Esempio n. 1
0
File: its2D_3.py Progetto: rc/sfepy
def nodal_stress(out, pb, state, extend=False, integrals=None):
    '''
    Calculate stresses at nodal points.
    '''

    # Point load.
    mat = pb.get_materials()['Load']
    P = 2.0 * mat.get_data('special', 'val')[1]

    # Calculate nodal stress.
    pb.time_update()

    if integrals is None: integrals = pb.get_integrals()

    stress = pb.evaluate('ev_cauchy_stress.ivn.Omega(Asphalt.D, u)', mode='qp',
                         integrals=integrals, copy_materials=False)
    sfield = Field.from_args('stress', nm.float64, (3,),
                             pb.domain.regions['Omega'])
    svar = FieldVariable('sigma', 'parameter', sfield,
                         primary_var_name='(set-to-None)')
    svar.set_from_qp(stress, integrals['ivn'])

    print('\n==================================================================')
    print('Given load = %.2f N' % -P)
    print('\nAnalytical solution')
    print('===================')
    print('Horizontal tensile stress = %.5e MPa/mm' % (-2.*P/(nm.pi*150.)))
    print('Vertical compressive stress = %.5e MPa/mm' % (-6.*P/(nm.pi*150.)))
    print('\nFEM solution')
    print('============')
    print('Horizontal tensile stress = %.5e MPa/mm' % (svar()[0]))
    print('Vertical compressive stress = %.5e MPa/mm' % (-svar()[1]))
    print('==================================================================')
    return out
Esempio n. 2
0
def nodal_stress(out, pb, state, extend=False, integrals=None):
    '''
    Calculate stresses at nodal points.
    '''

    # Point load.
    mat = pb.get_materials()['Load']
    P = 2.0 * mat.get_data('special', 'val')[1]

    # Calculate nodal stress.
    pb.time_update()

    if integrals is None: integrals = pb.get_integrals()

    stress = pb.evaluate('ev_cauchy_stress.ivn.Omega(Asphalt.D, u)', mode='qp',
                         integrals=integrals, copy_materials=False)
    sfield = Field.from_args('stress', nm.float64, (3,),
                             pb.domain.regions['Omega'])
    svar = FieldVariable('sigma', 'parameter', sfield,
                         primary_var_name='(set-to-None)')
    svar.set_from_qp(stress, integrals['ivn'])

    print('\n==================================================================')
    print('Given load = %.2f N' % -P)
    print('\nAnalytical solution')
    print('===================')
    print('Horizontal tensile stress = %.5e MPa/mm' % (-2.*P/(nm.pi*150.)))
    print('Vertical compressive stress = %.5e MPa/mm' % (-6.*P/(nm.pi*150.)))
    print('\nFEM solution')
    print('============')
    print('Horizontal tensile stress = %.5e MPa/mm' % (svar()[0]))
    print('Vertical compressive stress = %.5e MPa/mm' % (-svar()[1]))
    print('==================================================================') 
    return out
Esempio n. 3
0
    def test_variables(self):
        from sfepy.discrete import FieldVariable, Integral

        ok = True

        u = FieldVariable('u',
                          'parameter',
                          self.field,
                          primary_var_name='(set-to-None)')
        u.set_constant(1.0)
        vec = u()  # Nodal values.

        _ok = nm.allclose(vec, 1.0)
        self.report('set constant:', _ok)
        ok = _ok and ok

        def fun(coors):
            val = nm.empty_like(coors)
            val[:, 0] = 2 * coors[:, 1] - coors[:, 0]
            val[:, 1] = coors[:, 0] + 3 * coors[:, 1]
            return val

        u.set_from_function(fun)

        coors = u.field.get_coor()
        eu = u.evaluate_at(coors)

        _ok = nm.allclose(eu, fun(coors), rtol=0.0, atol=1e-13)
        self.report('set from function:', _ok)
        ok = _ok and ok

        integral = Integral('i', order=2)
        gu_qp = u.evaluate(mode='grad', integral=integral)

        # du_i/dx_j, i = column, j = row.
        gu = nm.array([[-1., 1.], [2., 3.]])
        _ok = nm.allclose(gu_qp, gu[None, None, ...], rtol=0.0, atol=1e-13)
        self.report('set from function - gradient:', _ok)
        ok = _ok and ok

        u_qp = gu_qp[..., :, :1]
        u.set_from_qp(u_qp, integral)
        vu = u()

        _ok = (nm.allclose(vu[::2], -1, rtol=0.0, atol=1e-13)
               and nm.allclose(vu[1::2], 2, rtol=0.0, atol=1e-13))
        self.report('set from qp:', _ok)
        ok = _ok and ok

        return ok
Esempio n. 4
0
    def test_variables(self):
        from sfepy.discrete import FieldVariable, Integral

        ok = True

        u = FieldVariable('u', 'parameter', self.field,
                          primary_var_name='(set-to-None)')
        u.set_constant(1.0)
        vec = u() # Nodal values.

        _ok = nm.allclose(vec, 1.0)
        self.report('set constant:', _ok)
        ok = _ok and ok

        def fun(coors):
            val = nm.empty_like(coors)
            val[:, 0] = 2 * coors[:, 1] - coors[:, 0]
            val[:, 1] = coors[:, 0] + 3 * coors[:, 1]
            return val
        u.set_from_function(fun)

        coors = u.field.get_coor()
        eu = u.evaluate_at(coors)

        _ok = nm.allclose(eu, fun(coors), rtol=0.0, atol=1e-13)
        self.report('set from function:', _ok)
        ok = _ok and ok

        integral = Integral('i', order=2)
        gu_qp = u.evaluate(mode='grad', integral=integral)

        # du_i/dx_j, i = column, j = row.
        gu = nm.array([[-1.,  1.],
                       [ 2.,  3.]])
        _ok = nm.allclose(gu_qp, gu[None, None, ...], rtol=0.0, atol=1e-13)
        self.report('set from function - gradient:', _ok)
        ok = _ok and ok

        u_qp = gu_qp[..., :, :1]
        u.set_from_qp(u_qp, integral)
        vu = u()

        _ok = (nm.allclose(vu[::2], -1, rtol=0.0, atol=1e-13) and
               nm.allclose(vu[1::2], 2, rtol=0.0, atol=1e-13))
        self.report('set from qp:', _ok)
        ok = _ok and ok

        return ok