Esempio n. 1
0
    def get_fargs(self,
                  mat,
                  kappa,
                  virtual,
                  state,
                  mode=None,
                  term_mode=None,
                  diff_var=None,
                  **kwargs):
        from sfepy.discrete.variables import create_adof_conn, expand_basis

        geo, _ = self.get_mapping(state)

        n_el, n_qp, dim, n_en, n_c = self.get_data_shape(virtual)

        ebf = expand_basis(geo.bf, dim)

        mat = Term.tile_mat(mat, n_el)
        gmat = _build_wave_strain_op(kappa, ebf)

        if diff_var is None:
            econn = state.field.get_econn('volume', self.region)
            adc = create_adof_conn(nm.arange(state.n_dof, dtype=nm.int32),
                                   econn, n_c, 0)
            vals = state()[adc]
            # Same as nm.einsum('qij,cj->cqi', gmat[0], vals)[..., None]
            aux = dot_sequences(gmat, vals[:, None, :, None])
            out_qp = dot_sequences(gmat, dot_sequences(mat, aux), 'ATB')
            fmode = 0

        else:
            out_qp = dot_sequences(gmat, dot_sequences(mat, gmat), 'ATB')
            fmode = 1

        return out_qp, geo, fmode
Esempio n. 2
0
    def function(self, out, state, diff_var, field, region, D):
        D = Term.tile_mat(D, out.shape[0])

        if diff_var is not None:  # matrix mode
            # outR = out.copy()[..., 0:1]
            out = self._function_matrix(out, state, diff_var, field, region, D)

            # vals, ielsi, ielsj = out[:3]
            # from scipy.sparse import coo_matrix
            # extra = coo_matrix((vals, (ielsi, ielsj)),
            #                    shape=2*(field.n_el_nod * field.n_cell,))
            # M = extra.toarray()
            # u = state.data[0]
            # Mu = nm.dot(M, u).reshape((field.n_cell, field.n_el_nod))
            #
            # outR = self._function_residual(outR, state, diff_var, field,
            #                                   region, D).squeeze()
            # from matplotlib import pyplot as plt
            # plt.imshow((Mu - outR).T, aspect="auto")
            # plt.colorbar()
            #
            # nbrhd_idx = field.get_facet_neighbor_idx(region, state.eq_map)
            # bcells = nm.where(nbrhd_idx[:, :, 0] < 0)[0],
            # plt.vlines(bcells, -.5, 15, alpha=.3)
            # plt.show()

        else:  # residual mode
            out = self._function_residual(out, state, diff_var, field, region,
                                          D)

        status = None
        return out, status
Esempio n. 3
0
    def get_fargs(self,
                  traction,
                  virtual,
                  mode=None,
                  term_mode=None,
                  diff_var=None,
                  **kwargs):
        sg, _ = self.get_mapping(virtual)

        if traction is not None:
            n_el, _, _, _, _ = self.get_data_shape(virtual)
            traction = Term.tile_mat(traction, n_el)

        if traction is None:
            traction = nm.zeros((0, 0, 0, 0), dtype=nm.float64)

        if mode == 'weak':
            return traction, sg

        elif mode == 'eval':
            val = self.get(virtual, 'val')
            return traction, val, sg

        else:
            raise ValueError('unsupported evaluation mode in %s! (%s)' %
                             (self.name, mode))
Esempio n. 4
0
    def get_fargs(self,
                  force_pars,
                  normal,
                  anchor,
                  bounds,
                  virtual,
                  state,
                  mode=None,
                  term_mode=None,
                  diff_var=None,
                  **kwargs):
        sg, _ = self.get_mapping(virtual)

        assert_((force_pars >= 0.0).all(),
                'force parameters must be non-negative!')

        force_pars = Term.tile_mat(force_pars, sg.shape[0])

        if self.cp is None:
            self.cp = ContactPlane(anchor, normal, bounds)

        qps = self.get_physical_qps()
        qp_coors = qps.values
        u_qp = self.get(state, 'val').reshape(qp_coors.shape)

        # Deformed QP coordinates.
        coors = u_qp + qp_coors

        force = nm.zeros(coors.shape[0], dtype=nm.float64)

        k, f0, eps, a = self._get_force_pars(force_pars, force.shape)

        # Active points in contact change with displacements!
        ii = self.cp.mask_points(qp_coors)

        if diff_var is None:
            if ii.any():
                d = self.cp.get_distance(coors[ii])
                # Force in the plane normal direction.
                force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 0)

            fmode = 0

        else:
            if ii.any():
                d = self.cp.get_distance(coors[ii])
                # Force in the plane normal direction derivative.
                force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 1)

            fmode = 1

        force.shape = qps.shape[:2] + (1, 1)

        return force, self.cp.normal, sg, fmode
Esempio n. 5
0
    def get_fargs(self,
                  mat,
                  kappa,
                  gvar,
                  evar,
                  mode=None,
                  term_mode=None,
                  diff_var=None,
                  **kwargs):
        from sfepy.discrete.variables import create_adof_conn, expand_basis

        geo, _ = self.get_mapping(evar)

        n_el, n_qp, dim, n_en, n_c = self.get_data_shape(gvar)

        ebf = expand_basis(geo.bf, dim)

        mat = Term.tile_mat(mat, n_el)
        gmat = _build_wave_strain_op(kappa, ebf)
        emat = _build_cauchy_strain_op(geo.bfg)

        if diff_var is None:
            avar = evar if self.mode == 'ge' else gvar
            econn = avar.field.get_econn('volume', self.region)
            adc = create_adof_conn(nm.arange(avar.n_dof, dtype=nm.int32),
                                   econn, n_c, 0)
            vals = avar()[adc]

            if self.mode == 'ge':
                # Same as aux = self.get(avar, 'cauchy_strain'),
                aux = dot_sequences(emat, vals[:, None, :, None])
                out_qp = dot_sequences(gmat, dot_sequences(mat, aux), 'ATB')

            else:
                aux = dot_sequences(gmat, vals[:, None, :, None])
                out_qp = dot_sequences(emat, dot_sequences(mat, aux), 'ATB')

            fmode = 0

        else:
            if self.mode == 'ge':
                out_qp = dot_sequences(gmat, dot_sequences(mat, emat), 'ATB')

            else:
                out_qp = dot_sequences(emat, dot_sequences(mat, gmat), 'ATB')

            fmode = 1

        return out_qp, geo, fmode
Esempio n. 6
0
    def get_fargs(self,
                  force_pars,
                  centre,
                  radius,
                  virtual,
                  state,
                  mode=None,
                  term_mode=None,
                  diff_var=None,
                  **kwargs):
        sg, _ = self.get_mapping(virtual)

        assert_((force_pars >= 0.0).all(),
                'force parameters must be non-negative!')

        force_pars = Term.tile_mat(force_pars, sg.shape[0])

        if self.cs is None:
            self.cs = ContactSphere(centre, radius)

        qps = self.get_physical_qps()
        qp_coors = qps.values
        u_qp = self.get(state, 'val').reshape(qp_coors.shape)

        # Deformed QP coordinates.
        coors = u_qp + qp_coors

        force = nm.zeros(coors.shape[0], dtype=nm.float64)
        normals = nm.zeros((coors.shape[0], 3), dtype=nm.float64)
        fd = None

        k, f0, eps, a = self._get_force_pars(force_pars, force.shape)

        # Active points in contact change with displacements!
        ii = self.cs.mask_points(coors, nm.abs(eps.min()))

        if diff_var is None:
            if ii.any():
                d, normals[ii] = self.cs.get_distance(coors[ii])
                force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 0)

            fmode = 0

        else:
            if ii.any():
                d, normals[ii] = self.cs.get_distance(coors[ii])
                # Force derivative.
                force[ii] = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 1)

                # Force / (R - d).
                aux = self.smooth_f(d, k[ii], f0[ii], a[ii], eps[ii], 0)
                fd = nm.zeros_like(force)
                fd[ii] = aux / (self.cs.radius - d)
                fd.shape = qps.shape[:2] + (1, 1)

            fmode = 1

        force.shape = qps.shape[:2] + (1, 1)
        normals.shape = qps.shape[:2] + (3, 1)

        return force, normals, fd, sg, fmode