def loadCountyBoundaries(file_name, map):
    shape_file = ShapeFile(file_name)
    n_polys = shape_file.info()[0]

    all_verts_ll = []
    all_lengths = [ 0 ]
    for n_poly in xrange(n_polys):
        shape = shape_file.read_object(n_poly)
        rings = shape.vertices()
        for ring in rings:
            verts = np.array(zip(*ring))
            all_verts_ll.append(verts)
            all_lengths.append(verts.shape[1])

    start = datetime.utcnow()
    vert_glob_ll = np.hstack(tuple(all_verts_ll))
    vert_glob_xy = np.array(zip(*map(*vert_glob_ll)))
    print "Time to map and zip:", datetime.utcnow() - start

    partitions = np.add.accumulate(all_lengths)
    all_verts_xy = []

    for lbound, ubound in zip(partitions[:-1], partitions[1:]):
        all_verts_xy.append( vert_glob_xy[lbound:ubound] )

    return LineCollection(all_verts_xy, antialiaseds=(1,), color='k', lw=0.5)
Esempio n. 2
0
def read_census_shapefile(filename):
    """Read census shapefile and return list of entity-derived objects.

    Given the base name of a census .shp/.dbf file returns a list of all
    Entity-derived objects described by the the file.
    """

    try:
        shp = ShapeFile(filename)
    except IOError:
        raise ShapefileError('Could not open %s.shp' % filename)

    try:
        dbf = DBFFile(filename)
    except IOError:
        raise ShapefileError('Could not open %s.dbf' % filename)

    shape_count = shp.info()[0]

    # shape_count should always equal dbf.record_count()
    if shape_count != dbf.record_count():
        raise ShapefileError('SHP/DBF record count mismatch (SHP=%d, DBF=%d)' %
                                (shape_count, dbf.record_count()))

    # generator version
    #for i in xrange(shp.info()[0]):
    #    yield Entity.fromShapefile(shp.read_object(i), dbf.read_record(i))

    # shp.info()[0] is the number of objects
    return [Entity.from_shapefile(shp.read_object(i), dbf.read_record(i))
            for i in xrange(shape_count)]
Esempio n. 3
0
def main(shapefile, picklefile):
    if picklefile:
      [npts, x, y, z, zraw, xil, yil, grid, missing] = cPickle.load(open(picklefile,'rb'))
      points = np.vstack((x,y)).T

    # Load administrative area
    shp = ShapeFile(shapefile)
    dbf = dbflib.open(shapefile)

    coastline = []

    # Process every shape from the ShapeFile
    print "Processing shapes ..."
    for npoly in range(shp.info()[0]):
        shp_object = shp.read_object(npoly)
        shp_dict = dbf.read_record(npoly)
        verts = shp_object.vertices()

        if "NAME_1" in shp_dict:
          name = "%s" % (shp_dict["NAME_1"])
        else:
          name = "Unknown"

        print "Processing %s" % (name)
        # Extract city polygon vertices (ring per ring)
        for ring in verts:
          vx = []
          vy = []
          for point in ring:
            vx.append(point[0])
            vy.append(point[1])

          # Only process big enough rings
          if len(vx) > 256: # big enough
            poly_verts = zip(vx,vy)

            if picklefile:
              # Compute intersections with the city
              intersection = points_inside_poly(points, poly_verts)
              npts = sum(1 for x in points_inside_poly(points, poly_verts) if x)
            else:
              npts = 1 # Add this polygon

            # Add the ring to the coastine if measures inside
            if npts > 0:
              polygon = Polygon(poly_verts)
              if not polygon.is_empty and polygon.is_valid:
                print "- Add polygon (%d)" % (len(vx))
                coastline.append(polygon)
            else:
                print "- Skip polygon (%d)" % (len(vx))
    
    print "Union of %d polygons" % len(coastline)
    coast = cascaded_union(coastline)
    cPickle.dump(coast,open('coastline.pickle','wb'),-1)
    print "Done."
Esempio n. 4
0
 def __init__(self,
              shpfile = "worldmap/TM_WORLD_BORDERS-0.3.shp",
              dbffile = "worldmap/TM_WORLD_BORDERS-0.3.dbf"):
     shp = ShapeFile(shpfile)
     dbf = dbflib.open(dbffile)
     self.countries = {}
     for i in range(shp.info()[0]):
         c = dbf.read_record(i)['ISO2']
         poly = shp.read_object(i)
         self.countries[c] = poly.vertices()
Esempio n. 5
0
def mapcountries(countries):  #Map list of countries?
    from mpl_toolkits.basemap import Basemap
    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(11.7, 8.3))
    plt.subplots_adjust()
    m = Basemap(projection='hammer', resolution=None, lon_0=0)
    m.drawcountries(linewidth=0.5)
    m.drawcoastlines(linewidth=0.5)

    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm

    #for ctry in countries:
    shp = ShapeFile(r"borders/world_adm1")
    dbf = dbflib.open(r"borders/world_adm1")

    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
        shp_object = shp.read_obj(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(
                    lats) < -91.:
                raise ValueError('Lats/Lons out of range')
            x, y = m(lons, lats)
            shpsegs.append(zip(x, y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            name = shapedict["NAME_1"]

            shapedict['RINGNUM'] = ring + 1
            shapedict['SHAPENUM'] = npoly + 1
            shpinfo.append(shapedict)
        print(name)
        lines = LineCollection(shpsegs, antialiaseds=(1, ))
        lines.set_facecolors(cm.jet(0.5))
        lines.set_edgecolors('k')
        lines.set_linewidth(0.3)
        ax.add_collection(lines)

    plt.show()
Esempio n. 6
0
def plotclustering(label, zipcodes, nameee):
#    print len(zipcodes)
    label = np.array(label)
    zipcodes = np.array(zipcodes)
    cluster1 = zipcodes[label == 1]
    cluster2 = zipcodes[label == 2]
    cluster0 = zipcodes[label == 0]
    cluster3 = zipcodes[label == 3]

    fig = plt.figure(figsize =(15, 15))
    ax = plt.subplot(111)
    lllat = 40.473; urlat = 40.93; lllon = -74.27; urlon = -73.69 # define the boundary of the map
    m = Basemap(ax=ax, projection = 'stere', lon_0 = (urlon + lllon)/2, lat_0 = (urlat +lllat)/2, llcrnrlon = lllon, llcrnrlat = lllat, urcrnrlon = urlon, urcrnrlat = urlat, resolution= 'l')# create the basemap 

  #  m.drawcoastlines()
    m.drawcountries()
    shp = ShapeFile('c:/Users/gang/Desktop/nyczipregion')
    dbf = dbflib.open('c:/Users/gang/Desktop/nyczipregion')
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons , lats = zip(*verts[ring])
            x, y = m(lons, lats)
            shpsegs.append(zip(x, y))
            if ring ==0:
                shapedict = dbf.read_record(npoly)
            name = shapedict['Zcta5ce00']
        
        lines = LineCollection(shpsegs, antialiaseds=(1,))
        if name in cluster0:
            lines.set_facecolors('b')
        if name in cluster1:
            lines.set_facecolors('g')
        if name in cluster2:
            lines.set_facecolors('r')
        if name in cluster3:
            lines.set_facecolors('y')
        lines.set_alpha(1)
        lines.set_edgecolors('k')
        ax.add_collection(lines)
    plt.title('Box Clustering Based On Taxi Trips')
    plt.savefig(nameee+'_box_trip_Clustering.png', dpi=300)
    plt.show()   
Esempio n. 7
0
def serialize_tm_world(shapefile_fn, output_fn):
    print 'serialize ' + shapefile_fn + '.shp'
    tm_world = world()
    shp = ShapeFile(shapefile_fn + '.shp')
    dbf = dbflib.open(shapefile_fn + '.dbf')
    nb_records = shp.info()[0]
    for i in xrange(nb_records):
        shp_record = dbf.read_record(i)
        shp_object = shp.read_object(i)
        # countries
        name = shp_record['NAME']
        shp_record['SHAPE'] = shp_object.vertices()
        tm_world.countries[name] = shp_record
        # regions
        region = shp_record['REGION']
        tm_world.regions[region].append(name)
        # subregions
        subregion = shp_record['SUBREGION']
        tm_world.subregions[subregion].append(name)
    pickle.dump(tm_world, gzip.open(output_fn,'w'))
Esempio n. 8
0
def map_G(G):
        
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    import matplotlib.cm as cmx
    
    import matplotlib as mpl
    mpl.rcParams['font.size'] = 10.
    mpl.rcParams['axes.labelsize'] = 8.
    mpl.rcParams['xtick.labelsize'] = 6.
    mpl.rcParams['ytick.labelsize'] = 6.
    
    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm
    import matplotlib.colors as colors
     
    ###########################################################################################
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(projection='cyl',\
                llcrnrlon=-9, \
                llcrnrlat=3.8, \
                urcrnrlon=-1.5, \
                urcrnrlat = 11, \
                resolution = 'h', \
#                 projection = 'tmerc', \
                lat_0 = 7.38, \
                lon_0 = -5.30)
      
    # read subpref coordinates
    subpref_coord = read_in_subpref_lonlat()
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
           
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
    #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
    #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
#         lines.set_facecolors(col[subpref_id])
        lines.set_edgecolors('gray')
        lines.set_linewidth(0.1)
        ax.add_collection(lines)   
        
    if G.has_node(-1): 
        G.remove_node(-1)
    if G.has_node(0): 
        G.remove_node(0)
        
###########################################################################################################
### this is the main part: scale weights of # commuters, use colormap by work location and then plot
### all or just the routes with more that 10 commutes 
###########################################################################################################
    
#     max7s = 0
#     min7s = 10000000
#     for u,v,d in G.edges(data=True):
#         if d['weight'] > max7s:
#             max7s = d['weight']
#         if d['weight'] < min7s:
#             min7s = d['weight']
#             
#     max7s = float(max7s)
#     print "max", (max7s)
#     print "min", (min7s)
#     
#     scaled_weight = defaultdict(int)
#     
#     for i in range(len(G.edges())):
#         scaled_weight[i] = defaultdict(int)
#     for u,v,d in G.edges(data=True):
#         scaled_weight[u][v] = (d['weight'] - min7s) / (max7s - min7s)
    
    values = range(256)    
    jet = cm = plt.get_cmap('jet') 
    cNorm  = colors.Normalize(vmin=0, vmax=values[-1])
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
    
    for u, v, d in G.edges(data=True):
#         lo = []
#         la = []  
#         lo.append(subpref_coord[u][0])
#         lo.append(subpref_coord[v][0])
#         la.append(subpref_coord[u][1])
#         la.append(subpref_coord[v][1])
#         x, y = m(lo, la)
#         linewidth7s = scaled_weight[u][v] * 2.5 + 0.25
#         m.plot(x,y, linewidth= linewidth7s)
#         if linewidth7s > 1:
#             print (linewidth7s)
        if d['weight'] >= 0: 
            colorVal = scalarMap.to_rgba(values[v])
#             linewidth7s = scaled_weight[u][v] * 2.5 + 0.35 
#             print u, v,  d['weight'], scaled_weight[u][v]
###########################################################################################################
### no scaling vs scaling the width of the line
###########################################################################################################
#            linewidth7s = d['weight'] / 10   
            m.drawgreatcircle(subpref_coord[u][0], subpref_coord[u][1], \
                              subpref_coord[v][0], subpref_coord[v][1], linewidth= d['weight']*100, color=colorVal)

#     m.drawcoastlines()
    #m.fillcontinents()
        
    plt.savefig('/home/sscepano/Project7s/D4D/CI/commuting_centers/Igor/high_betweenes_routes4.png',dpi=700)
    #plt.show()
    
    ###################################################################################################3
    
    return
obama = percent['Obama, Barack']

fig = plt.figure(figsize=(12, 12))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

lllat = 21; urlat = 53; lllon = -118; urlon = -62

m = Basemap(ax=ax, projection='stere',
            lon_0=(urlon + lllon) / 2, lat_0=(urlat + lllat) / 2,
            llcrnrlat=lllat, urcrnrlat=urlat, llcrnrlon=lllon,
            urcrnrlon=urlon, resolution='1')
m.drawcoastlines()
m.drawcountries()

shp = ShapeFile('../states/statesp020')
dbf = dbflib.open('../states/statesp020')

for npoly in range(shp.info()[0]):
    # draw colored polygons on the map
    shpseqs = []
    shp_object = shp.read_object(npoly)
    verts = shp_object.vertices()
    rings = len(verts)
    for ring in range(rings):
        lons, lats = zip(*verts[ring])
        x, y = m(lons,lats)
        shpsegs.append(zip(x,y))
        if ring == 0:
            shapedict = dbf.read_record(npoly)
        name = shapedict['STATE']
Esempio n. 10
0
def map_communities_and_commutes(G):
    
    G_mod = nx.read_gml("/home/sscepano/D4D res/allstuff/User movements graphs/commuting patterns/1/total_commuting_G_scaled_weights_11COM_713_7115.gml")
    
    col = [str]*256
    for i in range(256):
        col[i] = 'w'
    
    for node in G_mod.nodes_iter(data=True):
        #print node[1]['label']
        col_gephi = node[1]['graphics']['fill']
        while (len(col_gephi) < 7):
            col_gephi += '0'
        subpref_gephi = int(float(node[1]['label']))
        print subpref_gephi, col_gephi
        col[subpref_gephi] = col_gephi   
    #print col
    
    plt.clf()
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(llcrnrlon=-9, \
                llcrnrlat=3.8, \
                urcrnrlon=-1.5, \
                urcrnrlat = 11, \
                resolution = 'h', \
                projection = 'tmerc', \
                lat_0 = 7.38, \
                lon_0 = -5.30)
   
    # read the shapefile archive
    s = m.readshapefile('/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE', 'subpref')
    
    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []  
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
        lines.set_facecolors(col[subpref_id])
        lines.set_edgecolors('gray')
        lines.set_linewidth(0.3)
        ax.add_collection(lines)
    
    m.drawcoastlines()
    
    plt.show()

#    # data to plot on the map    
#    lons = [int]*256
#    lats = [int]*256
#    
#    # read in coordinates fo subprefs
#    file_name2 = "/home/sscepano/DATA SET7S/D4D/SUBPREF_POS_LONLAT.TSV"
#    f2 = open(file_name2, 'r')
#    
#    # read subpref coordinates
#    subpref_coord = {}
#    for line in f2:
#        subpref_id, lon, lat = line.split('\t')
#        lon = float(lon)
#        lat = float(lat)
#        subpref_id = int(subpref_id)
#        subpref_coord.keys().append(subpref_id)
#        subpref_coord[subpref_id] = (lon, lat)
#    
#    f2.close()
#    
#    # if wanna plot number of users whose this is home subpref
#    for subpref in range(1,256):
#        lons[subpref] = subpref_coord[subpref][0]
#        lats[subpref] = subpref_coord[subpref][1]
#    
#    
#    if G.has_node(-1): 
#        G.remove_node(-1)
#
#    max7s = 1
#    min7s = 1
#    for u,v,d in G.edges(data=True):
#        if d['weight'] > max7s:
#            max7s = d['weight']
#        if d['weight'] < min7s:
#            min7s = d['weight']
#            
#    max7s = float(max7s)
#    print max7s
#    print min7s
#    
#    scaled_weight = defaultdict(int)
#    for i in range(256):
#        scaled_weight[i] = defaultdict(int)
#    
#    for u,v,d in G.edges(data=True):
#        node1 = G.nodes(data=True)[u][1]['label']
#        node2 = G.nodes(data=True)[v][1]['label']
#        print u, node1
#        print v, node2
#        print d
#        scaled_weight[node1][node2] = (d['weight'] - min7s) / (max7s - min7s)
#        
##    for u,v,d in G.edges(data=True):
##        print u,v,d
##        node1 = G.nodes(data=True)[u][1]['label']
##        node2 = G.nodes(data=True)[v][1]['label']
##        print node1, G_mod.nodes(data=True)[u][1]['label']
##        print node2, G_mod.nodes(data=True)[v][1]['label']
#    
# 
#    for u, v, d in G.edges(data=True):
#        node1 = G.nodes(data=True)[u][1]['label']
#        node2 = G.nodes(data=True)[v][1]['label']
#        print node1
#        print node2
#        lo = []
#        la = []   
#        print u
#        print v
#        lo.append(lons[node1])
#        lo.append(lons[node2])
#        la.append(lats[node1])
#        la.append(lats[node2])
#        #m.drawgreatcircle(lons[u],lats[u], lons[v],lats[v])
#        x, y = m(lo, la)
#        #linewidth7s = d['weight']
#        #linewidth7s = d['weight'] / max7s
#        #lons, lats = n.meshgrid(lo,la)
#        linewidth7s = scaled_weight[node1][node2] * 7 + 0.2
#        m.plot(x,y, 'b', linewidth = linewidth7s)
#        #wave = 0.75*(np.sin(2.*lats)**8*np.cos(4.*lons))
#        #mean = 0.5*np.cos(2.*lats)*((np.sin(2.*lats))**2 + 2.)
#        #m.contour(x,y,linewidth=linewidth7s)
#        #m.quiver(x,y,lons, lats, latlon=True)
##        if linewidth7s > 1:
##            print linewidth7s
#        
#     
#    figure_name = "/home/sscepano/D4D res/allstuff/User movements graphs/commuting patterns/1/maps/mod_classes_SCALED_11COM_713_7115.png"
#    print(figure_name)
#    plt.savefig(figure_name, format = "png",dpi=1000) 
    
    return
Esempio n. 11
0
def plot_gspan_res(G, subpref_id, color_val):
    
    fig = plt.figure(subpref_id)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(llcrnrlon=-9, \
                llcrnrlat=3.8, \
                urcrnrlon=-1.5, \
                urcrnrlat = 11, \
                resolution = 'h', \
                projection = 'tmerc', \
                lat_0 = 7.38, \
                lon_0 = -5.30)
   
    # read the shapefile archive
    s = m.readshapefile('/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE', 'subpref')
    
    m.drawcoastlines()
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    msg = "Out of bounds"
    color_col = []
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
        
        
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id2 = shapedict["ID_SP"]
            #color_col
            
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)

        lines = LineCollection(shpsegs,antialiaseds=(1,))
        if subpref_id == subpref_id2:
            lines.set_facecolors('g')
        lines.set_edgecolors('k')
        lines.set_linewidth(0.3)
        ax.add_collection(lines)

    # data to plot on the map    
    lons = [int]*256
    lats = [int]*256
    num = []
    
    # read in coordinates fo subprefs
    file_name2 = "/home/sscepano/DATA SET7S/D4D/SUBPREF_POS_LONLAT.TSV"
    f2 = open(file_name2, 'r')
    
    # read subpref coordinates
    subpref_coord = {}
    for line in f2:
        subpref_id, lon, lat = line.split('\t')
        lon = float(lon)
        lat = float(lat)
        subpref_id = int(subpref_id)
        subpref_coord.keys().append(subpref_id)
        subpref_coord[subpref_id] = (lon, lat)
    
    f2.close()
    
    # if wanna plot number of users whose this is home subpref
    for subpref in range(1,256):
        lons[subpref] = subpref_coord[subpref][0]
        lats[subpref] = subpref_coord[subpref][1]
    

    for u, v, d in G.edges(data=True):
        lo = []
        la = []   
        lo.append(lons[u])
        lo.append(lons[v])
        la.append(lats[u])
        la.append(lats[v])
        x, y = m(lo, la)
        m.plot(x,y, color = color_val)


    return plt
def map_commutes(G):
    
    import numpy as np    
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    
    import matplotlib as mpl
    mpl.rcParams['font.size'] = 10.
    mpl.rcParams['axes.labelsize'] = 8.
    mpl.rcParams['xtick.labelsize'] = 6.
    mpl.rcParams['ytick.labelsize'] = 6.
    
    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm
     
    ###########################################################################################
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(projection='cyl',\
                llcrnrlon=-9, \
                llcrnrlat=3.8, \
                urcrnrlon=-1.5, \
                urcrnrlat = 11, \
                resolution = 'h', \
#                 projection = 'tmerc', \
                lat_0 = 7.38, \
                lon_0 = -5.30)
      
    # read subpref coordinates
    subpref_coord = read_subpref_lonlat()
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
           
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
    #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
    #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
#         lines.set_facecolors(col[subpref_id])
        lines.set_edgecolors('k')
        lines.set_linewidth(0.2)
        ax.add_collection(lines)   
        
    if G.has_node(-1): 
        G.remove_node(-1)
    if G.has_node(0): 
        G.remove_node(0)
    
    max7s = 1
    min7s = 10000000
    for u,v,d in G.edges(data=True):
        if d['weight'] > max7s:
            max7s = d['weight']
        if d['weight'] < min7s:
            min7s = d['weight']
            
    max7s = float(max7s)
    print "max", (max7s)
    print "min", (min7s)
    
    scaled_weight = defaultdict(int)
    for i in range(256):
        scaled_weight[i] = defaultdict(int)
    for u,v,d in G.edges(data=True):
        scaled_weight[u][v] = (d['weight'] - min7s) / (max7s - min7s)
    
    for u, v, d in G.edges(data=True):
#         lo = []
#         la = []  
#         lo.append(subpref_coord[u][0])
#         lo.append(subpref_coord[v][0])
#         la.append(subpref_coord[u][1])
#         la.append(subpref_coord[v][1])
#         x, y = m(lo, la)
#         linewidth7s = scaled_weight[u][v] * 2.5 + 0.25
#         m.plot(x,y, linewidth= linewidth7s)
#         if linewidth7s > 1:
#             print (linewidth7s)
        linewidth7s = scaled_weight[u][v] * 2.5 + 0.25    
        m.drawgreatcircle(subpref_coord[u][0], subpref_coord[u][1], \
                          subpref_coord[v][0], subpref_coord[v][1], linewidth= linewidth7s, color='r')

    m.drawcoastlines()
    m.fillcontinents()
        
    plt.savefig('/home/sscepano/Project7s/D4D/CI/urban_rural/home_work/OUTPUT_files/maps/hw_commuting_cur.png',dpi=700)
    #plt.show()
    
    ###################################################################################################3
    
    return
Esempio n. 13
0
def map_commutes(G):

    mpl.rcParams['font.size'] = 10.
    mpl.rcParams['axes.labelsize'] = 8.
    mpl.rcParams['xtick.labelsize'] = 6.
    mpl.rcParams['ytick.labelsize'] = 6.

    ###########################################################################################
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,
                        right=0.95,
                        top=0.90,
                        bottom=0.05,
                        wspace=0.15,
                        hspace=0.05)
    ax = plt.subplot(111)

    m = Basemap(projection='cyl',\
                llcrnrlon=-9, \
                llcrnrlat=3.8, \
                urcrnrlon=-1.5, \
                urcrnrlat = 11, \
                resolution = 'h', \
#                 projection = 'tmerc', \
                lat_0 = 7.38, \
                lon_0 = -5.30)

    # read subpref coordinates
    subpref_coord = read_in_subpref_lonlat()

    shp = ShapeFile(
        r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(
        r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')

    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []

        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
            #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x, y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring + 1
            shapedict['SHAPENUM'] = npoly + 1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs, antialiaseds=(1, ))
        #         lines.set_facecolors(col[subpref_id])
        lines.set_edgecolors('k')
        lines.set_linewidth(0.2)
        ax.add_collection(lines)

    if G.has_node(-1):
        G.remove_node(-1)
    if G.has_node(0):
        G.remove_node(0)


###########################################################################################################
### this is the main part: scale weights of # commuters, use colormap by work location and then plot
### all or just the routes with more that 10 commutes
###########################################################################################################

    max7s = 1
    min7s = 10000000
    for u, v, d in G.edges(data=True):
        if d['weight'] > max7s:
            max7s = d['weight']
        if d['weight'] < min7s:
            min7s = d['weight']

    max7s = float(max7s)
    print "max", (max7s)
    print "min", (min7s)

    scaled_weight = defaultdict(int)
    for i in range(256):
        scaled_weight[i] = defaultdict(int)
    for u, v, d in G.edges(data=True):
        scaled_weight[u][v] = (d['weight'] - min7s) / (max7s - min7s)

    values = range(256)
    jet = cm = plt.get_cmap('jet')
    cNorm = colors.Normalize(vmin=0, vmax=values[-1])
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)

    for u, v, d in G.edges(data=True):
        #         lo = []
        #         la = []
        #         lo.append(subpref_coord[u][0])
        #         lo.append(subpref_coord[v][0])
        #         la.append(subpref_coord[u][1])
        #         la.append(subpref_coord[v][1])
        #         x, y = m(lo, la)
        #         linewidth7s = scaled_weight[u][v] * 2.5 + 0.25
        #         m.plot(x,y, linewidth= linewidth7s)
        #         if linewidth7s > 1:
        #             print (linewidth7s)
        if d['weight'] >= 10:
            colorVal = scalarMap.to_rgba(values[v])
            linewidth7s = scaled_weight[u][v] * 2.5 + 0.35
            ###########################################################################################################
            ### no scaling vs scaling the width of the line
            ###########################################################################################################
            #            linewidth7s = d['weight'] / 10
            m.drawgreatcircle(subpref_coord[u][0], subpref_coord[u][1], \
                              subpref_coord[v][0], subpref_coord[v][1], linewidth= linewidth7s, color=colorVal)

    m.drawcoastlines()
    #m.fillcontinents()

    plt.savefig(
        '/home/sscepano/Project7s/D4D/CI/urban_rural/home_work/OUTPUT_files/maps/hw_commuting_colored_by_work_gr10commuters.png',
        dpi=700)
    #plt.show()

    ###################################################################################################3

    return
Esempio n. 14
0
def map_num_users():

    mpl.rcParams['font.size'] = 4.4

    ###########################################################################################
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,
                        right=0.95,
                        top=0.90,
                        bottom=0.05,
                        wspace=0.15,
                        hspace=0.05)
    ax = plt.subplot(111)

    m = Basemap(llcrnrlon=-9, \
                    llcrnrlat=3.8, \
                    urcrnrlon=-1.5, \
                    urcrnrlat = 11, \
                    resolution = 'h', \
                    projection = 'tmerc', \
                    lat_0 = 7.38, \
                    lon_0 = -5.30)

    subpref_users = read_in_subpref_num_users()
    # read the shapefile archive
    s = m.readshapefile(
        '/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE',
        'subpref')

    max7s = 1
    min7s = 10000000
    for subpref in subpref_users.keys():
        if subpref_users[subpref] > max7s:
            max7s = subpref_users[subpref]
        if subpref_users[subpref] < min7s:
            min7s = subpref_users[subpref]

    max7s = float(max7s)
    print "max", (max7s)
    print "min", (min7s)

    scaled_weight = defaultdict(int)
    for i in range(256):
        scaled_weight[i] = defaultdict(int)
    for subpref in subpref_users.keys():
        scaled_weight[subpref] = (subpref_users[subpref] - min7s) / (max7s -
                                                                     min7s)

#     values = range(256)
#     jet = cm = plt.get_cmap('jet')
#     cNorm  = colors.Normalize(vmin=0, vmax=values[-1])
#     scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)

# define custom colormap, white -> nicered, #E6072A = RGB(0.9,0.03,0.16)
    cdict = {
        'red': ((0.0, 1.0, 1.0), (1.0, 0.9, 1.0)),
        'green': ((0.0, 1.0, 1.0), (1.0, 0.03, 0.0)),
        'blue': ((0.0, 1.0, 1.0), (1.0, 0.16, 0.0))
    }
    custom_map = LinearSegmentedColormap('custom_map', cdict, N=10000)
    plt.register_cmap(cmap=custom_map)

    subpref_coord = read_in_subpref_lonlat()

    shp = ShapeFile(
        r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(
        r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')

    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []

        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        #print shp_object

        for ring in range(rings):
            print ring
            lons, lats = zip(*verts[ring])
            #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
            #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x, y))

            if ring == 0:
                shapedict = dbf.read_record(npoly)
            print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            #             print name, subpref_id
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring + 1
            shapedict['SHAPENUM'] = npoly + 1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs, antialiaseds=(1, ))
        colorVal = custom_map(subpref_users[subpref_id])
        #         colorVal = scaled_weight[subpef]
        lines.set_facecolors(colorVal)
        lines.set_edgecolors('gray')
        lines.set_linewidth(0.1)
        ax.add_collection(lines)
Esempio n. 15
0
def map_commutes(G):

    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap

    import matplotlib as mpl
    mpl.rcParams['font.size'] = 10.
    mpl.rcParams['axes.labelsize'] = 8.
    mpl.rcParams['xtick.labelsize'] = 6.
    mpl.rcParams['ytick.labelsize'] = 6.

    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm

    ###########################################################################################
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,
                        right=0.95,
                        top=0.90,
                        bottom=0.05,
                        wspace=0.15,
                        hspace=0.05)
    ax = plt.subplot(111)

    m = Basemap(projection='cyl',\
                llcrnrlon=-9, \
                llcrnrlat=3.8, \
                urcrnrlon=-1.5, \
                urcrnrlat = 11, \
                resolution = 'h', \
#                 projection = 'tmerc', \
                lat_0 = 7.38, \
                lon_0 = -5.30)

    # read subpref coordinates
    subpref_coord = read_subpref_lonlat()

    shp = ShapeFile(
        r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(
        r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')

    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []

        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
            #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x, y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring + 1
            shapedict['SHAPENUM'] = npoly + 1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs, antialiaseds=(1, ))
        #         lines.set_facecolors(col[subpref_id])
        lines.set_edgecolors('k')
        lines.set_linewidth(0.2)
        ax.add_collection(lines)

    if G.has_node(-1):
        G.remove_node(-1)
    if G.has_node(0):
        G.remove_node(0)

    max7s = 1
    min7s = 10000000
    for u, v, d in G.edges(data=True):
        if d['weight'] > max7s:
            max7s = d['weight']
        if d['weight'] < min7s:
            min7s = d['weight']

    max7s = float(max7s)
    print "max", (max7s)
    print "min", (min7s)

    scaled_weight = defaultdict(int)
    for i in range(256):
        scaled_weight[i] = defaultdict(int)
    for u, v, d in G.edges(data=True):
        scaled_weight[u][v] = (d['weight'] - min7s) / (max7s - min7s)

    for u, v, d in G.edges(data=True):
        #         lo = []
        #         la = []
        #         lo.append(subpref_coord[u][0])
        #         lo.append(subpref_coord[v][0])
        #         la.append(subpref_coord[u][1])
        #         la.append(subpref_coord[v][1])
        #         x, y = m(lo, la)
        #         linewidth7s = scaled_weight[u][v] * 2.5 + 0.25
        #         m.plot(x,y, linewidth= linewidth7s)
        #         if linewidth7s > 1:
        #             print (linewidth7s)
        linewidth7s = scaled_weight[u][v] * 2.5 + 0.25
        m.drawgreatcircle(subpref_coord[u][0], subpref_coord[u][1], \
                          subpref_coord[v][0], subpref_coord[v][1], linewidth= linewidth7s, color='r')

    m.drawcoastlines()
    m.fillcontinents()

    plt.savefig(
        '/home/sscepano/Project7s/D4D/CI/urban_rural/home_work/OUTPUT_files/maps/hw_commuting_cur.png',
        dpi=700)
    #plt.show()

    ###################################################################################################3

    return
Esempio n. 16
0
def map_fq(fq_scaled):
    
    print fq_scaled
    
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    
    import matplotlib as mpl
    mpl.rcParams['font.size'] = 10.
    mpl.rcParams['axes.labelsize'] = 8.
    mpl.rcParams['xtick.labelsize'] = 6.
    mpl.rcParams['ytick.labelsize'] = 6.
    
    fig = plt.figure(1)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(llcrnrlon=-9, \
                    llcrnrlat=3.8, \
                    urcrnrlon=-1.5, \
                    urcrnrlat = 11, \
                    resolution = 'h', \
                    projection = 'tmerc', \
                    lat_0 = 7.38, \
                    lon_0 = -5.30)
    
    m.drawcoastlines()
    
    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    msg = "Out of bounds"
    color_col = []
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
        
        
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            #num = ["%.2f" % data[subpref_id]]
    #        for name, xc, yc in zip(num, x, y):
    #            plt.text(xc, yc, name)
            #color_col
            
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
        #print float("%.7f" % fq_scaled[subpref_id])
        lines.set_facecolors(str(1.0 - fq_scaled[str(subpref_id)]))
        lines.set_edgecolors('k')
        lines.set_linewidth(0.3)
        ax.add_collection(lines)
    
        
    plt.savefig('/home/sscepano/D4D res/allstuff/CLUSTERING/subpref no home res/scaled_subpref_Calling_fq2.png',dpi=1000)
    #plt.show()
    
    return
Esempio n. 17
0
def main(pickleName, renderCities, sieverts, uncovered):
    try:
      [npts, x, y, z, zraw, xil, yil, grid, missing] = cPickle.load(open(pickleName,'rb'))
      lakes = cPickle.load(open(lakesPickle,'rb'))
      if uncovered:
        coastline = cPickle.load(open(coastlinePickle,'rb'))
      print "Pickle file loaded (%d points)" % npts
    except:
      print "An error occurs loading the pickle datas !!!"
      sys.exit(1)

    if renderCities:
      administrativeShapefile = "%s/JPN_adm2" % dataFolder
      distanceAngle = 5
    else:
      administrativeShapefile = "%s/JPN_adm1" % dataFolder
      distanceAngle = 45

    if sieverts:
      print "Rendering using uSv/h as unit"
      renderCPM = False
    else:
      print "Rendering using CPM as unit"
      renderCPM = True

    # Load locations names and position
    print "Load locations"
    shp = ShapeFile(locationShapefile)
    dbf = dbflib.open(locationShapefile)

    lx = []
    ly = []
    lname = []
    for name in range(shp.info()[0]):
        shp_object = shp.read_object(name)
        shp_dict = dbf.read_record(name)
        cx , cy = shp_object.vertices()[0]
        names = re.split('[()]', shp_dict["NAME"])
        if len(names)>1:
          cityname = names[1]
        else:
          cityname = ""
        lx.append(cx)
        ly.append(cy)
        lname.append(cityname)

    if uncovered:
      # Compute all uncovered areas
      difference = coastline.difference(missing)
      missing = difference

    # Create the thread pool
    pool = Pool()

    # Load Japan administrative area
    shp = ShapeFile(administrativeShapefile)
    dbf = dbflib.open(administrativeShapefile)

    # Process every shape from the ShapeFile
    print "Processing shapes ..."
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
        vx = []
        vy = []
 
        shp_object = shp.read_object(npoly)
        shp_dict = dbf.read_record(npoly)
        verts = shp_object.vertices()

        # Start building the city map
        if renderCities:
          name = "%s" % (shp_dict["NAME_2"])
          folder = "%s" % (shp_dict["NAME_1"])
        else:
          name = "%s" % (shp_dict["NAME_1"])
          folder = "All"

        #if (name not in ["Koriyama", "Fukushima", "Tokyo"]):
        #if (folder not in ["Fukushima"]):
        #if (shp_dict["NAME_1"] not in ["Fukushima", "Miyagi", "Tokyo", "Chiba", "Ibaraki", "Shizuoka", "Iwate", "Kanagawa"]):
        #   print "Skipping %s" % name
        #   continue

        # Extract city polygon vertices
        # Biggest ring only
        biggestRing = 0
        biggestRingSize = 0
        for ring in verts:
          if len(ring) > biggestRingSize:
             biggestRingSize = len(ring)
             biggestRing = ring

        for point in biggestRing:
            vx.append(point[0])
            vy.append(point[1])

        poly_verts = zip(vx,vy)

        # Compute intersections with the city
        from matplotlib.nxutils import points_inside_poly
        points = np.vstack((x,y)).T
        intersection = points_inside_poly(points, poly_verts)

        # Compute a small statistics for the city
        measures = []
        for i in range(len(intersection)-1):
          if (intersection[i]):
            measures.append(zraw[i])
        measures = np.array(measures)

        npts, minCPM, maxCPM, medianCPM = (0,0,0,0)
        npts = np.size(measures)
        if npts:
          minCPM = measures.min()
          maxCPM = measures.max()
          medianCPM = np.median(measures)

        # Only keep cities information inside the region
        cities_verts = zip(lx,ly)
        cities_inside = points_inside_poly(cities_verts, poly_verts)
        cities = [(lx[i], ly[i], lname[i]) for i in range(len(cities_inside)-1) if (cities_inside[i])]

        if npts>0:
          title = 'Safecast %s - Griddata (%s points) - %s [%s]\n(min, median, max) = (%d, %d, %d) CPM' % (safecastDatasetName, npts, name, folder, minCPM, medianCPM, maxCPM)
          #DrawMap(title, 2, vx, vy, min(vx), max(vx), min(vy), max(vy), npts, x, y, z, xil, yil, grid, name, folder, cities, missing, uncovered, lakes)
          pool.apply_async(DrawMap, (title, 2, vx, vy, min(vx), max(vx), min(vy), max(vy), npts, x, y, z, xil, yil, grid, name, folder, cities, missing, uncovered, lakes))
        else:
           print "Skipping %s" % name

    # Wait the pool to be completed
    pool.close()
    pool.join()
def map_wake_hr(thersholdX):

    mpl.rcParams['font.size'] = 4.4
    
    ###########################################################################################
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(llcrnrlon=-9, \
                    llcrnrlat=3.8, \
                    urcrnrlon=-1.5, \
                    urcrnrlat = 11, \
                    resolution = 'h', \
                    projection = 'tmerc', \
                    lat_0 = 7.38, \
                    lon_0 = -5.30)
        
    subpref_wake_hr = read_in_subpref_wake_hr(thersholdX)
    # read the shapefile archive
    s = m.readshapefile('/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE', 'subpref')
    
    max7s = 1
    min7s = 10000000
    for subpref in subpref_wake_hr.keys():
        if subpref_wake_hr[subpref] > max7s:
            max7s = subpref_wake_hr[subpref]
        if subpref_wake_hr[subpref] < min7s:
            min7s = subpref_wake_hr[subpref]
            
    max7s = float(max7s)
    print "max", (max7s)
    print "min", (min7s)
    
#     scaled_weight = defaultdict(int)
#     for i in range(256):
#         scaled_weight[i] = defaultdict(int)
#     for subpref in subpref_wake_hr.keys():
#         scaled_weight[subpref] = (subpref_wake_hr[subpref] - min7s) / (max7s - min7s)
    
#     values = range(256)    
#     jet = cm = plt.get_cmap('jet') 
#     cNorm  = colors.Normalize(vmin=0, vmax=values[-1])
#     scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)

    # define custom colormap, white -> nicered, #E6072A = RGB(0.9,0.03,0.16)
    cdict = {'red':  ( (0.0,  1.0,  1.0),
                       (1.0,  0.9,  1.0) ),
             'green':( (0.0,  1.0,  1.0),
                       (1.0,  0.03, 0.0) ),
             'blue': ( (0.0,  1.0,  1.0),
                       (1.0,  0.16, 0.0) ) }
    custom_map = LinearSegmentedColormap('custom_map', cdict, N=33)
    plt.register_cmap(cmap=custom_map)

        
    subpref_coord = read_in_subpref_lonlat()
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
           
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
    #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
    #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            print name, subpref_id
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
        colorVal = custom_map(subpref_wake_hr[subpref_id])
#         colorVal = scaled_weight[subpef]
        lines.set_facecolors(colorVal)
        lines.set_edgecolors('gray')
        lines.set_linewidth(0.1)
        ax.add_collection(lines)  
    
    # data to plot on the map    
    lons = []
    lats = []
    num = []

        
    for subpref in subpref_wake_hr.iterkeys():
        print(subpref)
        if subpref <> 0 and subpref <> -1:
            lons.append(subpref_coord[subpref][0])
            lats.append(subpref_coord[subpref][1])
            num.append(subpref_wake_hr[subpref])
        
    x, y = m(lons, lats)
    m.scatter(x, y, color='white')
    
    for name, xc, yc in zip(num, x, y):
        # draw the pref name in a yellow (shaded) box
            plt.text(xc, yc, name)
            

    
    plt.savefig("/home/sscepano/Project7s/D4D/CI/call_wakeup_sleep_hour/subpref_wake_" + str(thersholdX) + "pct.png",dpi=350)
Esempio n. 19
0
def map_communities_and_commutes(G):
    import networkx as nx
    
    G_mod = nx.read_gml("/home/sscepano/D4D res/allstuff/User movements graphs/commuting patterns/1/total_commuting_G_10com_775_269_v2.gml")
    col = [str]*256
    
    for i in range(256):
        col[i] = 'w'
    
    for node in G_mod.nodes_iter(data=True):
        #print node[1]['label']
        col_gephi = node[1]['graphics']['fill']
        while (len(col_gephi) < 7):
            col_gephi += '0'
        col[int(float(node[1]['label']))] = col_gephi
        
        
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    
    import matplotlib as mpl
    mpl.rcParams['font.size'] = 10.
    mpl.rcParams['axes.labelsize'] = 8.
    mpl.rcParams['xtick.labelsize'] = 6.
    mpl.rcParams['ytick.labelsize'] = 6.
    
    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm
    
    
    ###########################################################################################
    
    fig = plt.figure(3)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(llcrnrlon=-9, \
                    llcrnrlat=3.8, \
                    urcrnrlon=-1.5, \
                    urcrnrlat = 11, \
                    resolution = 'h', \
                    projection = 'tmerc', \
                    lat_0 = 7.38, \
                    lon_0 = -5.30)
    
    m.drawcoastlines()
    
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
        
        
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
    #        if max(lons) > 721. or min(lons) < -721. or max(lats) > 91. or min(lats) < -91:
    #            raise ValueError,msg
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            #color_col
            
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
        lines.set_facecolors(col[subpref_id])
        lines.set_edgecolors('k')
        lines.set_linewidth(0.3)
        ax.add_collection(lines)
        
    
    from collections import defaultdict    
        
    if G.has_node(-1): 
        G.remove_node(-1)
    
    max7s = 1
    min7s = 1
    for u,v,d in G.edges(data=True):
        if d['weight'] > max7s:
            max7s = d['weight']
        if d['weight'] < min7s:
            min7s = d['weight']
            
    max7s = float(max7s)
    print max7s
    print min7s
    
    scaled_weight = defaultdict(int)
    for i in range(256):
        scaled_weight[i] = defaultdict(int)
    
    for u,v,d in G.edges(data=True):
        scaled_weight[u][v] = (d['weight'] - min7s) / (max7s - min7s)
    
    for u, v, d in G.edges(data=True):
        lo = []
        la = []   
        lo.append(lons[u])
        lo.append(lons[v])
        la.append(lats[u])
        la.append(lats[v])
        x, y = m(lo, la)
        linewidth7s = scaled_weight[u][v] * 6.5 + 0.15
        m.plot(x,y, linewidth= linewidth7s)
        if linewidth7s > 1:
            print linewidth7s
        
    plt.savefig('/home/sscepano/D4D res/allstuff/User movements graphs/commuting patterns/1/maps/mod_classes_10com_775_269_v2.png',dpi=1000)
    #plt.show()
    
    ###################################################################################################3
    
    return
Esempio n. 20
0
def map_diversity():
    
    #subpref_avg_fq = rd.read_in_subpref_avg_fq()
    rg = get_scaled_rg()
     
    fig = plt.figure(1)
    #Custom adjust of the subplots
    plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05)
    ax = plt.subplot(111)
    
    m = Basemap(llcrnrlon=-9, \
                    llcrnrlat=3.8, \
                    urcrnrlon=-1.5, \
                    urcrnrlat = 11, \
                    resolution = 'h', \
                    projection = 'tmerc', \
                    lat_0 = 7.38, \
                    lon_0 = -5.30)
    
    m.drawcoastlines()
    
    from shapelib import ShapeFile
    import dbflib
    from matplotlib.collections import LineCollection
    from matplotlib import cm
    
    shp = ShapeFile(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    dbf = dbflib.open(r'/home/sscepano/DATA SET7S/D4D/SubPrefecture/GEOM_SOUS_PREFECTURE')
    
    msg = "Out of bounds"
    color_col = []
    
    for npoly in range(shp.info()[0]):
        shpsegs = []
        shpinfo = []
        
        
        shp_object = shp.read_object(npoly)
        verts = shp_object.vertices()
        rings = len(verts)
        for ring in range(rings):
            lons, lats = zip(*verts[ring])
            x, y = m(lons, lats)
            shpsegs.append(zip(x,y))
            if ring == 0:
                shapedict = dbf.read_record(npoly)
            #print shapedict
            name = shapedict["ID_DEPART"]
            subpref_id = shapedict["ID_SP"]
            num = ["%.2f" % rg[subpref_id]]
            # add information about ring number to dictionary.
            shapedict['RINGNUM'] = ring+1
            shapedict['SHAPENUM'] = npoly+1
            shpinfo.append(shapedict)
        #print subpref_id
        #print name
        lines = LineCollection(shpsegs,antialiaseds=(1,))
        lines.set_facecolors(str(rg[subpref_id]))
        lines.set_edgecolors('k')
        lines.set_linewidth(0.3)
        ax.add_collection(lines)
    
    plt.savefig('/home/sscepano/D4D res/allstuff/diversity of travel/diversity_map.png',dpi=500)
    
    return