Esempio n. 1
0
    def findEyes(self):
        eye_cascade = cv2.CascadeClassifier(
            'C:\\OpenCV\\data\\haarcascades\\haarcascade_eye.xml')
        eyes = eye_cascade.detectMultiScale(self.img)
        im_toshow = copy.deepcopy(self.img)
        eyeArr = []
        for (ex, ey, ew, eh) in eyes:
            cv2.rectangle(im_toshow, (ex, ey), (ex + ew, ey + eh), (0, 255, 0),
                          2)
            eyeArr.append((ex, ey, ew, eh))

        # filter by area
        eyeAreas = map(self.areaRect, eyeArr)
        ix = np.argmax(eyeAreas)
        eye1 = eyeArr[ix]

        eyeAreas.pop(ix)
        eyeArr.pop(ix)

        ix = np.argmax(eyeAreas)
        eye2 = eyeArr[ix]

        ex1, ey1, ew1, eh1 = eye1
        eye1loc = Point(ex1 + ew1 / 2, ey1 + eh1 / 2)

        ex2, ey2, ew2, eh2 = eye2
        eye2loc = Point(ex2 + ew2 / 2, ey2 + eh2 / 2)

        # cv2.circle( self.img, ( int(eye1loc.x), int(eye1loc.y) ), 1, (255,0,0) )
        # cv2.circle( self.img, ( int(eye2loc.x), int(eye2loc.y) ), 1, (255,0,0) )
        #showImg( im_toshow )
        return eye1loc, eye2loc
Esempio n. 2
0
    def filterFoundEyes(eyes, img):
        if len(eyes) > 1:  ## if multiple eyes are returned, get biggest one
            eyeArr = []
            for (ex, ey, ew, eh) in eyes:
                #cv2.rectangle(im_toshow,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
                eyeArr.append((ex, ey, ew, eh))

            # filter by area
            eyeAreas = map(PreProcessing.areaRect, eyeArr)
            ix = np.argmax(eyeAreas)
            eye1 = eyeArr[ix]

            eyeAreas.pop(ix)
            eyeArr.pop(ix)

            ix = np.argmax(eyeAreas)
            eye2 = eyeArr[ix]

            ex1, ey1, ew1, eh1 = eye1
            ex2, ey2, ew2, eh2 = eye2

        else:  ## just one eye, estimate the other
            ex, ey, ew, eh = eyes[0]
            w0 = np.shape(img)[1]
            if ex < w0 / 2:
                ex1, ey1, ew1, eh1 = [ex, ey, ew, eh]
                ex2, ey2, ew2, eh2 = [ex + w0 / 5, ey, ew, eh]
            else:
                ex1, ey1, ew1, eh1 = [ex - w0 / 5, ey, ew, eh]
                ex2, ey2, ew2, eh2 = [ex, ey, ew, eh]

        eye1loc = Point(ex1 + ew1 / 2, ey1 + eh1 / 2)
        eye2loc = Point(ex2 + ew2 / 2, ey2 + eh2 / 2)

        return eye1loc, eye2loc
 def calcNormScale(self, shape):
     if self.n == 68:
         d = Point.dist(shape.shapePoints[self.leftEyeIx],
                        shape.shapePoints[self.rightEyeIx])
     else:
         rc = ActiveShape.centroid(ActiveShape(shape.shapePoints[31:35]))
         lc = ActiveShape.centroid(ActiveShape(shape.shapePoints[27:31]))
         d = Point.dist(rc, lc)
     s = float(1) / float(d)
     return s
Esempio n. 4
0
 def calcR(self):
     """
     Calculates distance matrix between all points for a given shape
     sets global variable 
     """
     sp = self.shapePoints
     ## For every point in shapePoints, calculate distance to other points
     R = [[Point.dist(sp[k], sp[l]) for k in range(self.n)]
          for l in range(self.n)]
     return R
Esempio n. 5
0
    def crop(img, fh,
             fw):  ## In terms of x, y not h, w !!!   # or the other way>>>

        # Using eyes
        eye1, eye2 = PreProcessing.eyeDetection(img)
        d = Point.dist(eye1, eye2)

        newH = int(
            fh *
            d)  #set more firmly for other types of images for consistent size
        newW = int(fw * d)

        y0, x0 = PreProcessing.newEyeLoc(eye1, eye2, newH, newW, d)

        return img[y0:y0 + newH, x0:x0 + newW]
    def calcShift(self, point, method):
        ## get point p (ix 48)

        # Get initial gradient at point ( unitV already )
        # vector, magnitude, origin
        #print "original: %f, %f" % (point.x, point.y)
        f, m, pt = self.getGradient(point, self.img)
        #print "returned: %f, %f" % (point.x, point.y)

        h, w = np.shape(self.img)

        cX = pt.x
        cY = pt.y
        # Goal is to find maximal
        maxM = 1
        cnt = 0
        while (True):
            ## move point according to maximal magnitude response in area
            ## normalized according to current magnitude/maximal magnitude
            dx = f[0] * float(m) / float(maxM)
            dy = f[1] * float(m) / float(maxM)

            ## too far from original point
            if cnt > self.maxPx:
                # print point.x + dx, point.y + dy
                return dx, dy
            cnt += 1

            ## move point one unit in direction of gradient
            cX = cX + f[0]
            cY = cY + f[1]
            if (cX > w - 2 or cY > h - 2 or cX < 1 or cY < 1):
                # print point.x + dx, point.y + dy
                return dx, dy

            _, cM, _ = self.getGradient(Point(cX, cY), self.img)
            if cM > maxM:
                maxM = cM
Esempio n. 7
0
    def alignEyes(self, eye1, eye2):

        x = ActiveShape.createShape(self.x)
        f, [[ax1, ax2], [ax3, ax4]] = plt.subplots(2, 2)
        # distance between eyes:
        d1 = Point.dist(eye1, eye2)
        rc = ActiveShape.centroid(ActiveShape(x.shapePoints[31:35]))
        lc = ActiveShape.centroid(ActiveShape(x.shapePoints[27:31]))

        if self.asm.n == 68:
            d2 = Point.dist(x.shapePoints[self.asm.rightEyeIx],
                            x.shapePoints[self.asm.leftEyeIx])
        else:
            d2 = Point.dist(rc, lc)
        s = float(d1 / d2)

        shape = copy.deepcopy(x)

        DrawFace(shape, ax1).drawBold()

        shape = shape.scale(s)
        DrawFace(shape, ax2).drawBold()

        rot, thetaRot = self.asm.calcNormRotateImg(shape)
        shape = shape.rotate(rot)
        DrawFace(shape, ax3).drawBold()

        ax1.invert_yaxis()
        ax2.invert_yaxis()
        ax3.invert_yaxis()

        rc = ActiveShape.centroid(ActiveShape(shape.shapePoints[31:35]))
        lc = ActiveShape.centroid(ActiveShape(shape.shapePoints[27:31]))

        if self.asm.n == 68:
            t = [[(eye2.x - shape.shapePoints[self.asm.leftEyeIx].x)],
                 [(eye2.y - shape.shapePoints[self.asm.leftEyeIx].y)]]
        else:
            t = [[(eye2.x - rc.x)], [(eye2.y - rc.y)]]
        shape = shape.translate(t)

        ### Check that initial shape is within image frame
        tempS = 0
        nr, nc = np.shape(self.img)
        for pt in shape.shapePoints:
            if pt.y > nr:
                #                print "y big"
                tempS += (pt.y - nr + 10) / nr
            if pt.x > nc:
                #                print "x big"
                tempS += (pt.x - nc + 10) / nc

        if tempS != 0:
            shape = shape.scale(1 - tempS)

            if self.asm.n == 68:
                t = [[(eye2.x - shape.shapePoints[self.asm.leftEyeIx].x)],
                     [(eye2.y - shape.shapePoints[self.asm.leftEyeIx].y)]]
            else:
                rc = ActiveShape.centroid(ActiveShape(
                    shape.shapePoints[31:35]))
                lc = ActiveShape.centroid(ActiveShape(
                    shape.shapePoints[27:31]))

                t = [[(eye2.x - rc.x)], [(eye2.y - rc.y)]]
            shape = shape.translate(t)

            #print "row: %d\tcol:%d" % ( pt.y, pt.x )
#            print np.shape(self.img )

        DrawFace(shape, ax4).drawBold()
        ax4.scatter(eye1.x, eye1.y, c='r')
        ax4.scatter(eye2.x, eye2.y, c='g')
        ax4.imshow(self.img, cmap='gray')
        f.show()
        plt.savefig(os.path.join(self.out, "deform-init.png"))
        plt.gca().invert_yaxis()
        plt.close()
        srot = np.dot(s, rot)
        transDict = {
            't': t,
            's': s,
            'rot': rot,
            'srot': srot,
            'theta': thetaRot
        }

        return shape, transDict
Esempio n. 8
0
 def shapeDist(self, shape):
     d = map(lambda x, y: Point.dist(x, y), self.shapePoints,
             shape.shapePoints)
     return d
Esempio n. 9
0
 def centroid(self):
     return Point(np.mean(self.xs), np.mean(self.ys))