def main(): lambdas = [10**i for i in range(-6,2)] + [0] full_data = load_full_data() images_all = full_data['images'] labels_all = full_data['labels'] thetas = {} trained = [] for i in range(10): for j in range(i+1,10): now = datetime.datetime.now().strftime('%c') #print(f"[{datetime.datetime.now().strftime('%c')}] digits {i} vs. {j}") print("[%s] digits %d vs %d"%(now, i, j)) filter = ((labels_all == i) | (labels_all == j))[:, 0] images = images_all[filter] labels = ((labels_all[filter]) == i) n,d = images.shape X = np.concatenate((images, np.ones((images.shape[0],1))),axis=1) y = labels phi = np.random.uniform(size=(d+1, 1)) thetas = [{'first_digit':i, 'second_digit':j, 'theta': m.learn_stochastic(X, y, l), 'lambda': l} for l in lambdas] trained.append(thetas) save_data("trained.npz", trained=trained) save_data("trained.npz", trained=trained)
def main(): lambdas = [10**i for i in range(-6, 2)] + [0] data = shared.load_full_data() X, y = data['images'], data['labels'] thetas = [] for l in lambdas: print("Lambda = %.0e" % l) thetas.append({'theta': moo.soft_run(X, y, l), 'lambda': l}) shared.save_data("trained_multinomial.npz", trained=thetas)
def run(): data = load_full_data() small_data = get_subset_of_data(data) save_data("small_data", **small_data) #images=small_data['images'], labels=small_data['labels'])