Esempio n. 1
0
def isRouteValidForTraCI(mtraci, route):
    """
    Returns true if the given route is linked by SUMO lanes, false else
    """
    for i in range(0, len(route) - 1):
        inEdge = route[i]
        outEdge = route[i + 1]
        inLaneIndex = 0
        inLane = getFirstLaneFromEdge(inEdge)
        found = False
        
        while not found:
            try:
                mtraci.acquire()
                lanesOut = traci.lane.getLinks(inLane)
                mtraci.release()
            except:
                mtraci.release()
                return False
            
            laneOutIndex = 0
            
            while laneOutIndex < len(lanesOut) and not found:
                outLane = lanesOut[laneOutIndex][0]
                if getEdgeFromLane(outLane) == outEdge:
                    found = True
                else:
                    laneOutIndex += 1
            
            if not found:
                inLaneIndex += 1
                inLane = inLane[:len(inLane) - 1] + str(inLaneIndex)
                
    return True
Esempio n. 2
0
def updateTllForPriorityVehicles(mtraci, priorityVehicles, mPriorityVehicles,
                                 tllDict, yellowTllDict, managedTllDict):
    """
    Determines for each priority vehicle which are the next traffic lights and the distance to these ones.
    Regarding to the vehicle current speed and the time elapsed during a SUMO simulation step,
    the traffic light hidden lane the vehicle will cross is set to green or the junction to a temporary orange state
    if the vehicle is close enough and if the concurrent access between priority vehicles allows it.
    Note: the following algorithm could be highly improved by exploring every edges the vehicle will use
        at the beginning, but then only explore the edges which are now in the vehicle scope because of
        the last step progression. Two list, one for the orange look up and one for the green, would be used
        for this purpose.
    Note 2: The main complexity of this algorithm resides in the lack of TraCI functionalities in order to get
        retrieve the state of a hidden lane linking two lanes. This could also be highly improved by using a
        dictionary built when starting the software.
    """
    mPriorityVehicles.acquire()
    managedTlls = []
    length = len(priorityVehicles)

    # Checking if the next traffic light has to be changed for each priority vehicleId in the simulation
    for prioVehIndex in range(0, length):
        vehicleId = priorityVehicles[prioVehIndex]

        # Getting route and position information for the current priority vehicleId
        mtraci.acquire()
        route = traci.vehicle.getRoute(vehicleId)
        currentLane = traci.vehicle.getLaneID(vehicleId)
        mtraci.release()

        if currentLane != '' and not isJunction(currentLane):
            # Getting speed information for space and time predictions
            mtraci.acquire()
            lanePosition = traci.vehicle.getLanePosition(vehicleId)
            laneLength = traci.lane.getLength(currentLane)
            mtraci.release()

            currentEdge = getEdgeFromLane(currentLane)
            currentEdgeIndex = route.index(currentEdge)
            remainingLength = laneLength - lanePosition
            edge = currentEdge
            lane = currentLane
            edgeIndex = currentEdgeIndex

            # Browsing the next edges the vehicleId will go to
            while remainingLength <= constants.YELLOW_LENGTH_ANTICIPATION and edgeIndex < len(
                    route) - 1:
                # If the current edge (the vehicleId is not) ends with a traffic light
                if edge in tllDict:
                    # If the car is close enough for the traffic light to become green
                    if remainingLength <= constants.GREEN_LENGTH_ANTICIPATION:
                        setState = constants.SET_GREEN
                    # If the car is close enough for the traffic light to prepare (temporary state) becoming green
                    elif not tllDict[edge] in yellowTllDict:
                        setState = constants.SET_YELLOW
                    else:
                        managedTlls.append(tllDict[edge])
                        setState = constants.IGNORE

                    # Calculating the next lane the vehicleId will go to
                    outEdge = route[edgeIndex + 1]

                    outLane = getOutLane(mtraci, lane, outEdge)

                    # Calling for a traffic light change
                    if outLane != -1 and setState != constants.IGNORE:
                        tllId = tllDict[edge]
                        managedTlls.append(tllId)
                        if (tllId in managedTllDict
                                and managedTllDict[tllId][1] > remainingLength
                            ) or not tllId in managedTllDict:
                            managedTllDict[tllId] = (vehicleId,
                                                     remainingLength)
                            changeState(mtraci, tllId, lane, outLane, setState,
                                        yellowTllDict)

                edgeIndex += 1
                if edgeIndex < len(route):
                    edge = route[edgeIndex]
                    lane = getFirstLaneFromEdge(edge)

                    mtraci.acquire()
                    laneLength = traci.lane.getLength(lane)
                    mtraci.release()

                    remainingLength += laneLength

            # Removing the tlls which have been crossed from the managedTllDict
            for key in managedTllDict.keys():
                if managedTllDict[key][
                        0] == vehicleId and not key in managedTlls:
                    del managedTllDict[key]

            managedTlls[:] = []

    mPriorityVehicles.release()
Esempio n. 3
0
def updateTllForPriorityVehicles(mtraci, priorityVehicles, mPriorityVehicles, tllDict, yellowTllDict, managedTllDict):
    """
    Determines for each priority vehicle which are the next traffic lights and the distance to these ones.
    Regarding to the vehicle current speed and the time elapsed during a SUMO simulation step,
    the traffic light hidden lane the vehicle will cross is set to green or the junction to a temporary orange state
    if the vehicle is close enough and if the concurrent access between priority vehicles allows it.
    Note: the following algorithm could be highly improved by exploring every edges the vehicle will use
        at the beginning, but then only explore the edges which are now in the vehicle scope because of
        the last step progression. Two list, one for the orange look up and one for the green, would be used
        for this purpose.
    Note 2: The main complexity of this algorithm resides in the lack of TraCI functionalities in order to get
        retrieve the state of a hidden lane linking two lanes. This could also be highly improved by using a
        dictionary built when starting the software.
    """
    mPriorityVehicles.acquire()
    managedTlls = [];
    length = len(priorityVehicles)
    
    # Checking if the next traffic light has to be changed for each priority vehicleId in the simulation
    for prioVehIndex in range(0, length):
        vehicleId = priorityVehicles[prioVehIndex]
        
        # Getting route and position information for the current priority vehicleId
        mtraci.acquire()
        route = traci.vehicle.getRoute(vehicleId)
        currentLane = traci.vehicle.getLaneID(vehicleId)
        mtraci.release()
        
        if currentLane != '' and not isJunction(currentLane):
            # Getting speed information for space and time predictions
            mtraci.acquire()
            lanePosition = traci.vehicle.getLanePosition(vehicleId)
            laneLength = traci.lane.getLength(currentLane)
            mtraci.release()
            
            currentEdge = getEdgeFromLane(currentLane)
            currentEdgeIndex = route.index(currentEdge)
            remainingLength = laneLength - lanePosition
            edge = currentEdge
            lane = currentLane
            edgeIndex = currentEdgeIndex

            # Browsing the next edges the vehicleId will go to            
            while remainingLength <= constants.YELLOW_LENGTH_ANTICIPATION and edgeIndex < len(route) - 1:
                # If the current edge (the vehicleId is not) ends with a traffic light
                if edge in tllDict:
                    # If the car is close enough for the traffic light to become green
                    if remainingLength <= constants.GREEN_LENGTH_ANTICIPATION:
                        setState = constants.SET_GREEN
                    # If the car is close enough for the traffic light to prepare (temporary state) becoming green
                    elif not tllDict[edge] in yellowTllDict:
                        setState = constants.SET_YELLOW
                    else:
                        managedTlls.append(tllDict[edge])
                        setState = constants.IGNORE
                    
                    # Calculating the next lane the vehicleId will go to
                    outEdge = route[edgeIndex + 1]
                    
                    outLane = getOutLane(mtraci, lane, outEdge)
                    
                    # Calling for a traffic light change
                    if outLane != -1 and setState != constants.IGNORE:
                        tllId = tllDict[edge]
                        managedTlls.append(tllId)
                        if (tllId in managedTllDict and managedTllDict[tllId][1] > remainingLength) or not tllId in managedTllDict:
                                managedTllDict[tllId] = (vehicleId, remainingLength)
                                changeState(mtraci, tllId, lane, outLane, setState, yellowTllDict)

                edgeIndex += 1
                if edgeIndex < len(route):
                    edge = route[edgeIndex]
                    lane = getFirstLaneFromEdge(edge)
                    
                    mtraci.acquire()
                    laneLength = traci.lane.getLength(lane)
                    mtraci.release()
                    
                    remainingLength += laneLength
            
            # Removing the tlls which have been crossed from the managedTllDict    
            for key in managedTllDict.keys():
                if managedTllDict[key][0] == vehicleId and not key in managedTlls:
                    del managedTllDict[key]
                    
            managedTlls[:] = []
    
    mPriorityVehicles.release()