Esempio n. 1
0
def test_sensitivity_norm_list_of_arrays():
    class ReshapeToList(Query):
        def get(self, data):
            return list(np.reshape(data, (20, 30, 40)))

    distribution = NormalDistribution(0, 1.5)
    sampler = SensitivitySampler()

    # L1 norm:
    s_max, s_mean = sampler.sample_sensitivity(ReshapeToList(),
                                               L1SensitivityNorm(),
                                               distribution,
                                               n=20 * 30 * 40,
                                               m=285,
                                               gamma=0.33)

    assert isinstance(s_max, list)
    assert isinstance(s_mean, list)
    for i in range(len(s_max)):
        assert s_max[i].sum() < 2 * 1.5
        assert s_mean[i].sum() < 2 * 1.5

    # L2 norm:
    s_max, s_mean = sampler.sample_sensitivity(ReshapeToList(),
                                               L2SensitivityNorm(),
                                               distribution,
                                               n=20 * 30 * 40,
                                               m=285,
                                               gamma=0.33)

    assert isinstance(s_max, list)
    assert isinstance(s_mean, list)
    for i in range(len(s_max)):
        assert s_max[i].sum() < 2 * 1.5
        assert s_mean[i].sum() < 2 * 1.5
Esempio n. 2
0
def test_sample_sensitivity_gamma():
    distribution = NormalDistribution(0, 1)

    sampler = SensitivitySampler()
    _, mean = sampler.sample_sensitivity(Mean(),
                                         L1SensitivityNorm(),
                                         distribution,
                                         n=100,
                                         gamma=0.33)

    assert np.abs(mean - 0) < 0.5
Esempio n. 3
0
def test_laplace_mechanism():
    data_size = 1000
    array = NormalDistribution(175, 7).sample(data_size)
    federated_array = shfl.private.federated_operation.federate_array(
        array, data_size)

    federated_array.configure_data_access(LaplaceMechanism(1, 1))
    result = federated_array.query()

    differences = 0
    for i in range(data_size):
        if result[i] != array[i]:
            differences = differences + 1

    assert differences == data_size
    assert np.mean(array) - np.mean(result) < 5
def test_normal_distribution():
    data_size = 1000
    array = NormalDistribution(175, 7).sample(data_size)

    assert len(array) == 1000
    assert np.abs(np.mean(array) - 175) < 5