar',
                                omega,
                                approx_order=1)

        target = FieldVariable('ut', 'unknown', field)

        make_l2_projection(target, source)

        name = op.join(self.options.out_dir,
                       'test_projection_tri_quad_target.vtk')
        target.save_as_mesh(name)

        bbox = self.field.domain.get_mesh_bounding_box()
        x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
        y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)

        xx, yy = nm.meshgrid(x, y)
        test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()

        vec1 = source.evaluate_at(test_coors)
        vec2 = target.evaluate_at(test_coors)

        ok = (nm.abs(vec1 - vec2) < 0.01).all()

        return ok
Esempio n. 25
0
    def from_conf( conf, options ):
        from sfepy import data_dir
        from sfepy.discrete.fem import Mesh, FEDomain
        from sfepy.discrete import Functions

        mesh = Mesh.from_file(data_dir
                              + '/meshes/various_formats/abaqus_tet.inp')
        mesh.nodal_bcs['set0'] = [0, 7]
        domain = FEDomain('test domain', mesh)

        conf_functions = {
            'get_vertices' : (get_vertices,),
            'get_cells' : (get_cells,),
        }
        functions = Functions.from_conf(transform_functions(conf_functions))

        test = Test(conf=conf, options=options,
                    domain=domain, functions=functions)
        return test
Esempio n. 26
0
def mesh_hook(mesh, mode):
    """
    Load and refine a mesh here.
    """
    if mode == 'read':
        mesh = Mesh.from_file(base_mesh)
        domain = FEDomain(mesh.name, mesh)
        for ii in range(3):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

        domain.mesh.name = '2_4_2_refined'

        return domain.mesh

    elif mode == 'write':
        pass
Esempio n. 27
0
def linear_projection(pb, cval):
    from sfepy.discrete import (FieldVariable, Material, Integral, Equation,
                                Equations, Problem)
    from sfepy.discrete.fem import Mesh, FEDomain, Field
    from sfepy.terms import Term
    from sfepy.solvers.ls import ScipyDirect
    from sfepy.solvers.nls import Newton
    from sfepy.base.base import IndexedStruct

    mesh = Mesh.from_file(pb.conf.filename_mesh)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1)

    g = FieldVariable('g', 'unknown', field)
    f = FieldVariable('f', 'test', field, primary_var_name='g')

    integral = Integral('i', order=2)
    m = Material('m', function=set_grad)

    t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
    t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])
    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status)
    pb = Problem('elasticity', equations=eqs)
    pb.set_solver(nls)

    out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64)
    for ii in range(cval.shape[2]):
        pb.data = nm.ascontiguousarray(cval[:, :, ii, :])
        pb.time_update()
        state = pb.solve()
        out[:, ii] = state.get_parts()['g']

    return out
Esempio n. 28
0
def main():
    parser = OptionParser(usage=usage, version='%prog')
    options, args = parser.parse_args()

    if len(args) == 1:
        filename = args[0]
    else:
        parser.print_help(),
        return

    mesh = Mesh.from_file(filename)
    output('Mesh:')
    output('  dimension: %d, vertices: %d, elements: %d' %
           (mesh.dim, mesh.n_nod, mesh.n_el))

    domain = FEDomain('domain', mesh)
    output(domain.cmesh)
    domain.cmesh.cprint(1)
    dim = domain.cmesh.dim

    ax = pc.plot_wireframe(None, domain.cmesh)

    ax = pc.plot_entities(ax, domain.cmesh, 0, 'k')
    ax = pc.label_global_entities(ax, domain.cmesh, 0, 'k', 12)
    ax = pc.label_local_entities(ax, domain.cmesh, 0, 'k', 8)

    ax = pc.plot_entities(ax, domain.cmesh, 1, 'b')
    ax = pc.label_global_entities(ax, domain.cmesh, 1, 'b', 12)
    ax = pc.label_local_entities(ax, domain.cmesh, 1, 'b', 8)

    if dim == 3:
        ax = pc.plot_entities(ax, domain.cmesh, 2, 'g')
        ax = pc.label_global_entities(ax, domain.cmesh, 2, 'g', 12)
        ax = pc.label_local_entities(ax, domain.cmesh, 2, 'g', 8)

    ax = pc.plot_entities(ax, domain.cmesh, dim, 'r')
    ax = pc.label_global_entities(ax, domain.cmesh, dim, 'r', 12)

    pc.plt.show()
Esempio n. 29
0
    def test_laplace_shifted_periodic(self):
        import numpy as nm
        from sfepy.mesh.mesh_generators import gen_block_mesh
        from sfepy.discrete.fem import FEDomain
        from examples.diffusion.laplace_shifted_periodic import run

        dims = [2.0, 1.0]
        shape = [21, 11]
        centre = [0.0, 0.0]
        mesh = gen_block_mesh(dims, shape, centre, name='block-fem')
        fe_domain = FEDomain('domain', mesh)

        pb, state = run(fe_domain, 3)

        gamma3 = pb.domain.regions['Gamma3']
        gamma4 = pb.domain.regions['Gamma4']

        field = pb.fields['fu']

        # Check that the shift equals to one.
        i3 = field.get_dofs_in_region(gamma3, merge=True)
        i4 = field.get_dofs_in_region(gamma4, merge=True)

        i_corners = nm.array([0, shape[0] - 1])
        ii = nm.setdiff1d(nm.arange(len(i3)), i_corners)

        vals = state()

        shift = vals[i3] - vals[i4]

        ok = (shift[i_corners] == 0.0).all()

        ok = ok and nm.allclose(shift[ii], 1.0, rtol=0.0, atol=1e-14)

        if not ok:
            self.report('wrong shift:', shift)

        return ok
Esempio n. 30
0
def save_basis_on_mesh(mesh, options, output_dir, lin,
                       permutations=None, suffix=''):
    if permutations is not None:
        mesh = mesh.copy()
        gel = GeometryElement(mesh.descs[0])
        perms = gel.get_conn_permutations()[permutations]
        conn = mesh.cmesh.get_cell_conn()
        n_el, n_ep = conn.num, gel.n_vertex
        offsets = nm.arange(n_el) * n_ep

        conn.indices[:] = conn.indices.take((perms + offsets[:, None]).ravel())

    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('f', nm.float64, shape=1, region=omega,
                            approx_order=options.max_order,
                            poly_space_base=options.basis)
    var = FieldVariable('u', 'unknown', field)

    if options.plot_dofs:
        import sfepy.postprocess.plot_dofs as pd
        import sfepy.postprocess.plot_cmesh as pc
        ax = pc.plot_wireframe(None, mesh.cmesh)
        ax = pd.plot_global_dofs(ax, field.get_coor(), field.econn)
        ax = pd.plot_local_dofs(ax, field.get_coor(), field.econn)
        if options.dofs is not None:
            ax = pd.plot_nodes(ax, field.get_coor(), field.econn,
                               field.poly_space.nodes,
                               get_dofs(options.dofs, var.n_dof))
        pd.plt.show()

    output('dofs: %d' % var.n_dof)

    vec = nm.empty(var.n_dof, dtype=var.dtype)
    n_digit, _format = get_print_info(var.n_dof, fill='0')
    name_template = os.path.join(output_dir,
                                 'dof_%s%s.vtk' % (_format, suffix))
    for ip in get_dofs(options.dofs, var.n_dof):
        output('dof %d...' % ip)

        vec.fill(0.0)
        vec[ip] = 1.0

        var.set_data(vec)

        if options.derivative == 0:
            out = var.create_output(vec, linearization=lin)

        else:
            out = create_expression_output('ev_grad.ie.Elements(u)',
                                           'u', 'f', {'f' : field}, None,
                                           Variables([var]),
                                           mode='qp', verbose=False,
                                           min_level=lin.min_level,
                                           max_level=lin.max_level,
                                           eps=lin.eps)

        name = name_template % ip
        ensure_path(name)
        out['u'].mesh.write(name, out=out)

        output('...done (%s)' % name)