Esempio n. 1
0
def test_to_event_model_new_api_e_stop(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = simple_to_event_stream_new_api(
        {t: {"data_keys": {"ct": {"units": "arb", "precision": 2}}}}
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    def f(*x):
        if x[0] == "stop":
            return
        source.emit(x)

    RE.subscribe(f)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    rs = d[0]["uid"]
    assert tt
    assert set(p) == {"start", "event", "descriptor"}
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    ll = len(d)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))
    assert d[ll]["run_start"] == rs
    assert set(p) == {"start", "stop", "event", "descriptor"}
Esempio n. 2
0
def test_slow_to_event_model():
    """This doesn't use threads so it should be slower due to sleep"""

    source = Stream(asynchronous=True)
    t = FromEventStream("event", ("data", "det_image"), source, principle=True)
    assert t.principle
    a = t.map(slow_inc)
    L = a.sink_to_list()
    futures_L = a.sink_to_list()
    n = a.SimpleToEventStream(("ct", ))
    n.sink(print)
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()
    t0 = time.time()
    for gg in y(10):
        yield source.emit(gg)
    while len(L) < len(futures_L):
        yield gen.sleep(.01)
    t1 = time.time()
    # check that this was faster than running in series
    td = t1 - t0
    ted = .5 * 10
    assert td > ted

    assert tt
    assert p == ["start", "descriptor"] + ["event"] * 10 + ["stop"]
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
Esempio n. 3
0
def test_to_event_model_new_api_multi(RE, hw):
    source = Stream()
    stop = FromEventStream("stop", (), source)
    t = FromEventStream(
        "event", ("data", "motor"), source, principle=True, stream_name="hi"
    )
    assert t.principle

    tt = t.zip(stop)
    n = simple_to_event_stream_new_api(
        {
            t: {"data_keys": {"ct": {"units": "arb", "precision": 2}}},
            tt: {
                "name": "final",
                "data_keys": {"ct": {"units": "arb", "precision": 2}},
            },
        },
        hello="world",
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[0]["hello"] == "world"
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    assert d[-3]["name"] == "final"
    assert d[-1]["run_start"]
Esempio n. 4
0
def test_last_cache(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = ToEventStream(
        t, ("ct",), data_key_md={"ct": {"units": "arb"}}
    ).LastCache()
    tt = t.sink_to_list()
    names = n.pluck(0).sink_to_list()
    docs = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert len(docs) == 10 + 3 + 2
    assert names[-3] == "descriptor"
    assert names[-2] == "event"
    assert tt
    assert set(names) == {"start", "stop", "event", "descriptor"}
    assert docs[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert docs[1]["data_keys"]["ct"]["units"] == "arb"
    assert docs[-1]["run_start"]
Esempio n. 5
0
def test_to_event_model_new_api_multi_parent(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    t2 = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = simple_to_event_stream_new_api(
        {
            t.zip(t2).pluck(0): {
                "data_keys": {"ct": {"units": "arb", "precision": 2}}
            }
        }
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    assert d[-1]["run_start"]
Esempio n. 6
0
def test_same_hdr_many_times(hw, RE):
    source = Stream()
    fes1 = FromEventStream("start", ("number",), source, principle=True)
    fes2 = FromEventStream("event", ("data", "motor"), source, principle=True)

    out1 = fes1.map(op.add, 1)
    out2 = fes2.combine_latest(out1, emit_on=0).starmap(op.mul)

    a = ToEventStream(out1, ("out1",))
    b = ToEventStream(out2, ("out2",))

    la = a.sink_to_list()
    lb = b.sink_to_list()

    L = []
    RE.subscribe(lambda *x: L.append(x))
    RE(count([hw.motor], md={"number": 5}))

    for i in range(1, 3):
        for ll in L:
            source.emit(ll)
        for lst in [la, lb]:
            o1 = [z[0] for z in lst]
            o2 = ["start", "descriptor", "event", "stop"] * i
            assert o1 == o2
Esempio n. 7
0
def test_no_parent_nodes():
    # build the graph
    g1 = FromEventStream(
        "event", ("data", "det_image"), stream_name="g1", asynchronous=True
    )
    g11 = FromEventStream(
        "event", ("data", "det_image"), stream_name="g11", asynchronous=True
    )
    g2 = g1.zip(g11).starmap(op.mul, stream_name="mul")
    g2.SimpleToEventStream(("img2",))
Esempio n. 8
0
def full_field_tomo(source: Stream, qoi_name, rotation, **kwargs):
    theta = SimpleFromEventStream("event", ("data", rotation),
                                  upstream=source).map(np.deg2rad)

    qoi = SimpleFromEventStream("event", ("data", qoi_name),
                                upstream=source,
                                principle=True)
    center = SimpleFromEventStream("start", ("tomo", "center"),
                                   upstream=source)
    source.starsink(StartStopCallback())
    return locals()
Esempio n. 9
0
def test_from_event_model_all(RE, hw):
    source = Stream()
    t = FromEventStream("event", (), source, principle=True)
    L = t.sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert len(L) == 10
    for i, ll in enumerate(L):
        assert i == ll["data"]["motor"]
Esempio n. 10
0
def test_double_buffer_to_event_model():
    source = Stream(asynchronous=True)
    t = FromEventStream("event", ("data", "det_image"), source, principle=True)
    assert t.principle
    ts = t
    a = ts.map(slow_inc)
    aa = ts.map(slow_inc)
    n = a.zip(aa).SimpleToEventStream(("ct", ))

    b = n
    b.sink(print)
    L = b.sink_to_list()

    futures_L = []

    tt = t.sink_to_list()
    p = b.pluck(0).sink_to_list()
    d = b.pluck(1).sink_to_list()
    t0 = time.time()
    for gg in y(10):
        futures_L.append(gg)
        yield source.emit(gg)
    while len(L) < len(futures_L):
        yield gen.sleep(.01)
    t1 = time.time()
    # check that this was faster than running in series
    assert t1 - t0 > .5 * 10

    assert tt
    assert p == ["start", "descriptor"] + ["event"] * 10 + ["stop"]
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}

    t0 = time.time()
    for gg in y(10):
        futures_L.append(gg)
        yield source.emit(gg)
    while len(L) < len(futures_L):
        yield gen.sleep(.01)
    print(len(L), len(futures_L))
    t1 = time.time()
    # check that this was faster than running in series
    assert t1 - t0 > .5 * 10

    assert tt
    assert p == (["start", "descriptor"] + ["event"] * 10 + ["stop"]) * 2
    assert d[14]["hints"] == {"analyzer": {"fields": ["ct"]}}
    for i, j in zip([0, 1, 12], [13, 14, 25]):
        assert p[i] == p[j]
        assert d[i] != d[j]
Esempio n. 11
0
def test_to_event_model_new_api_no_principle(RE, hw):
    source = Stream()
    stop = FromEventStream("stop", (), source)
    t = FromEventStream("event", ("data", "motor"), source, stream_name="hi")
    tt = t.zip(stop)
    simple_to_event_stream_new_api(
        {
            t: {"data_keys": {"ct": {"units": "arb", "precision": 2}}},
            tt: {
                "name": "final",
                "data_keys": {"ct": {"units": "arb", "precision": 2}},
            },
        },
        hello="world",
    )
Esempio n. 12
0
def test_walk_up():
    raw = Stream()
    a_translation = FromEventStream("start", ("time",), raw, principle=True)
    b_translation = FromEventStream("event", ("data", "pe1_image"), raw)

    d = b_translation.zip_latest(a_translation)
    dd = d.map(op.truediv)
    e = ToEventStream(dd, ("data",))

    g = nx.DiGraph()
    walk_to_translation(e, g)
    att = []
    for node, attrs in g.nodes.items():
        att.append(attrs["stream"])
    s = {a_translation, b_translation, d, dd, e}
    assert s == set(att)
    assert {_hash_or_uid(k) for k in s} == set(g.nodes)
Esempio n. 13
0
def test_align_interrupted(RE, hw):
    a = Stream()
    b = FromEventStream("event", ("data", "img"), a, principle=True).map(
        op.add, 1
    )
    b.sink(print)
    c = ToEventStream(b, ("out",))
    z = move_to_first(a.AlignEventStreams(c))
    sl = z.sink_to_list()

    L = []

    RE.subscribe(lambda *x: L.append(x))

    RE(count([hw.img]))

    for nd in L:
        name, doc = nd
        # cause an exception
        if name == "event":
            doc["data"]["img"] = "hi"
        try:
            a.emit((name, doc))
        except TypeError:
            pass
    assert {"start", "stop"} == set(list(zip(*sl))[0])
    # check that buffers are not cleared, yet
    sl.clear()
    # If there are elements in the buffer they need to be cleared when all
    # start docs come in.
    for nd in L:
        name, doc = nd
        # cause an exception
        if name == "event":
            doc["data"]["img"] = 1
        a.emit((name, doc))
        if name == "start":
            # now buffers should be clear
            assert not any(
                [b for n, tb in z.true_buffers.items() for u, b in tb.items()]
            )
    assert {"start", "descriptor", "event", "stop"} == set(list(zip(*sl))[0])
    # now buffers should be clear (as all docs were emitted)
    assert not any(
        [b for n, tb in z.true_buffers.items() for u, b in tb.items()]
    )
Esempio n. 14
0
def test_parent_nodes():
    # build the graph
    g1 = FromEventStream(
        "event",
        ("data", "det_image"),
        principle=True,
        stream_name="g1",
        asynchronous=True,
    )
    g11 = FromEventStream(
        "event", ("data", "det_image"), stream_name="g11", asynchronous=True
    )
    g2 = g1.zip(g11).starmap(op.mul, stream_name="mul")
    g = g2.SimpleToEventStream(("img2",))
    l1 = g.sink_to_list()
    # g.sink(print)
    assert len(g.translation_nodes) == 2
    print("start experiment")

    # run the experiment
    l0 = []
    for yy in y(5):
        l0.append(yy)
        g11.update(yy)
        g1.update(yy)
        print(g11.start_uid)

    assert len(l1[0][1]["parent_node_map"]) == 2
Esempio n. 15
0
File: tomo.py Progetto: xpdAcq/xpdAn
def pencil_tomo(source: Stream, qoi_name, translation, rotation, stack=None,
                **kwargs):
    """Extract data from a raw stream for pencil beam tomography

    Parameters
    ----------
    source : Stream
        The stream of raw event model data
    qoi_name : str
        The name of the QOI for this reconstruction
    kwargs

    Returns
    -------
    dict :
        The namespace
    """
    start = SimpleFromEventStream('start', (), upstream=source)
    if stack:
        stack_position = SimpleFromEventStream("event", ("data", stack),
                                               upstream=source)
    x = SimpleFromEventStream("event", ("data", translation), upstream=source)
    th = SimpleFromEventStream("event", ("data", rotation), upstream=source)

    # Extract the index for the translation and rotation so we can
    # extract the dimensions and extents
    # TODO: turn into proper function
    translation_position = SimpleFromEventStream(
        "start", ("motors",), upstream=source
    ).map(lambda x: x.index(translation))
    rotation_position = SimpleFromEventStream(
        "start", ("motors",), upstream=source
    ).map(lambda x: x.index(rotation))

    dims = SimpleFromEventStream("start", ("shape",), upstream=source)
    th_dim = dims.zip(rotation_position).starmap(op.getitem)
    x_dim = dims.zip(translation_position).starmap(op.getitem)

    extents = SimpleFromEventStream("start", ("extents",), upstream=source)
    th_extents = extents.zip(rotation_position).starmap(op.getitem)
    x_extents = extents.zip(translation_position).starmap(op.getitem)

    qoi = SimpleFromEventStream(
        "event", ("data", qoi_name), upstream=source, principle=True
    )
    center = SimpleFromEventStream(
        "start", ("tomo", "center"), upstream=source
    )
    source.starsink(StartStopCallback())
    return locals()
Esempio n. 16
0
def test_from_event_model_stream_name2():
    def data():
        suid = str(uuid.uuid4())
        duid = str(uuid.uuid4())
        yield "start", {"hi": "world", "uid": suid}
        yield "descriptor", {
            "name": "hi",
            "data_keys": {"ct"},
            "uid": duid,
            "run_start": suid,
        }
        for i in range(10):
            yield "event", {
                "uid": str(uuid.uuid4()),
                "data": {"ct": i},
                "descriptor": duid,
            }
        duid = str(uuid.uuid4())
        yield "descriptor", {
            "name": "not hi",
            "data_keys": {"ct"},
            "uid": duid,
            "run_start": suid,
        }
        for i in range(100, 110):
            yield "event", {
                "uid": str(uuid.uuid4()),
                "data": {"ct": i},
                "descriptor": duid,
            }
        yield "stop", {"uid": str(uuid.uuid4()), "run_start": suid}

    g = data()
    source = Stream()
    t = FromEventStream(
        "event", ("data", "ct"), source, event_stream_name="not hi"
    )
    L = t.sink_to_list()

    for gg in g:
        source.emit(gg)

    assert len(L) == 10
    for i, ll in enumerate(L):
        assert i + 100 == ll
Esempio n. 17
0
def test_to_event_model_stream_syntax(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = t.simple_to_event_stream(("ct",), data_key_md={"ct": {"units": "arb"}})
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    assert d[-1]["run_start"]
Esempio n. 18
0
def test_to_event_model_new_api_clobber(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = simple_to_event_stream_new_api(
        {t: {"data_keys": {"ct": {"units": "arb", "dtype": "array"}}}}
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[1]["data_keys"]["ct"]["dtype"] == "array"
    assert d[-1]["run_start"]
Esempio n. 19
0
def test_to_event_model_new_api_no_data_keys(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data",), source, principle=True)
    assert t.principle

    n = simple_to_event_stream_new_api({t: {}})
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[1]["hints"] == {
        "analyzer": {"fields": ["motor", "motor_setpoint"]}
    }
    assert d[1]["data_keys"]["motor"]
    assert d[-1]["run_start"]
Esempio n. 20
0
def test_slow_to_event_model_parallel_dask(c, s, a, b):
    source = Stream(asynchronous=True)
    t = FromEventStream("event", ("data", "det_image"), source, principle=True)
    assert t.principle
    ts = t.scatter(backend="dask")
    # futures_L = t.sink_to_list()
    a = ts.map(slow_inc)
    n = a.SimpleToEventStream(("ct", ))

    b = n.buffer(100).gather()
    b.sink(print)
    L = b.sink_to_list()

    tt = t.sink_to_list()
    p = b.pluck(0).sink_to_list()
    d = b.pluck(1).sink_to_list()

    t0 = time.time()
    futures_L = []
    for gg in y(10):
        futures_L.append(gg)
        yield source.emit(gg)
    while len(L) < len(futures_L):
        yield gen.sleep(.01)
    t1 = time.time()
    # check that this was faster than running in series
    td = t1 - t0
    ted = .5 * 10
    assert td < ted

    assert tt
    assert p == ["start", "descriptor"] + ["event"] * 10 + ["stop"]
    assert "uid" in d[0]
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["dtype"] == "number"
    assert d[2]["data"]["ct"] == 2
Esempio n. 21
0
def test_replay_export_test():
    def y():
        suid = str(uuid.uuid4())
        yield ("start", {"uid": suid, "time": time.time()})
        duid = str(uuid.uuid4())
        yield (
            "descriptor",
            {
                "uid": duid,
                "run_start": suid,
                "name": "primary",
                "data_keys": {"det_image": {"dtype": "int", "units": "arb"}},
                "time": time.time(),
            },
        )
        for i in range(5):
            yield (
                "event",
                {
                    "uid": str(uuid.uuid4()),
                    "data": {"det_image": i},
                    "timestamps": {"det_image": time.time()},
                    "seq_num": i + 1,
                    "time": time.time(),
                    "descriptor": duid,
                },
            )
        yield (
            "stop",
            {"uid": str(uuid.uuid4()), "time": time.time(), "run_start": suid},
        )

    print("build graph")
    g1 = FromEventStream(
        "event", ("data", "det_image"), principle=True, stream_name="g1"
    )
    g11 = FromEventStream("event", ("data", "det_image"), stream_name="g11")
    g11_1 = g1.zip(g11)
    g2 = g11_1.starmap(op.mul).map(np.log)
    g = g2.SimpleToEventStream(("img2",))
    from pprint import pprint

    g.sink(pprint)
    L = g.sink_to_list()

    print("run experiment")
    for yy in y():
        print(yy[0])
        g11.update(yy)
        g1.update(yy)
    assert L[-1][1]["run_start"]
Esempio n. 22
0
def pencil_tomo(source: Stream,
                qoi_name,
                translation,
                rotation,
                stack=None,
                **kwargs):
    """Extract data from a raw stream for pencil beam tomography

    Parameters
    ----------
    source : Stream
        The stream of raw event model data
    qoi_name : str
        The name of the QOI for this reconstruction
    kwargs

    Returns
    -------
    dict :
        The namespace
    """
    start = SimpleFromEventStream('start', (), upstream=source)
    if stack:
        stack_position = SimpleFromEventStream("event", ("data", stack),
                                               upstream=source)
    x = SimpleFromEventStream("event", ("data", translation), upstream=source)
    th = SimpleFromEventStream("event", ("data", rotation), upstream=source)

    # Extract the index for the translation and rotation so we can
    # extract the dimensions and extents
    # TODO: turn into proper function
    translation_position = SimpleFromEventStream(
        "start", ("motors", ),
        upstream=source).map(lambda x: x.index(translation))
    rotation_position = SimpleFromEventStream(
        "start", ("motors", ),
        upstream=source).map(lambda x: x.index(rotation))

    dims = SimpleFromEventStream("start", ("shape", ), upstream=source)
    th_dim = dims.zip(rotation_position).starmap(op.getitem)
    x_dim = dims.zip(translation_position).starmap(op.getitem)

    extents = SimpleFromEventStream("start", ("extents", ), upstream=source)
    th_extents = extents.zip(rotation_position).starmap(op.getitem)
    x_extents = extents.zip(translation_position).starmap(op.getitem)

    qoi = SimpleFromEventStream("event", ("data", qoi_name),
                                upstream=source,
                                principle=True)
    center = SimpleFromEventStream("start", ("tomo", "center"),
                                   upstream=source)
    source.starsink(StartStopCallback())
    return locals()